Skip to main content

Scaling Properties of Phase Change Materials

  • Chapter
Phase Change Materials

Abstract

Optical storage based on phase change materials has been so successful because the data density was increased from generation to generation. Phase Change Random Access Memory will only be a viable technology when this trend of increased storage density can continue for several future lithography generations. This chapter reviews the scaling properties of the phase change materials themselves and explores the limit when size effects start to play a role influencing the crystallization temperature, melting temperature, crystallization speed and other material parameters that are vital for this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore, G.: Cramming more and more components onto integrated circuits. Electronics 38, No. 8, April 19 (1965)

    Google Scholar 

  2. Kurzweil, R.: The Age of Spiritual Machines. Penguin Books, New York (1999)

    Google Scholar 

  3. Lloyd, S.: Ultimate physical limits to computation. Nature 406, 1047-1054 (2000)

    Article  Google Scholar 

  4. http://www.itrs.net/. Accessed 30 November 2007

  5. Raoux, S., Burr, G. W., Breitwisch, M. J., Rettner, C. T., Chen, Y.-C., Shelby, R. M., Salinga, M., Krebs, D., Chen, S. H., Lung, H.-L., Lam, C. H.: Phase change random access memory —a scalable technology. IBM J. Res. Develop. (2008), in print

    Google Scholar 

  6. Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F., Hudgens, S., Bez, R: Scaling analysis of phase-change memory technology. Int. Electron Devices Meeting, Washington, DC (2003)

    Google Scholar 

  7. Shi, L. P, Chong, T. C.: Nanophase change for data storage applications. J. Nanosci. Nanotechnol. 7, 65-93 (2007)

    Google Scholar 

  8. Raoux, S., Rettner, C. T., Jordan-Sweet, J. L., Chen, Y.-C., Zhang, Y., Caldwell, M., Wong, H.-S. P., Milliron,. D., Cha, J.: Scaling properties of phase change materials. Non-Volatile Memory Symposium, Albuquerque, pp. 30-34 (2007)

    Google Scholar 

  9. Chen, Y.-C., Rettner, C. T., Raoux, S., Burr, G. W., Chen, S. H., Shelby, R. M., Salinga, M., Risk, W. P., Happ, T. D., McClelland, G. M., Breitwisch, M., Schrott, A., Philipp, J. P., Lee, M. H., Cheek, R., Nirschl, T., Lamorey, M., Chen, C. F., Joseph, E., Zaidi, S., Yee, B., Lung, H. L., Bergmann, R., Lam, C.: Ultra-thin phase-change bridge memory device using GeSb. Int. Electron Devices Meeting, Technical Digest, San Francisco, CA, pp. 777-780 (2006)

    Google Scholar 

  10. Raoux, S., Jordan-Sweet, J. L., Kellock, A. J.: Crystallization properties of ultra-thin phase change films. J. Appl. Phys. 103, 114310 (2008)

    Article  Google Scholar 

  11. Wei, X., Shi, L., Chong, T. C., Zhao, R., Lee, H. K.: Thickness-dependent nano-crystallization in Ge2Sb2Te5 films and its effect on devices. Jpn. J. Appl. Phys. 46, 2211-2214 (2007)

    Article  Google Scholar 

  12. Houle, F. A., Raoux, S., Shelby, R., Kellock, A., Deline, V. A., Chen, Y.-C., Rettner, C. T.: Chemical structure and switching behavior of ultrathin GeSbTe phase change films. Mater. Res. Soc. Spring Meeting, San Francisco (2006)

    Google Scholar 

  13. Martens, H. C. F., Vlutters, R., Prangsma, J. C.: Thickness dependent crystallization speed in thin phase change layers used for optical recording. J. Appl. Phys. 95, 3977-3983 (2004)

    Article  Google Scholar 

  14. Zhou, G.-F., Jacobs, B. A. J.: High performance media for phase change optical recording. Jpn. J. Appl. Phys. 38, 1625-1628 (1999)

    Article  Google Scholar 

  15. Zhou, G.-F.: Materials aspects in phase change optical recording. Mater. Sci. Eng. A 304-306, 73-80 (2001)

    Article  Google Scholar 

  16. Miao, X. S., Chong, T. C., Huang, Y. M., Lim, K. G., Tan, P. K., Shi, L. P.: Dependence of optical constants on film thickness of phase-change media. Jpn. J. Appl. Phys. 38, 1638-1641 (1999)

    Article  Google Scholar 

  17. Zacharias, M., Bläsing, J., Veit, P., Tsybeskov, L., Hirschman, K., Fauchet, P. M.: Thermal Crystallization of amorphous Si/SiO2 superlattices. Appl. Phys. Lett. 74, 2614-2616 (1999)

