Skip to main content

Nature of Glasses

  • Chapter
Phase Change Materials

Abstract

Glasses exist in threegeneric elastic phases: flexible, intermediateand stressed-rigid, which are determined by the connectivity of their backbones. Measurements of glass transition temperatures (T gs) using modulated-differential scanning calorimetry permits distinguishing these phases by their characteristic non-reversing enthalpies (ΔH nr) at T gs. In Raman scattering, characteristic elastic power-laws are observed in intermediate and stressed-rigid phases. Liquid fragilities are found to correlate with ΔH nr terms in covalent networks but not in modified oxide or H-bonded networks. In the latter systems weak network links exist, which cease to constrain networks as the temperature T > T g and viscosities plummet. Intermediate phase glassesare composed of rigid but unstressed networks that are in a state of quasi-equilibriumand age minimally. Such glasses usually form space filling networks and are structurally self-organized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zachariasen, W.H.: The atomic arrangement in a glass. J. Am. Chem. Soc. 54, 3841-3851 (1932)

    Article  Google Scholar 

  2. Lucovsky, G., Baker, D.A., Paesler, M.A., Phillips, J.C.: Spectroscopic and electrical detection of intermediate phases and chemical bonding self-organizations in (i) dielectric films for semiconductor devices, and (ii) chalcogenide alloys for optical memory devices. J. Non-Cryst. Solids 353, 1713-1722 (2007)

    Article  Google Scholar 

  3. Matthews, J.N.A.: Semiconductor Industry Switches to Hafnium-Based Transistors. Physics Today 61, 25-26 (2008)

    Google Scholar 

  4. Macfarlane, A., Martin, G.: Glass : a world history. University of Chicago Press, Chicago (2002)

    Google Scholar 

  5. Kerner, R., Phillips, J.C.: Quantitative principles of silicate glass chemistry. Solid State Commun. 117, 47-51 (2000)

    Article  Google Scholar 

  6. Selvanathan, D., Bresser, W.J., Boolchand, P.: Stiffness transitions in SixSe1-x glasses from Raman scattering and temperature-modulated differential scanning calorimetry. Phys. Rev. B 61, 15061-15076 (2000)

    Article  Google Scholar 

  7. Boolchand, P., Lucovsky, G., Phillips, J.C., Thorpe, M.F.: Self-organization and the physics of glassy networks. Phil. Mag. 85, 3823-3838 (2005)

    Article  Google Scholar 

  8. Barre, J., Bishop, A.R., Lookman, T., Saxena, A.: Adaptability and ‘‘intermediate phase’’ in randomly connected networks. Phys. Rev. Lett. 94, 208701-4 (2005)

    Article  Google Scholar 

  9. Phillips, J.C.: Universal intermediate phases of dilute electronic and molecular glasses. Phys. Rev. Lett. 88, 216401-4 (2002)

    Article  Google Scholar 

  10. Phillips, J.C.: Ideally glassy hydrogen-bonded networks. Phys. Rev. B 73, 024210-10 (2006)

    Article  Google Scholar 

  11. Rader, A.J., Hespenheide, B.M., Kuhn, L.A., Thorpe, M.F.: Protein unfolding: Rigidity lost. Proceedings of the National Academy of Sciences of the United States of America 99, 3540-3545 (2002)

    Article  Google Scholar 

  12. Boolchand, P., Georgiev, D.G., Goodman, B.: Discovery of the intermediate phase in chalcogenide glasses. J. Optoelectron. Adv. Mater. 3, 703-720 (2001); Micoulaut, M., Phillips, J.C.: Onset of rigidity in glasses: From random to self-organized networks. J. Non-Cryst. Solids 353, 1732-1740 (2007); Brière, M.A., Chubynsky, M.V., Mousseau, N.: Self-organized criticality in the intermediate phase of rigidity percolation. Phys. Rev. E 75, 56108 (2007)

    Google Scholar 

  13. Thorpe, M.F., Jacobs, D.J., Chubynsky, M.V., Phillips, J.C.: Self-organization in network glasses. J. Non-Cryst. Solids 266, 859-866 (2000)

    Article  Google Scholar 

  14. Ovshinsky, S.R.: Reversible Electrical Switching Phenomena in Disordered Structures. Phys. Rev. Lett. 21, 1450–1453 (1968)

    Article  Google Scholar 

  15. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M.: Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849-2856 (1991)

    Article  Google Scholar 

  16. Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T.: Understanding the phase-change mechanism of rewritable optical media. Nature Materials 3, 703–708 (2004); Baker, D.A., Paesler, M.A., Lucovsky, G., Agarwal, S.C., Taylor, P.C.: Application of bond constraint theory to the switchable optical memory material Ge2Sb2Te5. Phys. Rev. Lett. 96, 255501-3 (2006); Wuttig, M.: Phase-change materials: Towards a universal memory? Nat Mater 4, 265-266 (2005); Lankhorst, M.H.R., Ketelaars, B.W.S.M.M., Wolters, R.A.M.: Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat Mater 4, 347-352 (2005)

    Article  Google Scholar 

  17. Kauzmann, W.: The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. Chem. Rev. 43, 219-256 (1948)

    Article  Google Scholar 

  18. Debenedetti, P.G., Stillinger, F.H.: Supercooled liquids and the glass transition. Nature 410, 259-267 (2001)

    Article  Google Scholar 

  19. Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., Martin, S.W.: Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113-3157 (2000)

    Article  Google Scholar 

  20. Kerner, R., Micoulaut, M.: On the glass transition temperature in covalent glasses. J. Non-Cryst. Solids 210, 298-305 (1997)

    Article  Google Scholar 

  21. Micoulaut, M.: The slope equations: A universal relationship between local structure and glass transition temperature. European Physical Journal B 1, 277-294 (1998)

    Article  Google Scholar 

  22. Boolchand, P., Georgiev, D.G., Micoulaut, M.: Nature of glass transition in chalcogenides. J. Optoelectron. Adv. Mater. 4, 823-836 (2002)

    Google Scholar 

  23. Anderson, P.W.: Through the glass lightly. Science 267, 1615-e-1616 (1995)

    Article  Google Scholar 

  24. Binder, K., Kob, W.: Glassy Materials And Disordered Solids, An Introduction to Their Statistical Mechanics. World Scientific, Singapore (2005)

    Google Scholar 

  25. Angell, C.A.: Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J. Non-Cryst. Solids 102, 205-221 (1988)

    Article  Google Scholar 

  26. Tammann, G., Hesse, W.: Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 156, 245-257 (1926); Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339-355 (1925); Vogel, H.: Physik. Zeitschrift 22, 645-646 (1921)

    Article  Google Scholar 

  27. Cugliandolo, L.F.: Dynamics of glassy systems. arXiv:cond-mat/0210312v2 (2002)

    Google Scholar 

  28. O’Hern, C.S., Langer, S.A., Liu, A.J., Nagel, S.R.: Force Distributions near Jamming and Glass Transitions. Phys. Rev. Lett. 86, 111-114 (2001)

    Article  Google Scholar 

  29. Langer, S.A., Liu, A.J.: Sheared foam as a supercooled liquid? EPL (Europhysics Letters) 49, 68-74 (2000)

    Article  Google Scholar 

  30. Giovambattista, N., Stanley, H.E., Sciortino, F.: Potential-Energy Landscape Study of the Amorphous-Amorphous Transformation in H2O. Phys. Rev. Lett. 91, 115504-4 (2003); Angell, C.A.: Glass formation and the nature of the glass transitions. In: Boolchand, P. (ed.) Insulating and Semiconducting Glasses, pp. 1-51. World Scientific, Singapore; River Edge, NJ (2000); Stillinger, F.H.: A Topographic View of Supercooled Liquids and Glass Formation. Science 267, 1935-1939 (1995)

    Article  Google Scholar 

  31. Phillips, J.C.: Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. J. Non-Cryst. Solids 34, 153-181 (1979)

    Article  Google Scholar 

  32. Azoulay, R., Thibierge, H., Brenac, A.: Devitrification characteristics of GexSe1-x glasses. J. Non-Cryst. Solids 18, 33-53 (1975); Fang, C.-Y., Yinnon, H., Uhlmann, D.R.: A kinetic treatment of glass formation. VIII: Critical cooling rates for Na2O-SiO2 and K2O-SiO2 glasses. J. Non-Cryst. Solids 57, 465-471 (1983)

    Article  Google Scholar 

  33. Boolchand, P., Thorpe, M.F.: Glass-forming tendency, percolation of rigidity, and onefold-coordinated atoms in covalent networks. Phys. Rev. B 50, 10366-10368 (1994)

    Article  Google Scholar 

  34. Mitkova, M., Boolchand, P.: Microscopic origin of the glass forming tendency in chalcohalides and constraint theory. J. Non-Cryst. Solids 240, 1-21 (1998)

    Article  Google Scholar 

  35. Zhang, M., Boolchand, P.: The Central Role of Broken Bond-Bending Constraints in Promoting Glass-Formation in the Oxides. Science 266, 1355-1357 (1994)

    Article  Google Scholar 

  36. Mysen, B., Richet, P.: Silicate glasses and melts: properties and structure. Elsevier, Amsterdam; Boston (2005); Richet, P.: Viscosity and configurational entropy of silicate melts. Geochim. Cosmochim. Acta 48, 471-483 (1984)

    Google Scholar 

  37. Naumis, G.G.: Variation of the glass transition temperature with rigidity and chemical composition. Phys. Rev. B 73, 172202-4 (2006)

    Article  Google Scholar 

  38. Tabor, D.: Gases, liquids, and solids : and other states of matter. Cambridge University Press, Cambridge; New York (1991)

    Google Scholar 

  39. Phillips, W.A., Buchenau, U., Nücker, N., Dianoux, A.J., Petry, W.: Dynamics of glassy and liquid selenium. Phys. Rev. Lett. 63, 2381 (1989)

    Article  Google Scholar 

  40. Gibbs, J.H., DiMarzio, E.A.: Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373-383 (1958)

    Article  Google Scholar 

  41. Micoulaut, M., Naumis, G.G.: Glass transition temperature variation, cross-linking and structure in network glasses: A stochastic approach. Europhys. Lett. 47, 568-574 (1999)

    Article  Google Scholar 

  42. Boolchand, P., Bresser, W., Zhang, M., Wu, Y., Wells, J., Enzweiler, R.N.: Lamb-Mössbauer factors as a local probe of floppy modes in network glasses. J. Non-Cryst. Solids 182, 143-154 (1995)

    Article  Google Scholar 

  43. Boolchand, P., Georgiev, D.G., Qu, T., Wang, F., Cai, L.C., Chakravarty, S.: Nanoscale phase separation effects near <r>=2.4 and 2.67, and rigidity transitions in chalcogenide glasses. Comptes Rendus Chimie 5, 713-724 (2002)

    Article  Google Scholar 

  44. Boolchand, P., Bresser, W.J.: The structural origin of broken chemical order in GeSe2. Phil. Mag. B 80, 1757-1772 (2000)

    Google Scholar 

  45. Boolchand, P.: The maximum in glass transition temperature (Tg) near x = 1/3 in GexSe1-x glasses. Asian J. of Phys. 9, 709 (2000)

    Google Scholar 

  46. Pauling, L.: The Nature of the Chemical Bond. Cornell University, Ithaca, NY (1960)

    Google Scholar 

  47. Tichý, L., Tichá, H.: Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J. Non-Cryst. Solids 189, 141-146 (1995)

    Article  Google Scholar 

  48. Wunderlich, B.: The tribulations and successes on the road from DSC to TMDSC in the 20th century the prospects for the 21st century. J. Therm. Anal. Calorim. 78, 7-31 (2004)

    Article  Google Scholar 

  49. Thomas, L.C.: Modulated DSC Technology (MSDC-2006). T.A. Instruments, Inc (http://www.tainstruments.com), New Castle, DE (2006)

    Google Scholar 

  50. Cai, L.C., Boolchand, P.: Nanoscale phase separation of GeS2 glass. Phil. Mag. B 82, 1649-1657 (2002)

    Article  Google Scholar 

  51. Qu, T., Georgiev, D.G., Boolchand, P., Micoulaut, M.: The intermediate phase in ternary GexAsxSe1-2x glasses. In: Egami, T., Greer, A.L., Inoue, A., Ranganathan, S. (eds.) Supercooled Liquids, Glass Transition and Bulk Metallic Glasses, p. 157. Materials Research Society 754 (2003)

    Google Scholar 

  52. Kalb, J.A., Wuttig, M., Spaepen, F.: Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748-754 (2007)

    Article  Google Scholar 

  53. Boolchand, P., Jin, M., Novita, D.I., Chakravarty, S.: Raman scattering as a probe of intermediate phases in glassy networks. Journal of Raman Spectroscopy 38, 660-672 (2007)

    Article  Google Scholar 

  54. He, H., Thorpe, M.F.: Elastic Properties of Glasses. Phys. Rev. Lett. 54, 2107-2110 (1985)

    Article  Google Scholar 

  55. Chakravarty, S., Georgiev, D.G., Boolchand, P., Micoulaut, M.: Ageing, fragility and the reversibility window in bulk alloy glasses. J. Phys. Condens. Matter 17, L1-L7 (2005)

    Article  Google Scholar 

  56. Chakravarty, S.: Self-Organization and Aging in Network Glasses. In: Electrical and Computer Engineering, University of Cincinnati, MS Thesis (2003)

    Google Scholar 

  57. Vaills, Y., Qu, T., Micoulaut, M., Chaimbault, F., Boolchand, P.: Direct evidence of rigidity loss and self-organization in silicate glasses. J. Phys. Condens. Matter 17, 4889-4896 (2005)

    Article  Google Scholar 

  58. Rompicharla, V., Novita, D.I., Chen, P., Boolchand, P., Micoulaut, M., Huff, W.: Abrupt boundaries of intermediate phases and space filling in oxide glasses. J. Physics Condensed Matter 20, 202101-4 (2008)

    Article  Google Scholar 

  59. Henderson, G.S.: The Germanate Anomaly: What do we know? J. Non-Cryst. Solids 353, 1695-1704 (2007)

    Article  Google Scholar 

  60. Novita, D.I., Boolchand, P., Malki, M., Micoulaut, M.: Fast-ion conduction and flexibility of glassy networks. Phys. Rev. Lett. 98, 195501-4 (2007)

    Article  Google Scholar 

  61. Novita, D.I., Boolchand, P.: Synthesis and structural characterization of dry AgPO3 glass by Raman scattering, infrared reflectance, and modulated differential scanning calorimetry. Phys. Rev. B 76, 184205-12 (2007). Also see ArXiv 08081154

    Article  Google Scholar 

  62. Wang, F., Mamedov, S., Boolchand, P., Goodman, B., Chandrasekhar, M.: Pressure Raman effects and internal stress in network glasses. Phys. Rev. B 71, 174201-8 (2005)

    Article  Google Scholar 

  63. Micoulaut, M., Phillips, J.C.: Rings and rigidity transitions in network glasses. Phys. Rev. B 67, 104204-9 (2003)

    Article  Google Scholar 

  64. Wang, Y., Boolchand, P., Micoulaut, M.: Glass structure, rigidity transitions and the intermediate phase in the Ge-As-Se ternary. Europhys. Lett. 52, 633-639 (2000)

    Article  Google Scholar 

  65. Carpentier, L., Desprez, S., Descamps, M.: From strong to fragile glass- forming systems: a temperature modulated differential scanning calorimetry investigation. Phase Transitions 76, 787-799 (2003)

    Article  Google Scholar 

  66. Sokolov, A.P., Rössler, E., Kisliuk, A., Quitmann, D.: Dynamics of strong and fragile glass formers: Differences and correlation with low-temperature properties. Phys. Rev. Lett. 71, 2062-2065 (1993)

    Article  Google Scholar 

  67. DeGusseme, A., Carpentier, L., Willart, J.F., Descamps, M.: Molecular Mobility in Supercooled Trehalose. J. Phys. Chem. B 107, 10879-10886 (2003)

    Article  Google Scholar 

  68. Macdonald, J.R., Phillips, J.C.: Topological derivation of shape exponents for stretched exponential relaxation. J. Chem. Phys. 122, 074510-074510 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punit Boolchand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boolchand, P., Micoulaut, M., Chen, P. (2009). Nature of Glasses. In: Raoux, S., Wuttig, M. (eds) Phase Change Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84874-7_3

Download citation

Publish with us

Policies and ethics