Skip to main content

Risk Analysis for Pipeline Assets—The Use of Models for Failure Prediction in Plastics Pipelines

  • Conference paper
Service Life Prediction of Polymeric Materials

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacKellar, S. and Pearson, D. “Nationally Agreed Failure Data and Analysis Methodology for Water Mains Volume 1: Overview and Findings,” Report Ref. No. 03/RG/05/7, UK Water Industry Research, London, UK, 2003.

    Google Scholar 

  2. Marshall, G.P., Pearson, D., and MacKellar, S., “Specification of Performance for Modified and Polyethylene Pipes,” Plast. Rubber Compos. Process. Appl., 25 (6), 276-286 (1996).

    Google Scholar 

  3. Andersson, U., Proc. of the 11th International Conference on Plastics Pipes, Munich, Germany, Plastics and Rubber Institute, 2001.

    Google Scholar 

  4. Williams, J.G., “Applications of Linear Fracture Mechanics,” Adv. Polym. Sci., 27, 67-120 (1978).

    Google Scholar 

  5. Lu, J.P., Davis, P., and Burn, L.S., “Lifetime Predictions for ABS Pipes Subjected to Combined Pressure and Deflection Loading,” Polym. Eng. Sci., 43, 444 (2003).

    Article  Google Scholar 

  6. Marshall, G.P., “Design for Toughness in Polymers: 1—Fracture Mechanics,” Plast. Rubber Compos. Process. Appl., 2 (2), 169-182 (1982).

    Google Scholar 

  7. Burn, S., Davis, P., Schiller, T., Tiganis, B., Tjandraatmadja, G., Cardy, M., Gould, S., Sadler, P., and Whittle A.J., Long Term Performance Prediction of PVC Pipes, AwwaRF Project No. 2879, 2005.

    Google Scholar 

  8. Davis, P., Burn, L.S., and Whittle, A.J., “Investigating Crack Growth and Plasticity in the C-Ring Fracture Toughness Test,” Proc. Plastics Pipes XI, Munich, Germany, IOM Communications, September 2001.

    Google Scholar 

  9. Rooke, D.P. and Cartwright, D.J., Compendium of Stress Intensity Factors, London, UK, 1976.

    Google Scholar 

  10. ISO/DIS 11673.2, Determination of the Fracture Toughness Properties of Un-plasticized Poly(Vinyl (PVC-U) Pipes}, International Organization for Standardization, Geneva, Switzerland, 1999.

    Google Scholar 

  11. Burn, L.S., “Lifetime Prediction of uPVC Pipes—Experimental and Theoretical Comparisons,” Plast. Rubber Compos. Process. Appl., 21 (2), 99-108 (1994).

    MathSciNet  Google Scholar 

  12. Marshall, G.P., Brogden, S., and Shepherd, M.A., “Evaluation of the Surge and Fatigue Resistance of PVC and PE Pipeline Materials for Use in the U.K. Water Industry,” Proc. Plastics Pipes X Conference, Gothenburg, Sweden, IOM Communications, September 1998.

    Google Scholar 

  13. Williams, J.G., Introduction to Elastic Plastic Fracture Mechanics, ESIS-TC4 Polymers and Composites, Cambridge, UK, 2000.

    Google Scholar 

  14. Kumar, V., German, M.D., and Shih, C.F., “An Engineering Approach for Elastic Plastic Fracture Analysis,” EPRI Report NP-1931, 1981.

    Google Scholar 

  15. Bernal, C., Lopez Montenegro, H., and Frontini, P., “Failure Prediction Analysis for Polyethylene Flawed Pipes,” Eng. Fract. Mech., 70, 2149 (2003).

    Article  Google Scholar 

  16. Atkins, A.G. and Mai, Y.W., Elastic and Plastic Fracture, Ellis Horwood, Chichester, UK, 1988.

    Google Scholar 

  17. Hale, G.E. and Ramsteiner, F., J-Fracture Toughness of Polymers at Slow Speed, ESIS-TC4 Polymers and Composites, Cambridge, UK, 2000.

    Google Scholar 

  18. Sehanobish, K., Moet, A., Chudnovsky, A., and Petro, P.P., “Fractographic Analysis of Field Failure in Polyethylene Pipe,” J. Mater. Sci. Lett., 4, 890-894 (1985).

    Article  Google Scholar 

  19. Kanninen, M.F., O’Donoghue, P.E., Popelar, C.H., and Kenner, V.H., “A Visco-Elastic Fracture Mechanics Assessment of Slow Crack Growth in Polyethylene Gas Distribution Pipe Materials,” Eng. Fract. Mech., 36 (6), 903-918 (1990).

    Article  Google Scholar 

  20. Pandya, K.C. and Williams, J.G., “Measurement of Cohesive Zone Parameters in Tough Polyethylene,” Polym. Eng. Sci., 40, 1765 (2000).

    Article  Google Scholar 

  21. Duan, D. and Williams, J.G., “Craze Testing for Tough Polyethylene,” J. Mat. Sci., 3, 635 (1998).

    Google Scholar 

  22. Schulte, C.A., in ASTM STP060, American Society for Teting & Materials, Philadelphia, PA, 1960.

    Google Scholar 

  23. Davis, P., Burn, S., and Gould S., Long Term Performance Prediction of PE Pipes, AwwaRF Project No. 2879, 2007.

    Google Scholar 

  24. Broberg, K.B., “Influence Of T-Stress, Cohesive Strength, and Yield Strength on the Competition between Decohesion and Plastic Flow in a Crack Edge Vicinity,” Int. J. Fract., 4, 11 (1999).

    Google Scholar 

  25. Wang, X., “Elastic T-Stress for Cracks in Test Specimens Subjected to Non-Uniform Stress Distributions,” Eng. Fract. Mech., 69, 1339 (2002).

    Article  Google Scholar 

  26. Wang, X. and Bell, R., “Elastic T-Stress Solutions for Semi-Elliptical Surface Cracks in Finite Thickness Plates Subject to Non-Uniform Stress Distributions,” Eng. Fract. Mech., 71, 1477 (2004).

    Article  Google Scholar 

  27. Davis, P., Burn, S., Moglia, M., and Gould, S., “A Physical Probabilistic Model to Predict Failure Rates in Buried PVC Pipelines,” Reliability Eng. System Safety, 92, 1258-1266 (2007).

    Article  Google Scholar 

  28. Chudnovsky, A., Baron, D., and Schulkin, Y., “Lifetime Prediction and Reliability Evaluation for Gas Piping Grade Polyethylene,” Proc. 14th Intern. Plastic Fuel Gas Pipe Symposium, San Diego, CA, American Gas Association, p. 190-196, 1995.

    Google Scholar 

  29. Barker, M.B., Bowman, J., and Bevis, M., “The Performance and Causes of Failure of Polyethylene Pipes Subjected to Constant and Fluctuating Internal Pressures,” J. Mater. Sci., 18, 1095-1118 (1983).

    Article  Google Scholar 

  30. PVC Pipes and Fittings for Pressure Applications, AS/NZS 1477, Standards Australia/Standards New Zealand, 1999.

    Google Scholar 

  31. Polyethylene (PE) Pipes for Pressure Pipes and Fittings,AS/NZS 4130, Standards Australia/Standards New Zealand, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Burn, S., Davis, P., Gould, S. (2009). Risk Analysis for Pipeline Assets—The Use of Models for Failure Prediction in Plastics Pipelines. In: Martin, J.W., Ryntz, R.A., Chin, J., Dickie, R.A. (eds) Service Life Prediction of Polymeric Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84876-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-84876-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-84875-4

  • Online ISBN: 978-0-387-84876-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics