Advertisement

Nature of Glasses

  • Punit Boolchand
  • Matthieu Micoulaut
  • Ping Chen

Abstract

Glasses exist in threegeneric elastic phases: flexible, intermediateand stressed-rigid, which are determined by the connectivity of their backbones. Measurements of glass transition temperatures (T gs) using modulated-differential scanning calorimetry permits distinguishing these phases by their characteristic non-reversing enthalpies (ΔH nr) at T gs. In Raman scattering, characteristic elastic power-laws are observed in intermediate and stressed-rigid phases. Liquid fragilities are found to correlate with ΔH nr terms in covalent networks but not in modified oxide or H-bonded networks. In the latter systems weak network links exist, which cease to constrain networks as the temperature T > T g and viscosities plummet. Intermediate phase glassesare composed of rigid but unstressed networks that are in a state of quasi-equilibriumand age minimally. Such glasses usually form space filling networks and are structurally self-organized.

Keywords

Field Programmable Gate Array Phase Change Material Very Large Scale Integration Device Under Test Phase Change Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [3.1]
    Zachariasen, W.H.: The atomic arrangement in a glass. J. Am. Chem. Soc. 54, 3841-3851 (1932)CrossRefGoogle Scholar
  2. [3.2]
    Lucovsky, G., Baker, D.A., Paesler, M.A., Phillips, J.C.: Spectroscopic and electrical detection of intermediate phases and chemical bonding self-organizations in (i) dielectric films for semiconductor devices, and (ii) chalcogenide alloys for optical memory devices. J. Non-Cryst. Solids 353, 1713-1722 (2007)CrossRefGoogle Scholar
  3. [3.3]
    Matthews, J.N.A.: Semiconductor Industry Switches to Hafnium-Based Transistors. Physics Today 61, 25-26 (2008)Google Scholar
  4. [3.4]
    Macfarlane, A., Martin, G.: Glass : a world history. University of Chicago Press, Chicago (2002)Google Scholar
  5. [3.5]
    Kerner, R., Phillips, J.C.: Quantitative principles of silicate glass chemistry. Solid State Commun. 117, 47-51 (2000)CrossRefGoogle Scholar
  6. [3.6]
    Selvanathan, D., Bresser, W.J., Boolchand, P.: Stiffness transitions in SixSe1-x glasses from Raman scattering and temperature-modulated differential scanning calorimetry. Phys. Rev. B 61, 15061-15076 (2000)CrossRefGoogle Scholar
  7. [3.7]
    Boolchand, P., Lucovsky, G., Phillips, J.C., Thorpe, M.F.: Self-organization and the physics of glassy networks. Phil. Mag. 85, 3823-3838 (2005)CrossRefGoogle Scholar
  8. [3.8]
    Barre, J., Bishop, A.R., Lookman, T., Saxena, A.: Adaptability and ‘‘intermediate phase’’ in randomly connected networks. Phys. Rev. Lett. 94, 208701-4 (2005)CrossRefGoogle Scholar
  9. [3.9]
    Phillips, J.C.: Universal intermediate phases of dilute electronic and molecular glasses. Phys. Rev. Lett. 88, 216401-4 (2002)CrossRefGoogle Scholar
  10. [3.10]
    Phillips, J.C.: Ideally glassy hydrogen-bonded networks. Phys. Rev. B 73, 024210-10 (2006)CrossRefGoogle Scholar
  11. [3.11]
    Rader, A.J., Hespenheide, B.M., Kuhn, L.A., Thorpe, M.F.: Protein unfolding: Rigidity lost. Proceedings of the National Academy of Sciences of the United States of America 99, 3540-3545 (2002)CrossRefGoogle Scholar
  12. [3.12]
    Boolchand, P., Georgiev, D.G., Goodman, B.: Discovery of the intermediate phase in chalcogenide glasses. J. Optoelectron. Adv. Mater. 3, 703-720 (2001); Micoulaut, M., Phillips, J.C.: Onset of rigidity in glasses: From random to self-organized networks. J. Non-Cryst. Solids 353, 1732-1740 (2007); Brière, M.A., Chubynsky, M.V., Mousseau, N.: Self-organized criticality in the intermediate phase of rigidity percolation. Phys. Rev. E 75, 56108 (2007)Google Scholar
  13. [3.13]
    Thorpe, M.F., Jacobs, D.J., Chubynsky, M.V., Phillips, J.C.: Self-organization in network glasses. J. Non-Cryst. Solids 266, 859-866 (2000)CrossRefGoogle Scholar
