Short and Long-Range Order in Phase Change Materials


This chapter offers a brief historical review of phase change materials as well as an overview of more recent findings. The chapter mainly focuses on the prototypical phase change materials in the Ge-Sb-Te and doped Sb-Te systems as these are currently the two composition spaces that are being applied both in the current generation of optical storage as well as future generations of electrical memory. In many ways, the structures of both the crystalline and amorphous phase change materials are atypical; the crystalline phase is often metastable, while the amorphous phase defies description as a typical random covalent network. We explore both long and short-range order of some prototypical compositions in the hope of providing a baseline from which deeper interpretations can be made.


Phase Change Material XANES Spectrum Phase Change Memory Rocksalt Structure Peierls Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [8.1]
    Kolomiets, B. T.: Vitreous semiconductors (I). Phys. Stat. Sol. B 7, 359-372 (1964)CrossRefGoogle Scholar
  2. [8.2]
    Ovshinsky, S.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450-1453 (1968)CrossRefGoogle Scholar
  3. [8.3]
    Wuttig, M, Yamada, N.: Phase-change materials for rewriteable data storage. Nature Mater. 6, 824-832, (2007)CrossRefGoogle Scholar
  4. [8.4]
    Wuttig, M., Lüsebrink, D., Wamwangi, D., Welnic, W., Gillessen, M., Dronskowski, R.: The role of vacancies and local distortions in the design of new phase-change materials. Nature Mater. 6, 122-128 (2007)CrossRefGoogle Scholar
  5. [8.5]
    Abrikosov, N. K., Danilova-Dobryakova, G.: An investigation of the structural diagram of Sb2Te3 - GeTe. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 1, 204-207 (1965)Google Scholar
  6. [8.6]
    Agafonov, V., Rodier, N., Céolin, R., Bellissent, R., Bergman, C., Gaspard, J.: Structure of Sb2Te. Crystal Structure Communications 47, 1141-1143 (1991)CrossRefGoogle Scholar
  7. [8.7]
    Petrov, I., Imamov, R., Pinsker, Z.: Electronographic determination of the structures of Ge2Sb2Te5 and GeSb4Te7. Sov. Phys. Cryst. 13, 339-344 (1968)Google Scholar
  8. [8.8]
    Goldak, J., Barrett, C., Innes, D., Youdelis, W.: Structure of alpha GeTe. J. Chem. Phys. 44, 3323 (1966)CrossRefGoogle Scholar
  9. [8.9]
    Gaspard, J. P., Pellegatti, A., Marinelli, F., Bichara, C.: Peierls instability in covalent structures I. electronic structure, cohesion and the Z=8-N rule. Phil. Mag. B 77, 727-744 (1998)Google Scholar
  10. [8.10]
    Chattopadhyay, T., Boucherle, J., Vonschnering, H.: Neutron-diffraction study on the structural phase-transition in GeTe. J. Phys. C 20, 1431-1440 (1987)CrossRefGoogle Scholar
  11. [8.11]
    Steigmeier, E.: Soft phonon mode and ferroelectricity in GeTe. Solid State Comm. 8, 1275-1279 (1970)CrossRefGoogle Scholar
  12. [8.12]
    Balde, L., Legendre, B., Balkhi, A.: Etude du diagramme d’equilibre entre phases du systeme ternaire germanium-etain-tellure. J. Alloys Compd. 216, 285-293 (1995)CrossRefGoogle Scholar
  13. [8.13]
    Chen, M., Rubin, K. A., Barton, R. W.: Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502-504 (1986)CrossRefGoogle Scholar
  14. [8.14]
    Ovshinsky, S.: Optically induced phase changes in amorphous materials. J. Non-Cryst. Solids 141, 200-203 (1992)CrossRefGoogle Scholar
  15. [8.15]
    Raty, J., Godlevsky, V., Ghosez, P., Bichara, C., Gaspard, J. P., Chelikowsky, J. R.: Evidence of a reentrant Peierls distortion in liquid GeTe. Phys. Rev. Lett. 85, 1950-1953 (2000)CrossRefGoogle Scholar
  16. [8.16]
    Onodera, A., Sakamoto, I., Fujii, Y., Mori, N., Sugai, S.: Structural and electrical properties of GeSe and GeTe at high pressure. Phys. Rev. B 56, 7935-7941 (1997)CrossRefGoogle Scholar
  17. [8.17]
    Lankhorst, M. H. R., Ketelaars, B. W. S. M. M., Wolters, R. A. M.: Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347-352 (2005)CrossRefGoogle Scholar
  18. [8.18]
    Bordas, S., Clavaguera-Mora, M., Legendre, B., Chhay,: Phase diagram of the ternary system Ge-Sb-Te. ii. The subternary Ge-GeTe-Sb2Te3-Sb. Thermochim. Acta 107, 239-265 (1986)CrossRefGoogle Scholar
  19. [8.19]
    Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M.: Rapid phase-transitions of GeTe-Sb2Te3 pseudobinary amorphous thin-films for an optical disk memory. J. Appl. Phys. 69, 2849-2856 (1991)CrossRefGoogle Scholar
  20. [8.20]
    Yamada, N., Ohno, E., Akahira, N., Nishiuchi, K., Nagata, K., Takeo, M.: High speed overwritable phase change optical disk material. Jpn. J. Appl. Phys. 26, 61-66 (1987)CrossRefGoogle Scholar
  21. [8.21]
    Welnic, W., Pamungkas, A., Detemple, R., Steimer, C., Blügel, S., Wuttig, M.: Unravelling the interplay of local structure and physical properties in phase-change materials. Nature Mater. 5, 56-62 (2005)CrossRefGoogle Scholar
  22. [8.22]
    Matsunaga, T., Morita, H., Kojima, R., Yamada, N., Kifune, K., Kubota, Y., Tabata, Y., Kim, J. J., Kobata, M., Ikenaga, E., Kobayashi, K.: Structural characteristics of GeTe-rich GeTe-Sb2Te3 pseudobinary metastable crystals. J. Appl. Phys. 103, 093511 (2008)CrossRefGoogle Scholar
  23. [8.23]
    Matsunaga, T., Umetani, Y., Yamada, N.: Structural study of a Ag3.4In3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks. Phys. Rev. B 64, 184116 (2001)CrossRefGoogle Scholar
  24. [8.24]
    Wang, K., Wamwangi, D., Ziegler, S., Steimer, C., Wuttig, M.: Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5. J. Appl. Phys. 96, 5557-5562 (2004)CrossRefGoogle Scholar
  25. [8.25]
    Wang, K., Wamwangi, D., Ziegler, S., Steimer, C., Kang, M., Choi, S., Wuttig, M.: Influence of Sn doping upon the phase change characteristics of Ge2Sb2Te5. Phys. Stat. Sol. A 201, 3087-3095, (2004)CrossRefGoogle Scholar
  26. [8.26]
    Kolobov, A., Fons, P., Frenkel, A. I.., Ankudinov, A.L.: Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703-708 (2004)CrossRefGoogle Scholar
  27. [8.27]
    Kolobov, A. V., Haines, J., Pradel, A., Ribes, M., Fons, P., Tominaga, J., Katayama, Y., Hammouda, T., Uruga, T.: Pressure-induced site-selective disordering of Ge2Sb2Te5: A new insight into phase-change optical recording. Phys. Rev. Lett. 97, 035701 (2006)CrossRefGoogle Scholar
  28. [8.28]
    Fons, P., Kolobov, A. V., Tominaga, J., Katayama, Y.: High-pressure induced structural changes in metastable Ge2Sb2Te5 thin films: An x-ray absorption study. Nucl. Inst. Meth. B 238, 160-162 (2005)CrossRefGoogle Scholar
  29. [8.29]
    Kolobov, A. V., Haines, J., Pradel, A., Ribes, M., Fons, P., Tominaga, J., Steimer, C., Aquilanti, G., Pascarelli, S.: Pressure-induced amorphization of quasibinary GeTe-Sb2Te3: The role of vacancies. Appl. Phys. Lett. 91, 021911 (2007)CrossRefGoogle Scholar
  30. [8.30]
    Kuypers, S., van Tendeloo, G., van Landuyt, J., Amelinckx, S.: Electron microscopic study of the homologous series of mixed layer compounds R2Te3(GeTe)n(R= Sb, Bi). J. Sol. State Chem. 76, 102-108 (1988)CrossRefGoogle Scholar
  31. [8.31]
    Karpinsky, O., Shelimova, L., Kretova, M., Fleurial, J.: An x-ray study of the mixed-layered compounds of (GeTe)n(Sb2Te3)m homologous series. J. Alloys and Compounds 268, 112-117 (1998)CrossRefGoogle Scholar
  32. [8.32]
    Shelimova, L., Karpinskii, O., Zemskov, V., Konstantinov, P.: Structural and electrical properties of layered tetradymite-like compounds in the (GeTe)-(Bi2Te3)m and GeTe-(Sb2Te3)m systems. Inorg. Mat. 36, 235-242 (2000)CrossRefGoogle Scholar
  33. [8.33]
    Shelimova L, Karpinskii O, Konstantinov P, Kretova M, Avilov E, Zemskov V: Composition and properties of layered compounds in the (GeTe)-(Sb2Te3)m system. Inorg. Mat. 37, 342–348 (2001)CrossRefGoogle Scholar
  34. [8.34]
    Karpinskii, O., Shelimova, L., Kretova, M., Fleurial, J.: Structural study of ternary layered compounds in the (GeTe)n˙(Bi2Te3)m and (GeTe)n˙(Sb2Te3)m homologous series. Inorg Mat 34, 225-232 (1998)Google Scholar
  35. [8.35]
    Shelimova, L., Karpinskii, O., Kosyakov, V., Shestakov, V., Zemskov, V., Kuznetsov, F.: Homologous series of layered tetradymite-like compounds in Bi-Te and (GeTe)-(Bi2Te3)m systems. J. Struct. Chem. 41, 81-87 (2000)CrossRefGoogle Scholar
  36. [8.36]
    Shelimova, L., Karpinskii, O., Konstantinov, P., Avilov, E., Kretova, M., Zemskov, V.: Crystal structures and thermoelectric properties of layered compounds in the ATe-(Bi2Te3)m (A = Ge, Sn, Pb) systems. Inorg. Mat. 40, 451-460 (2004)CrossRefGoogle Scholar
  37. [8.37]
    Iwasaki, H., Ide, Y., Harigaya, M., Kageyama, Y., Fujimura, I.: Completely erasable phase change optical disk. Jpn. J. Appl. Phys. 31 (2B Part 1), 461-465 (1992)CrossRefGoogle Scholar
  38. [8.38]
    Tominaga, J., Kikukawa, T., Takahashi, M., Kato, T., Aoi, T.: Optical phase change disc without bulk laser initialization and a quick bulk initialization structure. Jpn. J. Appl. Phys. 36, 3598-3601 (1997)CrossRefGoogle Scholar
  39. [8.39]
    Matsunaga, T., Umetani, Y., Yamada, N. Structural study of a Ag3.4In3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks. Phys. Rev. B 64, 184116 (2001)CrossRefGoogle Scholar
  40. [8.40]
    Tominaga, J., Kikukawa, T., Takahashi, M., Phillips, R. T.: Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction. J. Appl. Phys. 82, 3214-3218 (1997)CrossRefGoogle Scholar
  41. [8.41]
    Ghosh, G., Lukas, H. L., Delaey, L.: A thermodynamic assessment of the Sb-Te system. Zeitschrift für Metallkunde 80, 731-736 (1989)Google Scholar
  42. [8.42]
    Kifune, K., Kubota, Y., Matsunaga, T., Yamada, N.: Extremely long period-stacking structure in the Sb-Te binary system. Acta. Cryst. B 61(Part 5), 492-497 (2005)CrossRefGoogle Scholar
  43. [8.43]
    Shamoto, S., Yamada, N., Matsunaga, T., Proffen, T., Richardson, J. W., Jr., Chung, J.-H., Egami, T.: Large displacement of germanium atoms in crystalline Ge2Sb2Te5. Appl. Phys. Lett. 86, 081904-081906 (2005)CrossRefGoogle Scholar
  44. [8.44]
    Rehr, J., Albers, R.: Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000)CrossRefGoogle Scholar
  45. [8.45]
    Kolobov, A. V., Tominaga, J., Fons, P., Uruga, T.: Local structure of crystallized GeTe films. Appl. Phys. Lett. 82, 382-384 (2003)CrossRefGoogle Scholar
  46. [8.46]
    Kolobov, A., Fons, P., Tominaga, J., Ankudinov, A., Yannopoulos, S., Andrikopoulos, K.: Crystallization-induced short-range order changes in amorphous GeTe. J. Phys. Cond. Mat. 16, S5103-S5108 (2004)CrossRefGoogle Scholar
  47. [8.47]
    Andrikopoulos, K. S., Yannopoulos, S. N., Voyiatzis, G. A., Kolobov, A. V., Ribes, M., Tominaga, J.: Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition. J. Phys.-Cond. Mat. 18, 965-979 (2006)CrossRefGoogle Scholar
  48. [8.48]
    Tani, K., Yiwata, N., Harigaya, M., Emura, S., Nakata,Y.: EXAFS study of Sb-Te alloy films. J. Synchrotron Rad. 8, 749-751 (2001)CrossRefGoogle Scholar
  49. [8.50]
    Raoux, S., Rettner, C. T., Jordan-Sweet, J. L., Kellock, A. J., Topuria, T., Rice, P. M,, Miller, D. C.: Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials. J. Appl. Phys. 102, 094305 (2007)CrossRefGoogle Scholar
  50. [8.51]
    Raoux, S., Zhang, Y., Milliron, D., Cha, J., Caldwell, M., Rettner, C., Jordan-Sweet, J., Wong, H.: X-ray diffraction studies of the crystallization of phase change nanoparticles produced by self-assembly-based techniques. Proc. Europ. Symp. On Phase Change and Ovonic Science, September (2007)Google Scholar
  51. [8.52]
    Fons, P., Brewe, D., Stern, E., Kolobov, A., Fukaya, T., Suzuki, M., Uruga, T., Kawamura, N., Takagaki, M., Ohsawa,, Tanida, H., Tominaga, J..: Sub-nanosecond laser-induced structural changes in the phase change material Ge2Sb2Te5 measured by an optical pump/x-ray probe technique. In: Proceedings of the 9th European Phase Change and Ovonics Symposium, Zermatt Switzerland (2007)Google Scholar
  52. [8.52]
    Fons, P., Kolobov, A. V., Fukaya, T., Suzuki, M., Uruga, T., Kawamura, N., Takagaki, M., Ohsawa, H., Tanida, H., Tominaga, J.: Sub-nanosecond time-resolved structural measurements of the phase-change alloy Ge2Sb2Te5. Jpn J Appl Phys Part I 46, 3711-3714 (2007)CrossRefGoogle Scholar
  53. [8.54]
    K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig: Resonant bonding in crystalline phase-change materials. Nat Mater, advanced online publication:, 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Team Leader Nano-Optis Research Team Center for Applied Near-Field Optics ResearchNational Institute for Advanced Industrial Science & TechnologyTsukubaJapan

Personalised recommendations