Linking Accelerated Laboratory Test with Outdoor Performance Results for a Model Epoxy Coating System

  • Xiaohong Gu
  • Debbie Stanley
  • Walter E. Byrd
  • Brian Dickens
  • Iliana Vaca-Trigo
  • William Q. Meeker
  • Tinh Nguyen
  • Joannie W. Chin
  • Jonathan W. Martin


Band Pass Filter Neutral Density Chemical Degradation Irradiance Level Outdoor Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Martin, J.W., Nguyen, T., and Wood, K.A., “Unresolved Issues Related to Predicting the Service Life of Polymeric Materials,” Service Life Prediction: Challenging the Status Quo, Martin, J.W., Ryntz, R.A., and Dickie, R.A. (Eds.), Federation of Societies for Coatings Technology, Blue Bell, PA, p. 13, 2005.Google Scholar
  2. (2).
    Hofmann, A.W., “Remarks on the Changes of Gutta Percha Under Tropical Influences,” J. Chem. Soc., 14, 87 (1860).Google Scholar
  3. (3).
    Russell, W.J. and Abney, W. de W., “Repot to the Science and Art Department of the Committee of the Council of Education on the Action of Light on Water Colors,” H.M. Stationary Office, London (1888).Google Scholar
  4. (4).
    Blakely, R.R., “Evaluation of Paint Durability—Natural and Accelerated,” Prog. Org. Coat., 13, 279 (1985).CrossRefGoogle Scholar
  5. (5).
    Fischer, R.M., Ketola, W.D., and Murray, W.P., “Inherent Variability in Accelerated Exposure Methods,” Prog. Org. Coat., 19, 165 (1991).CrossRefGoogle Scholar
  6. (6).
    Riedl, A., “What Makes a Xenon Weathering Instrument High-End?,” Atlas Sunspots, 33 (70), 1 (2003).Google Scholar
  7. (7).
    Sullivan, C.J. and Cooper, C.F., “Polyester Weatherability: Coupling Frontier Molecular Orbital Calculations of Oxidative Stability with Accelerated Testing,” J. Coat. Technol., 67, No. 847, p. 53 (1995).Google Scholar
  8. (8).
    Searle, N.D., Giesecke, P. Kinmonth, R., and Hirt, R.C., “Ultraviolet Spectra Distributions and Aging Characteristics of Xenon Arcs AND Filters,” Appl. Opt., 3, 963 (1964).CrossRefGoogle Scholar
  9. (9).
    Kinmonth, R.A. and Norton, J.E., “Effect of Spectral Energy Distribution on Degradation of Organic Coatings,” J. Coat. Technol., 49, No. 633, p. 37 (1977).Google Scholar
  10. (10).
    Meeker, W.Q. and Escobar, L.A., Statistical Methods for Reliability Data, John Wiley & Sons, New York, 1998.MATHGoogle Scholar
  11. (11).
    Whittaker, I.C. and Besumer, P.M., “A Reliability Analysis Approach to Fatigue Life Variability of Aircraft Structures,” Air Force Materials Laboratory Technical Report, AFML-TR-69-65, 1969.Google Scholar
  12. (12).
    Martin, J.W. and McKnight, M.E. “Prediction of the Service Life of Coatings on Steel. 2. Quantitative Prediction of the Service Life of a Coating System,” J. Coat. Technol., 57, No. 724, p. 31 (1985).Google Scholar
  13. (13).
    Martin, J.W., Saunders, S.C., Floyd, F.L., and Wineburg, J.P. “Methodologies for Predicting the Service Lives of Coating Systems,” Federation of Societies for Coatings Technology, Blue Bell, PA, 1996.Google Scholar
  14. (14).
    Schutyser, P. and Perera, D.Y., “Use of Reliability-based Methodology for Appearance Measurements,” Service Life Prediction of Organic Coatings: A Systems Approach, Bauer, D.R. and Martin, J.W. (Eds.), ACS Symposium Series 772, American Chemical Society, Oxford Press, NY, p. 198, 1999.Google Scholar
  15. (15).
    Tait, W.S., “Reliability Engineering: The Commonality between Airplanes, Light Bulbs, and Coated Steel,” Service Life Prediction of Organic Coatings: A Systems Approach, Bauer, D.R. and Martin, J.W. (Eds.), ACS Symposium Series 772, American Chemical Society, Oxford Press, NY, p. 186, 1999.Google Scholar
  16. (16).
    Guseva, O., Brunner, S., and Richner, P., “Service Life Prediction for Aircraft Coatings,” Polym. Degrad. Stab., 82, 1 (2003).Google Scholar
  17. (17).
    Nelson, H.A. and Schmutz, F.C., “Accelerated Weathering: A Consideration of Some Fundamentals Governing its Application,” Ind. Eng. Chem., 18 (12), 1222 (1926).CrossRefGoogle Scholar
  18. (18).
    Duffie, J.A. and Beckman, W.A., “Solar Engineering of Thermal Processes,” Second Edition. New York, Wiley-Interscience, 1991.Google Scholar
  19. (19).
    Chin, J.W., Byrd, W.E., Embree, E., Martin, J.W., and Tate, J.D., “Ultraviolet Chambers Based on Integrating Spheres for Use in Artificial Weathering,” J. Coat. Technol., 74, No. 929, p. 39 (2002).CrossRefGoogle Scholar
  20. (20).
    Chin, J.W., Byrd, W.E., Embree, E., and Martin, J.W., “Integrating Sphere Sources for UV Exposure,” Service Life Prediction: Methodology and Metrologies, Martin, J.W. and Bauer, D. (Eds.), Oxford Press, NY, p. 144, 2001.Google Scholar
  21. (21).
    Bellinger, V. and Verdu, J., “Oxidative Skeleton Breaking in Epoxy-Amine Networks,” J. Appl. Polym. Sci., 30, 363 (1985).CrossRefGoogle Scholar
  22. (22).
    Bellinger, V. and Verdu, J., “Structure-Photooxidative Stability Relationship of Amine-Crosslinked Epoxies,” Polymer Photochem., 5, 295-311 (1984).CrossRefGoogle Scholar
  23. (23).
    Rabek, J.F., Polymer Photodegradation—Mechanisms and Experimental Methods, Chapman & Hall, New York, p. 269-278, 1995.Google Scholar
  24. (24).
    Kelleher, P.G., and Gesner, B.D., “Photo-Oxidation of Phenoxy Resin,” J. Appl. Polym. Sci., 13, 9-15 (1969).CrossRefGoogle Scholar
  25. (25).
    Rivaton, A., Moreau, L., and Gardette, J-L., “Photo-Oxidation of Phenoxy Resins at Long and Short Wavelengths-I. Identification of the Photoproducts,” Polym. Deg. Stab., 58, 321-332 (1997).CrossRefGoogle Scholar
  26. (26).
    Nguyen, T., Martin, J.W., Byrd, E., and Embree, N., “Relating Laboratory and Outdoor Exposure of Coatings: II. Effects of Relative Humidity on Photodegradation and the Apparent Quantum Yield of Acrylic-Melamine Coatings,” J. Coat. Technol., 74, No. 932, p. 65 (2002).CrossRefGoogle Scholar
  27. (27).
    Chin, J., Nguyen, T., Byrd, W.E., and Martin J.W., “Validation of the Reciprocity Law for Coating Photodegradation,” J. Coat Technol. Res., 2, No. 7, p. 499 (2005).Google Scholar
  28. (28).
    Patterson-Jones, J.C., “Mechanism of Thermal Degradation of Aromatic Amine-Cured Glycidyl Ether Type Epoxide Resins,” J. Appl. Polym. Sci., 19, 1539-1547 (1975).CrossRefGoogle Scholar
  29. (29).
    Gerlock, J.L., Peters, C.A., Kucherov, A.V., Misovski, T., Seubert, C.M., Carter, R.O. III, and Nichols, M.E., “Testing Accelerated Weathering Tests for Appropriate Weathering Chemistry: Ozone Filtered Xenon Arc,” J. Coat Technol., 75, No. 936, 35 (2003).CrossRefGoogle Scholar
  30. (30).
    Vaca-Trigo, I., and Meeker, W.Q., “A Statistical Model for Linking Field and Laboratory Exposure Results for a Model Coating,” Proc. International Symposium on Service Life Prediction: Global Perspectives, Key Largo, FL, 2006.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaohong Gu
    • 1
  • Debbie Stanley
    • 1
  • Walter E. Byrd
    • 1
  • Brian Dickens
    • 1
  • Iliana Vaca-Trigo
    • 2
  • William Q. Meeker
    • 2
  • Tinh Nguyen
    • 1
  • Joannie W. Chin
    • 1
  • Jonathan W. Martin
    • 1
  1. 1.Materials and Construction Research DivisionNational Institute of Standards and TechnologyGaithersburg
  2. 2.Department of StatisticsIowa State UniversityAmes

Personalised recommendations