  14. [3.14]
    Ovshinsky, S.R.: Reversible Electrical Switching Phenomena in Disordered Structures. Phys. Rev. Lett. 21, 1450–1453 (1968)CrossRefGoogle Scholar
  15. [3.15]
    Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M.: Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849-2856 (1991)CrossRefGoogle Scholar
  16. [3.16]
    Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T.: Understanding the phase-change mechanism of rewritable optical media. Nature Materials 3, 703–708 (2004); Baker, D.A., Paesler, M.A., Lucovsky, G., Agarwal, S.C., Taylor, P.C.: Application of bond constraint theory to the switchable optical memory material Ge2Sb2Te5. Phys. Rev. Lett. 96, 255501-3 (2006); Wuttig, M.: Phase-change materials: Towards a universal memory? Nat Mater 4, 265-266 (2005); Lankhorst, M.H.R., Ketelaars, B.W.S.M.M., Wolters, R.A.M.: Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat Mater 4, 347-352 (2005)CrossRefGoogle Scholar
  17. [3.17]
    Kauzmann, W.: The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. Chem. Rev. 43, 219-256 (1948)CrossRefGoogle Scholar
  18. [3.18]
    Debenedetti, P.G., Stillinger, F.H.: Supercooled liquids and the glass transition. Nature 410, 259-267 (2001)CrossRefGoogle Scholar
  19. [3.19]
    Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., Martin, S.W.: Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113-3157 (2000)CrossRefGoogle Scholar
  20. [3.20]
    Kerner, R., Micoulaut, M.: On the glass transition temperature in covalent glasses. J. Non-Cryst. Solids 210, 298-305 (1997)CrossRefGoogle Scholar
  21. [3.21]
    Micoulaut, M.: The slope equations: A universal relationship between local structure and glass transition temperature. European Physical Journal B 1, 277-294 (1998)CrossRefGoogle Scholar
  22. [3.22]
    Boolchand, P., Georgiev, D.G., Micoulaut, M.: Nature of glass transition in chalcogenides. J. Optoelectron. Adv. Mater. 4, 823-836 (2002)Google Scholar
  23. [3.23]
    Anderson, P.W.: Through the glass lightly. Science 267, 1615-e-1616 (1995)CrossRefGoogle Scholar
  24. [3.24]
    Binder, K., Kob, W.: Glassy Materials And Disordered Solids, An Introduction to Their Statistical Mechanics. World Scientific, Singapore (2005)Google Scholar
  25. [3.25]
    Angell, C.A.: Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J. Non-Cryst. Solids 102, 205-221 (1988)CrossRefGoogle Scholar
  26. [3.26]
    Tammann, G., Hesse, W.: Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 156, 245-257 (1926); Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339-355 (1925); Vogel, H.: Physik. Zeitschrift 22, 645-646 (1921)CrossRefGoogle Scholar
  27. [3.27]
    Cugliandolo, L.F.: Dynamics of glassy systems. arXiv:cond-mat/0210312v2 (2002)Google Scholar
  28. [3.28]
    O’Hern, C.S., Langer, S.A., Liu, A.J., Nagel, S.R.: Force Distributions near Jamming and Glass Transitions. Phys. Rev. Lett. 86, 111-114 (2001)CrossRefGoogle Scholar
  29. [3.29]
    Langer, S.A., Liu, A.J.: Sheared foam as a supercooled liquid? EPL (Europhysics Letters) 49, 68-74 (2000)CrossRefGoogle Scholar
  30. [3.30]
    Giovambattista, N., Stanley, H.E., Sciortino, F.: Potential-Energy Landscape Study of the Amorphous-Amorphous Transformation in H2O. Phys. Rev. Lett. 91, 115504-4 (2003); Angell, C.A.: Glass formation and the nature of the glass transitions. In: Boolchand, P. (ed.) Insulating and Semiconducting Glasses, pp. 1-51. World Scientific, Singapore; River Edge, NJ (2000); Stillinger, F.H.: A Topographic View of Supercooled Liquids and Glass Formation. Science 267, 1935-1939 (1995)CrossRefGoogle Scholar
  31. [3.31]
    Phillips, J.C.: Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. J. Non-Cryst. Solids 34, 153-181 (1979)CrossRefGoogle Scholar
  32. [3.32]