    Article  Google Scholar 

  18. Zacharias, M. and Streitenberger, P.: Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces. Phys. Rev. B 62, 8391-8396 (2000)

    Article  Google Scholar 

  19. Williams, G. V. M., Bittar, A., Trodahl, H. J.: Crystallization and diffusion in progressively annealed a-Ge/SiOx superlattices. J. Appl. Phys. 67, 1874-1878 (1990)

    Article  Google Scholar 

  20. Honma, I., Hotta, H., Kawai, K., Komiyama, H., Tanaka, K.: The structural stability of reactively-sputtered amorphous multilayer films. J. Non-Cryst. Solids 97/98, 947-950 (1987)

    Article  Google Scholar 

  21. Homma, H., Schuller, I. K., Sevenhans, W., Bruynseraede, Y.: Interfacially initiated crystallization in amorphous germanium films. Appl. Phys. Lett. 50, 594-596 (1987)

    Article  Google Scholar 

  22. Persans, P. D., Ruppert, A., Abeles, B.: Crystallization kinetics of amorphous Si/SiO2 superlattice structures Source: J. Non-Cryst. Solids 102, 130-135 (1988)

    Article  Google Scholar 

  23. Miyazaki, S., Ihara, Y., Hirose, M.: Structural stability of amorphous semiconductor superlattices. J. Non-Cryst. Solids 97/98, 887-890 (1987)

    Article  Google Scholar 

  24. Oki, F., Ogawa, Y., Fujiki, Y.: Effect of deposited metals on the crystallization temperature of amorphous germanium film. Jpn. J. Appl. Phys. 8, 1056 (1969)

    Article  Google Scholar 

  25. Stiddard, M. H. B.: This films of antimony on metal substrates: crystallite orientation and critical thickness for the occurrence of the amorphous-crystalline phase transition. J. Mater. Sci. Lett. 4, 1157-1159 (1985)

    Article  Google Scholar 

  26. Hashimoto, M., Niizeki, T., Kambe, K.: Effect of substrate temperature on crystallization of amorphous antimony film. Jpn. J. Appl. Phys. 19, 21-23 (1980)

    Article  Google Scholar 

  27. Hashimoto, M. and Hamano, T.: The stability of the amorphous phase in an Sb layer vacuum deposited on the air-and vacuum-cleaved NaCl and the effects of Sb thickness and overdeposits of Ag, Au, Sn, and Pb. Vacuum 40, 445-448 (1990)

    Article  Google Scholar 

  28. Raoux, S., Jordan-Sweet, J. L. and Kellock, A.: Thickness-dependent crystallization behavior of phase change materials. Mater. Res. Soc. Spring Meeting, San Francisco, CA, March 2008

    Google Scholar 

  29. Ohshima, N.: Crystallization of germanium-antimony-tellurium amorphous thin film sandwiched between various dielectric protective films. J. Appl. Phys. 79, 8357-8363 (1996)

    Article  Google Scholar 

  30. Njoroge, W. K., Dieker, H., Wuttig, M.: Influence of dielectric capping layers on the crystallization kinetics of Ag5In6Sb59Te30 films. J. Appl. Phys. 96, 2624-2627 (2004)

    Article  Google Scholar 

  31. Alberici, S. G., Zonca, R., Pashmakov, B.: Ti diffusion in chalcogenides: a TooF-SIMS depth profile characterization approach. Appl. Surf. Sci. 231-232, 821-825 (2004)

    Article  Google Scholar 

  32. Cabral, Jr, C., Chen, K. N., Krusin-Elbaum, L.: Irreversible modification of Ge2Sb2Te5 phase change material by nanometer-thin Ti adhesion layers in a device-compatible stack. Appl. Phys. Lett. 90, 051908 (2007)

    Article  Google Scholar 

  33. Kang, D.-H., Kim, I. H., Jeong, J.-H., Cheong, B.-K., Ahn, D.-H., Lee, D., Kim, H.-M. and Kim, K.-B.: An experimental investigation on the switching reliability of a phase change memory device with oxidized TiN electrode. J. Appl. Phys. 100, 054506 (2006)

    Article  Google Scholar 

  34. Matsui, Y., Kurotsuchi, K., Tonomura, O., Morikawa, T., Kinoshita, M., Fujisaki, Y., Matsuzaki, N., Hanzawa, S., Terao., M., Takaura, N., Moriya, H., Iwasaki, T., Moniwa, M. and Koga, T.: Ta2O5 interfacial layer between GST and W plug enabling low power operation of phase change memories. IEDM Tech. Dig., 769-772 (2006)

