Experimental Methods for Material Selection in Phase-change Recording


Phase-change materials and their crystallization behavior are qualitatively described. This crystallization behavior is important for the applicability of materials in optical and electrical recording. We describe an experimental method to determine the crystallization rate at ambient temperatures and as a result the archival life stability of recorded data. Furthermore, we explain two experimental methods to determine the crystallization rate at elevated temperatures, which is related to the data rate of rewritable recording. We illustrate that systematic research for materials with improved crystallization characteristics has led to very stable and fast-crystallizing phase-change compositions.


Crystallization Rate Optical Recording Crystalline Layer Amorphous Area Digital Versatile Disc 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [5.1]
    Ovshinsky, S. R.: Reversible electrical switching phenomena in disordered structures. Phys.Rev. Lett. 21, 1450-1453 (1968)CrossRefGoogle Scholar
  2. [5.2]
    Feinleib, J., deNeufville, J., Moss, S. C., Ovshinsky, S. R.: Rapid reversible light-induced crystallization of amorphous semiconductors. Appl. Phys. Lett. 18, 254-257 (1971)CrossRefGoogle Scholar
  3. [5.3]
    Meinders, E. R., Mijiritskii, A. V., van Pieterson, L., Wuttig, M., Optical Data Storage – Phase-change Media and Recording. Springer, The Netherlands (2006)Google Scholar
  4. [5.4]
    Lankhorst, M. H. R., Ketelaars, B. W. S. M. M., Wolters, R. A. M.: Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mat. 4, 347-352 (2005)CrossRefGoogle Scholar
  5. [5.5]
    Verheijen, M. A., Mijiristkii, A. V., Kooij, B. J.: TEM study of InSbTe crystal morphology as a function of crystallization conditions. MRS 2003 Proceedings, 803, 161-166 (2003)Google Scholar
  6. [5.6]
    Yamada, N.: Erasable phase-change optical materials. MRS Bull. 21, 48 (1996)Google Scholar
  7. [5.7]
    Chen, M., Rubin, K. A., Barton, R. W.: Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502-504 (1986)CrossRefGoogle Scholar
  8. [5.8]
    Miyamoto, M., Ushiyama, J., Umezawa, K., Kashiwakura, A., Tamura, R.: High-transfer-rate 4.7-GB DVD-RAM. 2002 International symposium on optical memory and optical data storage topical meeting ISOM/ODS Technical Digest, 416-418 (2002)Google Scholar
  9. [5.9]
    Kageyama, Y., Iwasaki, H., Hariagaya, M., Ide, Y.: Compact disc erasable (CD-E) with Ag-In-Sb-Te phase-change recording material. Jpn. J. Appl. Phys. 35, 500-501 (1996)CrossRefGoogle Scholar
  10. [5.10]
    van Pieterson, L., Rijpers, J. C. N., Hellmig, J.: Phase-change media for ultrahigh-speed digital versatile disc recording. Jpn. J. Appl. Phys. 43, 4974-4977 (2004)CrossRefGoogle Scholar
  11. [5.11]
    Zhou, G. F., Borg, H. J., Rijpers, J. C. N., Lankhorst, M. H. R., Horikx, J. J. L: Crystallization behavior of phase-change materials: comparison between nucleaction- and growth-dominated crystallization. Proc. of SPIE 4090, 108-115 (2000)CrossRefGoogle Scholar
  12. [5.12]
    Zhou, G. F.: Materials aspects in phase change optical recording. Mat. Sci. Eng. A, A304-306, 73-80 (2001)CrossRefGoogle Scholar
  13. [5.13]
    Borg, H. J., Blom, P. W. M., Jacobs, B. A. J., Tieke, B., Wilson, A. E., Ubbens, I. P. D., Zhou, G. F.: AgInSbTe materials for high-speed phase-change recording. Proc. SPIE 3864, 191 (1999)Google Scholar
  14. [5.14]
    Lankhorst, M. H. R., van Pieterson, L., van Schijndel, M., Jacobs, B. A. J., Rijpers, J. C. N.: Prospects of doped Sb-Te phase-change materials for high-speed recording. Jpn. J. Appl. Phys. 42, 863-868 (2003)CrossRefGoogle Scholar
  15. [5.15]
    Christian, J. W.: The theory of transformations in metals and alloys. Pergamon Press (1965)Google Scholar
  16. [5.16]
    Wickersham, C. E., Bajor, G., Greene, J. E.: Impulse stimulated ‘explosive’ crystallization of sputter deposited amorphous (In,Ga)Sb films. Solid State Comm. 27, 17-20 (1978)CrossRefGoogle Scholar
  17. [5.17]
    Kaiser, N.: Crystallization of amorphous antimony films. Thin Solid Films 116, 259-265 (1984)CrossRefGoogle Scholar
  18. [5.18]
    van Pieterson, L., Lankhorst, M. H. R., van Schijndel, M., Kuiper, A. E. T., Roosen, J. H. J.: Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview. J. Appl. Phys. 97, 083520-1-083520-7 (2005)Google Scholar
  19. [5.19]
    Lankhorst, M. H. R.: Modeling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials. J. Non-Cryst. Solids, 297, 210-219 (2002)CrossRefGoogle Scholar
  20. [5.20]
    Gravesteijn, D. J.: Materials developments for write-once and erasable phase-change optical recording. Appl. Opt. 27, 736-738 (1988)CrossRefGoogle Scholar
  21. [5.21]
    Wooten, F.: Optical Properties of Solids. Academic Press, New York (1972)Google Scholar
  22. [5.22]
    Sokolov, A. V.: Optical Properties of Metals. Blackie & Son limited, Glasgow (1961)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Philips ResearchEindhovenThe Netherlands

Personalised recommendations