Density Functional Theory Calculations for Phase Change Materials

  • Wojciech Wełnic


In this chapter the fundamentals of Density Functional Theory (DFT) are introduced. After presenting the Hohenberg-Kohn theorem, the most common concepts and approximations in DFT-calculations, namely the Kohn-Sham equations and the Local Density Approximation (LDA), are summarized. They allow mapping the many-body problem on a single particle system which ultimately enables numerical calculations of the electronic ground state of a solid.

Furthermore, applications of DFT in the field of phase change materials are presented. DFT proves to be a powerful tool to reveal structural properties of the crystalline, liquid and amorphous phases as well as to explain the nature of the electronic ground state and bonding properties.


Density Functional Theory Density Functional Theory Calculation Local Density Approximation Phase Change Material Electronic Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [2.1]
    Born, M., Oppenheimer, J. M.: Zur Quantentheorie der Molekeln. Ann. Phys. 84, 457-484 (1927)CrossRefGoogle Scholar
  2. [2.2]
    Hartree, D. R.: Proc. Cambridge Philos. Soc. 24, 89-110 (1928)CrossRefGoogle Scholar
  3. [2.3]
    Fock, V.: Z. Physik 61, 126-148 (1930)CrossRefGoogle Scholar
  4. [2.4]
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864-871 (1964)CrossRefGoogle Scholar
  5. [2.5]
    Levy, M.: Universal variational functionals of electron densities, first-order density matrices,, natural spin-orbitals and solution of the nu-representability problem. Proc. Nat. Acad. Sci. 76, 6062-6065 (1979)CrossRefGoogle Scholar
  6. [2.6]
    Kohn, W., Sham, L. J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133-A1138 (1965)CrossRefGoogle Scholar
  7. [2.7]
    Ceperley, D. M., Alder, B. J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566-569 (1980)CrossRefGoogle Scholar
  8. [2.8]
    Slater, J. C., Wilson, T. M., Wood, J. H.: Comparison of several exchange potentials for electrons in the Cu+ ion. Phys. Rev. 179, 28-38 (1969)CrossRefGoogle Scholar
  9. [2.9]
    Ohno, K, Esfarjani, K., Kawazoe, Y.: Computational Materials Science. Springer, Berlin (1999)Google Scholar
  10. [2.10]
    Perdew, J. P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048-5079 (1981)CrossRefGoogle Scholar
  11. [2.11]
    Goedecker, S., Teter, M., Hutter, J.: Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703-1710 (1996)CrossRefGoogle Scholar
  12. [2.12]
    Gunnarsson, O., Jonson, M., Lundqvist, B. I.: Descriptions of exchange and correlation effects in inhomogeneous electron. Phys. Rev. B 20, 3136-3164 (1979)CrossRefGoogle Scholar
  13. [2.13]
    Perdew, J. P., Wang, Y.: Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B 33, 8800-8802 (1986)CrossRefGoogle Scholar
  14. [2.14]
    Perdew, J. P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996)CrossRefGoogle Scholar
  15. [2.15]
    Onida, G., Reining, L., Rubio, A.: Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601-659 (2002)CrossRefGoogle Scholar
  16. [2.16]
    O’Reilly, E. P., Robertson, J., Kelly, J. M.: The structure of amorphous GeSe and GeTe. Solid State Comm. 38, 565-568 (1981)CrossRefGoogle Scholar
  17. [2.17]
    Rabe, K. M., Joannopoulos, J. D.: Theory of the structural phase transition of GeTe. Phys. Rev. B 36, 6631-6639 (1987)CrossRefGoogle Scholar
  18. [2.18]
    Kolobov A. V., Fons, P., Tominaga, J., Ankudinov, A. L., Yannopoulos, S. N., Andrikopoulos, K. S.: Crystallization-induced short-range order changes in amorphous GeTe. J. Phys.: Condens. Matter 16, S5103-S5108 (2004)CrossRefGoogle Scholar
  19. [2.19]
    Nosé, S.: A molecular-dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255-268 (1984)CrossRefGoogle Scholar
  20. [2.20]
    Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511-519 (1984)CrossRefGoogle Scholar
  21. [2.21]
    Chelikowsky, J. R., Derby, J. J., Godlevsky, V. V., Jain, M., Raty, J. Y.: Ab initio simulations of liquid semiconductors using the pseudopotential-density functional method. J. Phys.: Condens. Matter. 13, R817-R854 (2001)CrossRefGoogle Scholar
  22. [2.22]
    Kubo, R.: Fluctuation-Dissipation Theorem. Rep. Prog. Phys. 29, 255-284 (1966)CrossRefGoogle Scholar
  23. [2.23]
    Stratonovitch, R. L.: Topics in the Theory of Random Noise. New York: Gordon and Breach (1963)Google Scholar
  24. [2.24]
    van Kampen, N. G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)Google Scholar
  25. [2.25]
    Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1984)Google Scholar
  26. [2.26]
    Raty, J. Y., Godlevsky, V. V., Ghosez, P., Bichara, C., Gaspard, J. P., Chelikowsky, J. R.: Evidence of a reentrant Peierls distortion in liquid GeTe. Phys. Rev. Lett. 85, 1950-1953 (2000)CrossRefGoogle Scholar
  27. [2.27]
    Raty, J. Y., Gaspard, J. P., Bichara, C., Bergman, C., Bellissent, R., Ceolin, R.: Re-entrant Peierls distortion in IV-VI compounds. Physica B 276, 473-474 (2000)CrossRefGoogle Scholar
  28. [2.28]
    Raty, J. Y., Godlevsky, V. V., Gaspard, J. P., Bichara, C., Bionducci, M., Bellissent, R., Céolin, R., Chelikowsky, J. R., Ghosez, P.: Local structure of liquid GeTe via neutron scattering and ab initio simulations. Phys. Rev. B 65, 115205 (2001)CrossRefGoogle Scholar
  29. [2.29]
    Peierls, R. E.: Quantum Theory of Solids. Oxford University Press, Oxford (1956)Google Scholar
  30. [2.30]
    Bichara, C., Johnson, M., Raty, J. Y.: Temperature-induced density anomaly in Te-rich liquid germanium tellurides: p versus sp3 bonding? Phys. Rev. Lett. 95, 267801 (2005)CrossRefGoogle Scholar
  31. [2.31]
    Blaineau, S., Jund, P., Drabold, D.: Physical properties of a GeS2 glass using approximate ab initio molecular dynamics. Phys. Rev. B 67, 094204 (2003)CrossRefGoogle Scholar
  32. [2.32]
    Tafen, D. N., Drabold, D. A.: Models and modeling schemes for binary IV-VI glasses. Phys. Rev. B 71, 054206 (2005)CrossRefGoogle Scholar
  33. [2.33]
    Kolobov, A. V., Fons, P., Frenkel, A. I., Ankudinov, A. L., Tominaga,, Uruga, J. T.: Understanding the phase-change mechanism of rewritable optical media. Nature Materials 3, 703-708 (2004)CrossRefGoogle Scholar
  34. [2.34]
    Wełnic, W., Pamungkas, A., Detemple, R., Steimer, C., Blügel, S., Wuttig, M.: Unraveling the interplay of local structure and physical properties in phase-change materials. Nature Materials 5, 56-62 (2006)CrossRefGoogle Scholar
  35. [2.35]
    Kalb, J., Spaepen, F., Wuttig, M.: Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 93, 2389-2393 (2003)CrossRefGoogle Scholar
  36. [2.36]
    Caravati, S., Bernasconi, M., Kühne, T. D., Krack, M., Parrinello, M.: Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. Appl. Phys. Lett. 91, 171906 (2007)CrossRefGoogle Scholar
  37. [2.37]
    Akola, J., Jones, R. O.: Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys. Rev. B 76, 235201 (2007)CrossRefGoogle Scholar
  38. [2.38]
    Errington, J. R., Debenedetti, P. G.: Relationship between structural order and the anomalies of liquid water. Nature 409, 318-321 (2001)CrossRefGoogle Scholar
  39. [2.39]
    Sun, Z., Zhou, J., Ahuja, R.: Structure of phase change materials for data storage. Phys. Rev. Lett. 96, 055507 (2006)CrossRefGoogle Scholar
  40. [2.40]
    Kooi, B. J., Groot, W. M. G., de Hosson, J. T. M.:In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5. J. Appl. Phys. 95, 924-932 (2004)CrossRefGoogle Scholar
  41. [2.41]
    Eom, J.-H., Yoon, Y.-G., Park, C., Lee, H., Im, J., Suh, D.-S., Noh, J.-S., Khang, Y., Ihm, J.: Global and local structures of the Ge-Sb-Te ternary alloy system for a phase-change memory device. Phys. Rev. B 73, 214202 (2007)CrossRefGoogle Scholar
  42. [2.42]
    Fischer, C., Tibbetts, K., Morgan, D., Ceder, G.: Predicting crystal structure: merging data mining with quantum mechanics. Nature Materials 5, 641-646 (2006)CrossRefGoogle Scholar
  43. [2.43]
    Edwards, A. H., Pineda, A. C., Schultz, P. A., Martin, M. G., Thompson, A. P., Hjalmarson, H. P., Umrigar, C. J.: Electronic structure of intrinsic defects in crystalline germanium telluride. Phys. Rev. B 73, 045210 (2006)CrossRefGoogle Scholar
  44. [2.44]
    Wuttig, M., Lüsebrink, D., Wamwangi, D., Wełnic, W., Gilleβen, M., Dronskowski, R.: The role of vacancies and local distortions in the design of new phase change. Nature Materials 6, 122-128 (2007)CrossRefGoogle Scholar
  45. [2.45]
    Dronskowski, R., Blöchl, P. E.: Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617-8624 (1993)CrossRefGoogle Scholar
  46. [2.46]
    Glassey, W. V., Papoian, G. A., Hoffmann, R.: Total energy partitioning within a one-electron formalism: A Hamilton population study of surface-co interaction in the c(2 x 2)-CO/Ni(100) chemisorption system. J. Chem. Phys. 111, 893-910 (1999)CrossRefGoogle Scholar
  47. [2.47]
    Detemple, R., Wamwangi, D., Wuttig, M., Bihlmayer, G.: Identification of Te alloys with suitable phase change characteristics. Appl. Phys. Lett. 83, 2572-2574 (2003)CrossRefGoogle Scholar
  48. [2.48]
    Luo, M. B., Wuttig, M.: The dependence of crystal structure of Te-based phase-change materials on the number of valence electrons. Adv. Mat. 16, 439-443 (2004)CrossRefGoogle Scholar
  49. [2.49]
    Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F., Bez, R.: Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 452-459 (2004)CrossRefGoogle Scholar
  50. [2.50]
    Kastner, M., Adler, D., Fritzsche, H.: Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504-1507 (1976)CrossRefGoogle Scholar
  51. [2.51]
    Robertson, J., Xiong, K., Peacock, P. W.: Electronic and atomic structure of Ge2Sb2Te5 phase change memory material. Thin Solid Films 515, 7538-7541 (2007)CrossRefGoogle Scholar
  52. [2.52]
    Wełnic, W., Botti, S., Reining, L., Wuttig, M.: Origin of the optical contrast in phase-change materials. Phys. Rev. Lett. 98, 236403 (2007)CrossRefGoogle Scholar
  53. [2.53]
    Stefanucci, G., Almbladh, C.-O.: An exact ab initio theory of quantum transport using TDDFT and nonequilibrium Green’s functions J. Phys. Conf. Ser. 35, 17-24 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratoire des Solides Irradies, Ecole PolytechniquePalaiseauFrance

Personalised recommendations