Skip to main content

Optical and Electrical Properties of Phase Change Materials

  • Chapter

Abstract

Optical and electrical properties of the phase change material Ge2Sb2Te5 are reviewed for its three phases. Implications of these data for the energy distribution of the density of electron states in the vicinity of the band edges are described. Near-band edge optical data obtained from ellipsometry and optical absorption spectra have been fitted with dispersion equations to determine values of ∼ 0.7 eV for the optical bandgap of the amorphous phase, and ∼ 0.5 eV for the highly conducting fcc and hexagonal phases. Infrared absorption spectra exhibit the effects of free carrier absorption in both crystalline phases. Conductivity at ∼ 300 K is dominated by holes in all three phases; hole concentrations and mobilities are 1020 cm−3 and ∼ 30 cm2/V-s in hexagonal, and 1020 cm-3 and ∼ 1 cm2/V-s in fcc. Temperature dependence of the sheet resistance of thin film Ge2Sb2Te5 documents the dramatic decreases in electrical resistance at the amorphous-to-fcc and fcc-to-hexagonal phase transitions. Comparison of the temperature dependence of the electrical properties in each of the three phases of Ge2Sb2Te5 provides additional insights concerning their conduction mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heavens, O.S.: Optical Properties of Thin Solid Films. Dover Publications, New York (1965)

    Google Scholar 

  2. Lee, B.-S., Abelson, J.R., Bishop, S.G., Kang, D.-H., Cheong, B., Kim, K.-B.: Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 97, 093509 (2005)

    Article  Google Scholar 

  3. Tsu, D.V.: Obtaining optical constants of thin GexSbyTez films from measurements of reflection and transmission. J. Vac. Sci. Technol., A 17, 1854-1860 (1999)

    Article  Google Scholar 

  4. Jackson, W.B., Amer, N.M., Boccara, A.C., Fournier, D.: Photothermal deflection spectroscopy and detection. Appl. Opt. 20, 1333-1344 (1981)

    Article  Google Scholar 

  5. Olson, J.K., Li, H., Ju, T., Viner, J.M., Taylor, P.C.: Optical properties of amorphous GeTe, Sb2Te3, and Ge2Sb2Te5: The role of oxygen. J. Appl. Phys. 99, 103508 (2006)

    Article  Google Scholar 

  6. Tompkins, H.G., McGahan, W.A.: Spectroscopic ellipsometry and reflectometry: a user’s guide. Wiley, New York (1999)

    Google Scholar 

  7. Welnic, W., Pamungkas, A., Detemple, R., Steimer, C., Blugel, S., Wuttig, M.: Unravelling the interplay of local structure and physical properties in phase-change materials. Nature Mater. 5, 56-62 (2006)

    Article  Google Scholar 

  8. Welnic, W., Botti, S., Reining, L., Wuttig, M.: Origin of the optical contrast in phase-change materials. Phys. Rev. Lett. 98 (2007)

    Google Scholar 

  9. Coombs, J.H., Jongenelis, A.P.J.M., van Es-Spiekman, W., Jacobs, B.A.J.: Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth. J. Appl. Phys. 78, 4906-4917 (1995)

    Article  Google Scholar 

  10. Milliron, D.J., Raoux, S., Shelby, R., Jordan-Sweet, J.: Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. Nature Mater. 6, 352-356 (2007)

    Article  Google Scholar 

  11. Jeong, T.H., Kim, M.R., Seo, H., Kim, S.J., Kim, S.Y.: Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films. J. Appl. Phys. 86, 774-778 (1999)

    Article  Google Scholar 

  12. Kim, Y., Kim, S.J., Kim, S.Y., An, S.H., Suh, D.-S., Noh, J.-S., Lee, S.M., Kim, K.H.P., Shin, W.-C., Khang, Y.: Experimental setup for in situ investigation of phase changing behavior in phase-change random-access memory medium by microfocusing nanosecond-time-resolved ellipsometry. Jpn. J. Appl. Phys. Part 1 45, 6452-6454 (2006)

    Article  Google Scholar 

  13. Mott, N.F., Davis, E.A.: Electronic Processes in Non-crystalline Materials. 2nd ed. Clarendon Press; Oxford University Press, Oxford, New York (1979)