    Google Scholar 

  35. Ielmini, D., Lavizzari, S., Sharma, D. And Lacaita, A.: Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation. IEDM Tech. Dig. 939-942 (2007)

    Google Scholar 

  36. Chen, Y.-C., Rettner, C. T., Raoux, S., Burr, G. W., Shelby, R., Salinga, M.: Crystallization kinetics of as-deposited and melt-quenched phase-change materials. Mat Res. Soc. Spring Meeting, San Francisco (2007)

    Google Scholar 

  37. Kwon, M.-H., Lee, B.-S., Bogle, S. N., Nittala, L. N., Bishop, S. G., Abelson, J. R., Raoux, S., Cheong, B.-K., Kim, K.-B.: Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy. Appl. Phys. Lett. 90, 021923 (2007)

    Article  Google Scholar 

  38. Lee, B.-S., Raoux, S., Shelby, R. M., Rettner, C. T., Burr, G. W., Bogle, S., Bishop, S. G., Abelson, J. R.: Detecting nuclei in phase change materials by Fluctuation Electron Microscopy (FEM): An experimental proof of nucleation theory. Europ. Phase Change and Ovonic Sci. Symp., Zermatt, Switzerland, September 2007

    Google Scholar 

  39. Voyles, P. M. and Abelson, J. R.: Medium-range order in amorphous silicon measured by fluctuation electron microscopy. Sol. Energy Mater. Sol. Cells 78, 85-113 (2003)

    Article  Google Scholar 

  40. Naito, M., Ishimaru, M., Hirotsu, Y., Takashima, M.: Local structure analysis of Ge-Sb-Te phase change materials using high-resolution electron microscopy and nanobeam diffraction. J. Appl. Phys. 95, 8130-8135 (2004)

    Article  Google Scholar 

  41. Shelby, R. M., Houlse, F. A., Raoux, S.: Phase-change dynamics of eutectic GeSb alloy. Mat. Res. Soc. Spring Meeting, San Francisco, April 2006

    Google Scholar 

  42. Reifenberg, J. P., Panzer, M. A., Kim, S.-B., Gibby, A. M., Zhang, Y., Wong, S., Wong, H.-S. P., Pop, E. And Goodson, K. E.: Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films. Appl. Phys. Lett. 91,111904 (2007)

    Article  Google Scholar 

  43. Chong, T. C., Shi, L. P., Qiang, W., Tan, P. K., Miao, X. S., Hu, X.: Superlattice-like structure for phase change optical recording. J. Appl. Phys. 91, 3981-3987 (2002)

    Article  Google Scholar 

  44. Wright, D., Armand, M., Aziz, M. M.: Terabit-per-square-inch data storage using phase-change media and scanning electrical nanoprobes. IEEE Trans. Nanotechnol. 5, 50-61 (2006)

    Article  Google Scholar 

  45. Hamann, H. F., O’Boyle, M., Martin, Y. C., Rooks, M., Wickramasinghe, H. K.: Ultra-high-density phase-change storage and memory. Nature Mater. 5, 383-387 (2006)

    Article  Google Scholar 

  46. Gotoh, T., Sugawara, K., Tanaka, K.: Minimal phase-change marks produced in amorphous Ge2Sb2Te5. Jpn. J. Appl. Phys. 43, L818-L821 (2004)

    Article  Google Scholar 

  47. Satoh, H., Sugawara, K., Tanaka, K.: Nanoscale phase changes in crystalline Ge2Sb2Te5 films using scanning probe microscopy. J. Appl. Phys. 99, 024306 (2006)

    Article  Google Scholar 

  48. Sun, X., Yu, B., Ng, G., Meyyappan, M.: One-dimensional phase-change nanostructure: Germanium telluride nanowires. J. Phys. Chem C 111, 2421-2425 (2007)

    Article  Google Scholar 

  49. Lee, S.-H., Ko, D.-K., Jung, Y., Agarwal, R.: Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires. Appl. Phys. Lett. 89, 223116 (2006)

    Article  Google Scholar 

  50. Yu, D., Wu, J., Gu, Q., Park, H.: Germanium telluride nanowires and nanohelices with memory-switching behavior. J. Am. Chem. Soc. 128, 8148-8149 (2006)

    Article  Google Scholar 

  51. Meister, S., Peng, H., McIlwrath, K., Jarausch, K., Zhang, X. F., Cui, Y.: Synthesis and characterization of phase-change nanowires. Nano Lett. 6, 1514-1517 (2006)

    Article  Google Scholar 

  52. Sun, X., Yu, B., Ng, G., Nguyen, T. D., Mayyappan, M.: III-VI compound semiconductor indium selenide (In2Se3) nanowires: Synthesis and characterization. Appl. Phys. Lett. 89, 233121 (2006)

    Article  Google Scholar 

  53. Sun, X., Yu, B., Meyyappan, M.: Synthesis and nanoscale thermal encoding of phase-change nanowires. Appl. Phys. Lett. 90, 183116 (2007)

    Article  Google Scholar 

  54. Jung, Y., Lee, S.-H., Ko, D.-K., Agarwal, R.: Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. J. Am. Chem. Soc. 128, 14026-14027 (2006)

    Article  Google Scholar 

  55. Lee, S.-H., Jung, Y., Agarwal, R.: Highly scalable non-volatile and ultra-low power phase-change nanowires memory. Nature Nanotechnol. 2, 626-630 (2007)

    Article  Google Scholar 

  56. Chattopadhyay, T., Boucherle, J. X., von Schnerig, H. G.: Neutron diffraction study on the structural phase transition in GeTe. J. Phys. C: Solid State Phys. 20, 1431-1440 (1987)

    Article  Google Scholar 

  57. Park, G.-S., Kwon, J.-H., Jo, W., Kim, T. K., Zuo, J.-M., Khang, Y.: Crystalline and amorphous structures of Ge-Sb-Te nanoparticles. J. Appl. Phys. 102, 013524 (2007)

    Article  Google Scholar 

  58. Choi, H. S., Seol, K. S., Takeuchi, K., Fujita, J. and Ohki, Y.: Sythesis and size-controlled Ge2Sb2Te5 nanoparticles. Jpn. J. Appl. Phys. 44, 7720-7722 (2005)

    Article  Google Scholar 

  59. Suh, D.-S., Lee, E., Kim, K. H. P., Noh, J.-S., Shin, W.-C., Kang, Y.-S., Kim, C., Khang, Y.: Nonvolatile switching characteristics of laser-ablated Ge2Sb2Te5 nanoparticles for phase-change memory applications. Appl. Phys. Let.. 90, 023101 (2007)

    Article  Google Scholar 

  60. Yoon, H. R., Jo, W., Lee, E. H., Lee, J. H., Kim, M., Lee, K. Y. And Khang, Y.: Generation of phase-change Ge-Sb-Te nanoparticles by pulsed laser ablation. J. Non-Crystalline Solids 351, 3430-3434 (2005)

    Article  Google Scholar 

  61. Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P., Wuttig, M.: Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J. Appl. Phys. 87, 4130-4134 (2000)

    Article  Google Scholar 

  62. Raoux, S., Rettner, C. T., Jordan-Sweet, J. L., Deline, V. R., Philipp, J. B., Lung, H.-L.: Scaling properties of phase change nanostructures and thin films. Europ. Phase Change and Ovonic Science Symp., Grenoble, France (2006)

    Google Scholar 

  63. Raoux, S., Rettner, C. T., Jordan-Sweet, J. L., Kellock, A. J., Topuria, T., Ride, P. M., Miller, D.: Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials. J. Appl. Phys. 102, 094305 (2007)

    Article  Google Scholar 

  64. Raoux, S., Rettner, C. T., Jordan-Sweet, J. L., Salinga, M., Toney, M.: Crystallization behavior of phase change nanostructures. Europ. Phase Change and Ovonic Science Symp., Cambridge, UK (2005)

    Google Scholar 

  65. Zhang, Y., Wong, H.-S. P., Raoux, S., Cha, J. N., Rettner, C. T., Krupp, L. E., Topuria, T., Milliron, D., Rice, P. M., Jordan-Sweet, J. L.: Phase change nanodots arrays fabricated using self-assembly diblock copolymer approach. Appl. Phys. Lett. 91, 013104 (2007)

    Article  Google Scholar 

  66. Cha, J., Zhang, Y., Wong, H.-S. P., Raoux, S., Rettner, C., Krupp, L. and Deline, V.: Biomimetic approaches for fabricating high-density nanopatterned arrays. Chem. Mater. 2007, 839-843 (2007)

    Article  Google Scholar 

  67. Raoux, S., Zhang, Y., Milliron, D., Cha, J. Caldwell, M. Rettner, C. T., Jordan-Sweet, J. L., Wong, H.-S. P.: X-ray diffraction studies of the crystallization of phase change nanoparticles produced by self-assembly-based techniques. Europ. Phase Change and Ovonic Science Symp., Zermatt, Switzerland (2007)

    Google Scholar 

  68. Milliron, D. J., Raoux, S., Shelby, R. M., Jordan-Sweet, J.: Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. Nature Mater. 6, 352-356 (2007)

    Article  Google Scholar 

  69. Caldwell, M., Raoux, S., Milliron, D. J., Wong, H.-S. P.: Synthesis and characterization of germanium chalcogenide nanoparticles via single-source precursors and coprecipitation. 234th Am. Chem Soc. Meeting, Boston (2007)

    Google Scholar 

  70. Milliron, D.: Solution-phase deposition of phase change material. Mater. Res. Soc. Spring Meeting, San Francisco (2007)

    Google Scholar 

  71. Raoux, S., Shelby, R. M., Jordan-Sweet, J., Munoz, B., Salinga, M., Chen, Y.-C., Shih, Y.-H., Lai, E.-K. and Lee, M.-H.: Phase change materials and their application to Random Access Memory Technology. Europ. Mater. Res. Soc. Spring Meeting, Strasbourg, France (2008)

    Google Scholar 

  72. Ovshinsky, S. R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. B 21, 1450-1453 (1968)

    Article  Google Scholar 

  73. Shi, L. P., Chong, T. C., Zhao, R., Wei, X. Q., Wang, W. J., Li, J. M., Lim, K. G., Yang, H. X., Lee, H. K.: Investigation on high density and high speed phase change random access memory. Non-Volatile Memory Symposium, Albuquerque, pp. 129-130 (2007)

    Google Scholar 

  74. Rousse, A., Rischel, C., Fourmaux, S., Uschmann, I., Sebban, S., Grillon, G., Balcou, Ph., Förtser, E., Geindre, J. P., Audebert, P., Gauthiers, J. C., Hulin, D.: Non-thermal melting in semiconductots measured at femtosecond resolution. Nature410, 65-68 (2001)

    Article  Google Scholar 

  75. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M.: Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849-2856 (1991)

    Article  Google Scholar 

  76. Siegel, J., Schropp, A., Solis, J., Alfonso, C. N.: Rewritable phase change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses. Appl. Phys. Lett. 84, 2250-2252 (2004)

    Article  Google Scholar 

  77. Weidenhof, V., Friedrich, I., Ziegler, S., Wuttig, M.: Laser induced crystallization of amorphous Ge2Sb2Te5 films. J. Appl. Phys. 89, 3168-3176 (2001)

    Article  Google Scholar 

  78. Solis, J., Afonso, C. N., Hyde, S. C. W., Barry, N. P., French, P. M. W.: Existence of electronic excitation enhanced crystallization in GeSb amorphous thin films upon ultrashort laser pulse irradiation. Phys. Rev. Lett. 76, 2519-2522 (1996)

    Article  Google Scholar 

  79. Sokolowski-Tinten, K., Solis, J., Bialkowski, J., Siegel, J., Afonso, C. N., von der Linde, D.: Dynamics of ultrafast phase changes in amorphous GeSb films. Phys. Rev. Lett. 81, 3679-3682 (1998)

    Article  Google Scholar 

  80. Solis, J. and Afonso, C. N.: Ultrashort-laser-pulse-driven rewritable phase-change optical recording in Sb-based films. Appl. Phys. A 76, 331-338 (2003)

    Article  Google Scholar 

  81. Wiggins, S. M., Bonse, J., Solis, J., Afonso, C. N., Sokolowsi-Tinten, K., Temnov, V. V., Zhou, P., van der Linde, D.: The influence of wavelength on phase transformations induced by picosecond and femtosecond laser pulses in GeSe thin films. J. Appl. Phys. 98, 113518 (2005)

    Article  Google Scholar 

  82. Gravesteijn, D. J.: Materials developments for write-once and erasable phase-change optical recording. Appl. Otics 27, 736-738 (1988)

    Article  Google Scholar 

  83. Callan, J. P., Kim, A. M.-T., Roeser, C. A. D., Mazur, E., Solis, J., Siegel, J., Afonso, C. N. and de Sande, J. C. G.:. Ultrafast laser-induced phase transitions in amorphous GeSb films. Phys. Rev. Lett. 86, 3550-3653 (2001)

    Article  Google Scholar 

  84. Wang, Q. F., Shi, L., Huang, S. M., Mioa, X. S., Wong, K. P. And Chong, T. C.: Dynamics of ultrafast crystallization in as-deposited Ge2Sb2Te5 films. Jpn. J. Appl. Phys. 43, 5006-5008 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Raoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Raoux, S. (2009). Scaling Properties of Phase Change Materials. In: Raoux, S., Wuttig, M. (eds) Phase Change Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84874-7_6

Download citation

Publish with us

Policies and ethics