    Azoulay, R., Thibierge, H., Brenac, A.: Devitrification characteristics of GexSe1-x glasses. J. Non-Cryst. Solids 18, 33-53 (1975); Fang, C.-Y., Yinnon, H., Uhlmann, D.R.: A kinetic treatment of glass formation. VIII: Critical cooling rates for Na2O-SiO2 and K2O-SiO2 glasses. J. Non-Cryst. Solids 57, 465-471 (1983)CrossRefGoogle Scholar
  33. [3.33]
    Boolchand, P., Thorpe, M.F.: Glass-forming tendency, percolation of rigidity, and onefold-coordinated atoms in covalent networks. Phys. Rev. B 50, 10366-10368 (1994)CrossRefGoogle Scholar
  34. [3.34]
    Mitkova, M., Boolchand, P.: Microscopic origin of the glass forming tendency in chalcohalides and constraint theory. J. Non-Cryst. Solids 240, 1-21 (1998)CrossRefGoogle Scholar
  35. [3.35]
    Zhang, M., Boolchand, P.: The Central Role of Broken Bond-Bending Constraints in Promoting Glass-Formation in the Oxides. Science 266, 1355-1357 (1994)CrossRefGoogle Scholar
  36. [3.36]
    Mysen, B., Richet, P.: Silicate glasses and melts: properties and structure. Elsevier, Amsterdam; Boston (2005); Richet, P.: Viscosity and configurational entropy of silicate melts. Geochim. Cosmochim. Acta 48, 471-483 (1984)Google Scholar
  37. [3.37]
    Naumis, G.G.: Variation of the glass transition temperature with rigidity and chemical composition. Phys. Rev. B 73, 172202-4 (2006)CrossRefGoogle Scholar
  38. [3.38]
    Tabor, D.: Gases, liquids, and solids : and other states of matter. Cambridge University Press, Cambridge; New York (1991)Google Scholar
  39. [3.39]
    Phillips, W.A., Buchenau, U., Nücker, N., Dianoux, A.J., Petry, W.: Dynamics of glassy and liquid selenium. Phys. Rev. Lett. 63, 2381 (1989)CrossRefGoogle Scholar
  40. [3.40]
    Gibbs, J.H., DiMarzio, E.A.: Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373-383 (1958)CrossRefGoogle Scholar
  41. [3.41]
    Micoulaut, M., Naumis, G.G.: Glass transition temperature variation, cross-linking and structure in network glasses: A stochastic approach. Europhys. Lett. 47, 568-574 (1999)CrossRefGoogle Scholar
  42. [3.42]
    Boolchand, P., Bresser, W., Zhang, M., Wu, Y., Wells, J., Enzweiler, R.N.: Lamb-Mössbauer factors as a local probe of floppy modes in network glasses. J. Non-Cryst. Solids 182, 143-154 (1995)CrossRefGoogle Scholar
  43. [3.43]
    Boolchand, P., Georgiev, D.G., Qu, T., Wang, F., Cai, L.C., Chakravarty, S.: Nanoscale phase separation effects near <r>=2.4 and 2.67, and rigidity transitions in chalcogenide glasses. Comptes Rendus Chimie 5, 713-724 (2002)CrossRefGoogle Scholar
  44. [3.44]
    Boolchand, P., Bresser, W.J.: The structural origin of broken chemical order in GeSe2. Phil. Mag. B 80, 1757-1772 (2000)Google Scholar
  45. [3.45]
    Boolchand, P.: The maximum in glass transition temperature (Tg) near x = 1/3 in GexSe1-x glasses. Asian J. of Phys. 9, 709 (2000)Google Scholar
  46. [3.46]
    Pauling, L.: The Nature of the Chemical Bond. Cornell University, Ithaca, NY (1960)Google Scholar
  47. [3.47]
    Tichý, L., Tichá, H.: Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J. Non-Cryst. Solids 189, 141-146 (1995)CrossRefGoogle Scholar
  48. [3.48]
    Wunderlich, B.: The tribulations and successes on the road from DSC to TMDSC in the 20th century the prospects for the 21st century. J. Therm. Anal. Calorim. 78, 7-31 (2004)CrossRefGoogle Scholar
  49. [3.49]
    Thomas, L.C.: Modulated DSC Technology (MSDC-2006). T.A. Instruments, Inc (http://www.tainstruments.com), New Castle, DE (2006)Google Scholar
  50. [3.50]
    Cai, L.C., Boolchand, P.: Nanoscale phase separation of GeS2 glass. Phil. Mag. B 82, 1649-1657 (2002)CrossRefGoogle Scholar
  51. [3.51]
    Qu, T., Georgiev, D.G., Boolchand, P., Micoulaut, M.: The intermediate phase in ternary GexAsxSe1-2x glasses. In: Egami, T., Greer, A.L., Inoue, A., Ranganathan, S. (eds.) Supercooled Liquids, Glass Transition and Bulk Metallic Glasses, p. 157. Materials Research Society 754 (2003)Google Scholar