    Google Scholar 

  14. Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Physica Status Solidi 15, 627-637 (1966)

    Article  Google Scholar 

  15. Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Bez, R.: Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 452-459 (2004)

    Article  Google Scholar 

  16. Kato, T., Tanaka, K.: Electronic properties of amorphous and crystalline Ge2Sb2Te5 films. Jpn. J. Appl. Phys. Part 1 44, 7340-7344 (2005)

    Article  Google Scholar 

  17. Boer, K.W.: Survey of Semiconductor Physics: Electrons and other Particles in Bulk Semiconductors. Van Nostrand Reinhold, New York (1990)

    Google Scholar 

  18. Moss, T.S.: Optical Properties of Semi-Conductors. Butterworths Scientific Publications, London (1959)

    Google Scholar 

  19. Gonzalez-Hernandez, J., Lopez-Cruz, E., Yanez-Limon, M., Strand, D., Chao, B.B., Ovshinsky, S.R.: Free carrier absorption in the Ge:Sb:Te system. Solid State Commun. 95, 593-596 (1995)

    Article  Google Scholar 

  20. Mendoza-Galvan, A., Gonzalez-Hernandez, J.: Drude-like behavior of Ge:Sb:Te alloys in the infrared. J. Appl. Phys. 87, 760-765 (2000)

    Article  Google Scholar 

  21. Shelimova, L.E., Karpinskii, O.G., Konstantinov, P.P., Kretova, M.A., Avilov, E.S., Zemskov, V.S.: Composition and properties of layered compounds in the GeTe-Sb2Te3 system. Inorg. Mater. 37, 342-348 (2001)

    Article  Google Scholar 

  22. Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P., Wuttig, M.: Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J. Appl. Phys. 87, 4130-4134 (2000)

    Article  Google Scholar 

  23. Lyeo, H.-K., Cahill, D.G., Lee, B.-S., Abelson, J.R., Kwon, M.-H., Kim, K.-B., Bishop, S.G., Cheong, B.-k.: Thermal conductivity of phase-change material Ge2Sb2Te5. Appl. Phys. Lett. 89, 151904 (2006)

    Article  Google Scholar 

  24. Miao, X.S., Chong, T.C., Huang, Y.M., Lim, K.G., Tan, P.K., Shi, L.P.: Dependence of optical constants on film thickness of phase-change media. Jpn. J. Appl. Phys. Part 1 38, 1638-1641 (1999)

    Article  Google Scholar 

  25. Liang, R.G., Peng, C.B., Nagata, K., Daly-Flynn, K., Mansuripur, M.: Optical characterization of multilayer stacks used as phase-change media of optical disk data storage. Appl. Opt. 41, 370-378 (2002)

    Article  Google Scholar 

  26. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M.: Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin-films for an optical disk memory. J. Appl. Phys. 69, 2849-2856 (1991)

    Article  Google Scholar 

  27. Kim, J.-H., Kim, M.R.: Effects of microstructure on optical properties of Ge2Sb2Te5 thin films. Jpn. J. Appl. Phys. Part 1 37, 2116-2117 (1998)

    Article  Google Scholar 

  28. Lai, Y.F., Qiao, B.W., Feng, J., Le, Y., La, L.Z., Lin, Y.Y., Tang, T.A., Cai, B.C., Chen, B.M.: Nitrogen-doped Ge2Sb2Te5 films for nonvolatile memory. J. Electron. Mater. 34, 176-181 (2005)

    Article  Google Scholar 

  29. Kyratsi, T., Chrissafis, K., Wachter, J., Paraskevopoulos, K.M., Kanatzidis, M.G.: KSb5S8: A wide bandgap phase-change material for ultra high density rewritable information storage. Adv. Mater. 15, 1428-1431 (2003)

    Article  Google Scholar 

  30. Gutwirth, J., Wagner, T., Bezdicka, P., Vlcek, M., Kasap, S.O., Frumar, M.: Influence of silver concentration in Agx(Sb0.33S0.67)100-x thin amorphous films on photoinduced crystallization. J. Non-Cryst. Solids 353, 1431-1436 (2007)

    Article  Google Scholar 

  31. Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T.: Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703-708 (2004)

    Article  Google Scholar 

  32. Tanaka, K.: Comment on ‘‘Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases’’ [J. Appl. Phys. 97, 093509 (2005)]. J. Appl. Phys. 101, 026111 (2007)

    Article  Google Scholar 

  33. Lee, B.-S., Abelson, J.R., Bishop, S.G., Kang, D.-H., Cheong, B.-K., Kim, K.-B.: Response to ‘‘Comment on ’Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases’’’ [J. Appl. Phys. 97, 093509 (2005)]. J. Appl. Phys. 101, 026112 (2007)

    Article  Google Scholar 

  34. Lee, H.S., Cheong, B.-K., Lee, T.S., Jeong, J.-H., Lee, S., Kim, W.M., Kim, D.: Origin of nonlinear optical characteristics of crystalline Ge-Sb-Te thin films for possible superresolution effects. Jpn. J. Appl. Phys. Part 2 46, 277-279 (2007)

    Article  Google Scholar 

  35. Shimakawa, K., Kolobov, A., Elliott, S.R.: Photoinduced effects and metastability in amorphous semiconductors and insulators. Adv. Phys. 44, 475-588 (1995)

    Article  Google Scholar 

  36. Lee, B.-S., Xiao, Y., Bishop, S.G., Abelson, J.R., Raoux, S., Deline, V.R., Kwon, M.-H., Kim, K.-B., Cheong, B., Li, H., Taylor, P.C.: Photo-oxidation and the absence of photodarkening in Ge2Sb2Te5 phase change material, In: Edwards, A.H., Taylor, P.C., Maimon, J. Kolobov, A. (eds.) Chalcogenide Alloys for Reconfigurable Electronics, MRS Proc., Vol. 918, p. 0918-H0902-0904, San Francisco, CA (2006)

    Google Scholar 

  37. Pamukchieva, V., Szekeres, A.: Influence of illumination on the optical bandgap energy value of GexSb20-xTe80 films. J. Optoelectron. Adv. Mater. 7, 1277-1280 (2005)

    Google Scholar 

  38. Kalb, J., Spaepen, F., Wuttig, M.: Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240-5242 (2004)

    Article  Google Scholar 

  39. Kim, D.H., Merget, F., Laurenzis, M., Bolivar, P.H., Kurz, H.: Electrical percolation characteristics of Ge2Sb2Te5 and Sn doped Ge2Sb2Te5 thin films during the amorphous to crystalline phase transition. J. Appl. Phys. 97 (2005)

    Google Scholar 

  40. Ovshinsky, S.R.: Optical cognitive information processing - A new field. Jpn. J. Appl. Phys. Part 1 43, 4695-4699 (2004)

    Article  Google Scholar 

  41. Ovshinsky, S.R., Czubatyj, W.: New developments in optical phase change memory, In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 4085, p. 15-22, Society of Photo-Optical Instrumentation Engineers, Shanghai (2001)

    Google Scholar 

  42. Ventrice, D., Fantini, P., Redaelli, A., Pirovano, A., Benvenuti, A., Pellizzer, F.: A phase change memory compact model for multilevel applications. IEEE Electron Device Lett. 28, 973-975 (2007)

    Article  Google Scholar 

  43. Ryu, S.O., Yoon, S.M., Choi, K.J., Lee, N.Y., Park, Y.S., Lee, S.Y., Yu, B.G., Park, J.B., Shin, W.C.: Crystallization behavior and physical properties of Sb-excess Ge2Sb2+xTe5 thin films for phase change memory (PCM) devices. J. Electrochem. Soc. 153, G234-G237 (2006)

    Article  Google Scholar 

  44. Jeong, T.H., Kim, M.R., Seo, H., Park, J.W., Yeon, C.: Crystal structure and microstructure of nitrogen-doped Ge2Sb2Te5 thin film. Jpn. J. Appl. Phys. Part 1 39, 2775-2779 (2000)

    Article  Google Scholar 

  45. Kim, Y., Hwang, U., Cho, Y.J., Park, H.M., Cho, M.H., Cho, P.-S., Lee, J.-H.: Change in electrical resistance and thermal stability of nitrogen incorporated Ge2Sb2Te5 films. Appl. Phys. Lett. 90, 021908 (2007)

    Article  Google Scholar 

  46. Gonzalez-Hernandez, J., Herrera-Fierro, P., Chao, B., Kovalenko, Y., Morales-Sanchez, E., Prokhorov, E.: Structure of oxygen-doped Ge:Sb:Te films. Thin Solid Films 503, 13-17 (2006)

    Article  Google Scholar 

  47. Streetman, B.G., Banerjee, S.: Solid State Electronic Devices. 5th ed. Prentice Hall, Upper Saddle River, N.J. (2000)

    Google Scholar 

  48. Smith, R.A.: Semiconductors. 2d ed. Cambridge University Press, Cambridge ; New York (1978)

    Google Scholar 

  49. Measuring resistivity and Hall coefficient and determining Hall mobility in single-crystal semiconductors (ASTM Standard) (1986)

    Google Scholar 

  50. Nolas, G.S., Sharp, J., Goldsmid, H.J.: Thermoelectrics: Basic Principles and New Materials Developments. Springer, Berlin (2001)

    Google Scholar 

  51. Castro, D.T., Goux, L., Hurkx, G.A.M., Attenborough, K., Delhougne, R., Lisoni, J., Jedema, F.J., Zandt, M.A.A.i.t.A., Wolters, R.A.M., Gravesteijn, D.J., Verheijen, M.A., Kaiser, M., Weemaes, R.G.R., Wouters, D.J.: Evidence of the thermo-electric Thomson effect and influence on the program conditions and cell optimization in phase-change memory cells, In: Goux, L. (ed.) Electron Devices Meeting, IEEE International, p. 315-318, (2007)

    Google Scholar 

  52. Frumar, M., Tichy, L., Klikorka, J., Horak, J.: Preparation and some physical properties of semiconducting GeSb2Te4 crystals. Mater. Res. Bull. 7, 1075-1085 (1972)

    Article  Google Scholar 

  53. Frumar, M., Tichy, L., Matyas, M., Zelizko, J.: Some physical-properties of semiconducting GeSb4Te7 crystals. Phys. Status Solidi A 22, 535-541 (1974)

    Article  Google Scholar 

  54. Yanez-Limon, J.M., Gonzalez-Hernandez, J., Alvarado-Gil, J.J., Delgadillo, I., Vargas, H.: Thermal and electrical properties of the Ge:Sb:Te system by photoacoustic and Hall measurements. Phys. Rev. B: Condens. Matter 52, 16321-16324 (1995)

    Google Scholar 

  55. Lee, B.-S.: Optical and Electronic Properties, Nanoscale Structural Order, and Transformation Kinetics of Phase Change Materials. Ph. D. thesis, University of Illinois at Urbana-Champaign (2006)

    Google Scholar 

  56. Yamanaka, S., Ogawa, S., Morimoto, I., Ueshima, Y.: Electronic structures and optical properties of GeTe and Ge2Sb2Te5. Jpn. J. Appl. Phys. Part 1 37, 3327-3333 (1998)

    Article  Google Scholar 

  57. Blakemore, J.S.: Semiconductor Statistics. Dover, New York (1987)

    Google Scholar 

  58. Kim, J.J., Kobayashi, K., Ikenaga, E., Kobata, M., Ueda, S., Matsunaga, T., Kifune, K., Kojima, R., Yamada, N.: Electronic structure of amorphous and crystalline (GeTe)(1-x)(Sb2Te3)(x) investigated using hard x-ray photoemission spectroscopy. Phys. Rev. B 76 115124 (2007)

    Google Scholar 

  59. Baily, S.A., Emin, D., Li, H.: Hall mobility of amorphous Ge2Sb2Te5. Solid State Commun. 139, 161-164 (2006)

    Article  Google Scholar 

  60. Ielmini, D., Zhang, Y.G.: Evidence for trap-limited transport in the subthreshold conduction regime of chalcogenide glasses. Appl. Phys. Lett. 90 192102 (2007)

    Article  Google Scholar 

  61. Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Sub Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, BS., Bishop, S.G. (2009). Optical and Electrical Properties of Phase Change Materials. In: Raoux, S., Wuttig, M. (eds) Phase Change Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84874-7_9

Download citation

Publish with us

Policies and ethics