  52. [3.52]
    Kalb, J.A., Wuttig, M., Spaepen, F.: Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748-754 (2007)CrossRefGoogle Scholar
  53. [3.53]
    Boolchand, P., Jin, M., Novita, D.I., Chakravarty, S.: Raman scattering as a probe of intermediate phases in glassy networks. Journal of Raman Spectroscopy 38, 660-672 (2007)CrossRefGoogle Scholar
  54. [3.54]
    He, H., Thorpe, M.F.: Elastic Properties of Glasses. Phys. Rev. Lett. 54, 2107-2110 (1985)CrossRefGoogle Scholar
  55. [3.55]
    Chakravarty, S., Georgiev, D.G., Boolchand, P., Micoulaut, M.: Ageing, fragility and the reversibility window in bulk alloy glasses. J. Phys. Condens. Matter 17, L1-L7 (2005)CrossRefGoogle Scholar
  56. [3.56]
    Chakravarty, S.: Self-Organization and Aging in Network Glasses. In: Electrical and Computer Engineering, University of Cincinnati, MS Thesis (2003)Google Scholar
  57. [3.57]
    Vaills, Y., Qu, T., Micoulaut, M., Chaimbault, F., Boolchand, P.: Direct evidence of rigidity loss and self-organization in silicate glasses. J. Phys. Condens. Matter 17, 4889-4896 (2005)CrossRefGoogle Scholar
  58. [3.58]
    Rompicharla, V., Novita, D.I., Chen, P., Boolchand, P., Micoulaut, M., Huff, W.: Abrupt boundaries of intermediate phases and space filling in oxide glasses. J. Physics Condensed Matter 20, 202101-4 (2008)CrossRefGoogle Scholar
  59. [3.59]
    Henderson, G.S.: The Germanate Anomaly: What do we know? J. Non-Cryst. Solids 353, 1695-1704 (2007)CrossRefGoogle Scholar
  60. [3.60]
    Novita, D.I., Boolchand, P., Malki, M., Micoulaut, M.: Fast-ion conduction and flexibility of glassy networks. Phys. Rev. Lett. 98, 195501-4 (2007)CrossRefGoogle Scholar
  61. [3.61]
    Novita, D.I., Boolchand, P.: Synthesis and structural characterization of dry AgPO3 glass by Raman scattering, infrared reflectance, and modulated differential scanning calorimetry. Phys. Rev. B 76, 184205-12 (2007). Also see ArXiv 08081154CrossRefGoogle Scholar
  62. [3.62]
    Wang, F., Mamedov, S., Boolchand, P., Goodman, B., Chandrasekhar, M.: Pressure Raman effects and internal stress in network glasses. Phys. Rev. B 71, 174201-8 (2005)CrossRefGoogle Scholar
  63. [3.63]
    Micoulaut, M., Phillips, J.C.: Rings and rigidity transitions in network glasses. Phys. Rev. B 67, 104204-9 (2003)CrossRefGoogle Scholar
  64. [3.64]
    Wang, Y., Boolchand, P., Micoulaut, M.: Glass structure, rigidity transitions and the intermediate phase in the Ge-As-Se ternary. Europhys. Lett. 52, 633-639 (2000)CrossRefGoogle Scholar
  65. [3.65]
    Carpentier, L., Desprez, S., Descamps, M.: From strong to fragile glass- forming systems: a temperature modulated differential scanning calorimetry investigation. Phase Transitions 76, 787-799 (2003)CrossRefGoogle Scholar
  66. [3.66]
    Sokolov, A.P., Rössler, E., Kisliuk, A., Quitmann, D.: Dynamics of strong and fragile glass formers: Differences and correlation with low-temperature properties. Phys. Rev. Lett. 71, 2062-2065 (1993)CrossRefGoogle Scholar
  67. [3.67]
    DeGusseme, A., Carpentier, L., Willart, J.F., Descamps, M.: Molecular Mobility in Supercooled Trehalose. J. Phys. Chem. B 107, 10879-10886 (2003)CrossRefGoogle Scholar
  68. [3.68]
    Macdonald, J.R., Phillips, J.C.: Topological derivation of shape exponents for stretched exponential relaxation. J. Chem. Phys. 122, 074510-074510 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Punit Boolchand
    • 1
  • Matthieu Micoulaut
    • 2
  • Ping Chen
    • 3
  1. 1.University of CincinnatiCincinnatiUSA
  2. 2.Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600Université Pierre et Marie CurieParis Cedex 05France
  3. 3.Department of Electrical and Computer EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations