Skip to main content

Phase Change Memory Cell Concepts and Designs

  • Chapter
Phase Change Materials

Abstract

Phase-Change Memories are the most promising candidates for next-generation semiconductor non-volatile memories, having the potential of improved performance compared to Flash as well as scalability to the deca-nanometer range. The development of this technology requires a deep understanding of the cell concept and a specific design of the cell architecture, as well as an extensive characterization of the electrical behavior and reliability of the cells. To this aim, in this chapter the most important topics of the phase change memory concept and designs will be reviewed. An up-dated technology overview will be presented, together with the methodology to electrically characterize the cell element; finally an extensive assessment of the cell reliability will be reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bez, R., Atwood, G.: Chalcogenide phase change memory: Scalable NVM for the next decade?. Non-Volatile Silicon Memory Workshop ‘06, pp. 12-15 (2006)

    Google Scholar 

  2. Pellizzer, F., Pirovano, A., Ottogalli, F., Magistretti, M., Scaravaggi, M., Zuliani, P., Tosi, M., Benvenuti, A., Besana, P., Cadeo, S., Marangon, T., Morandi, R., Piva, R., Spandre, A., Zonca, R., Modelli, A., Varesi, E., Lowrey, T., Lacaita, A., Casagrande, G., Cappelletti, P., Bez, R.: Novel μTrench phase change memory cell for embedded and stand alone non volatile memory applications. Symp. on VLSI Tech. Dig., pp. 18-19, (2004)

    Google Scholar 

  3. Ahn, S. J. , Song, Y.J., Jeong, C.W., Shin, J.M., Fai, Y., Hwang, Y.N. , Lee, S.H., Ryoo, K.C., Lee, S.Y. , Park, J.H. , Horii, H., Ha, Y.H., Yi, J.H., Kuh, B.J., Koh, G.H. , Jeong, G.T., Jeong H.S., Kim, K.: Highly manufacturable high density phase change memory of 64 Mb and beyond. IEDM Tech. Dig., pp. 907–910 (2004)

    Google Scholar 

  4. Pellizzer F., Benvenuti A., Gleixner B., Kim Y., Johnson B., Magistretti M., Marangon T, Pirovano A., Bez R., Atwood G.: A 90 nm phase change memory technology for stand-alone non-volatile memory applications. Symp. on VLSI Tech. Dig., pp. 122–123, (2006)

    Google Scholar 

  5. Ha, Y. H., Yi, J. H., Horii, H., Park, J.H., Joo, S.H., Park, S.O., Chung, U-In, Moon, J.T.: An edge contact type cell for phase change RAM featuring very low power consumption. Symp. on VLSI Tech. Dig., pp. 175-176 (2003)

    Google Scholar 

  6. Merget, F, Kim D.-H., Hadam, B., Haring Bolivar, P., Kurz, H.: Novel lateral cell design for low current phase change RAM memories. Non-Volatile Silicon Memory Workshop ‘04, pp. 30-31 (2004)

    Google Scholar 

  7. Lankhorst, M. H. R., Ketelaars, B. W. S. M. M., Wolters, R. A. M.: Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Materials4, 347-352 (2005)

    Article  Google Scholar 

  8. Pirovano, A., Pellizzer, F., Redaelli, A., Tortorelli, I., Varesi, E., Ottogalli ,F., Tosi, M., Besana, P., Cecchini, R., Piva, R., Magistretti, M., Scaravaggi, M., Mazzone, G., Petruzza, P., Bedeschi, F., Marangon, T., Modelli, A., Ielmini, D., Lacaita, A. L., Bez, R.: μTrench phase-change memory cell engineering and optimization. Proc. European Solid-State Device Research Conference ‘05, pp. 313-316 (2005)

    Google Scholar 

  9. Pirovano, A., Pellizzer, F., Tortorelli, I., Harrigan, R., Magistretti, M., Petruzza, P., Varesi, E., Erbetta, D., Marangon, T., Bedeschi, F., Fackenthal, R., Atwood, G., Bez, R.: Self-Aligned μTrench phase-change memory cell architecture for 90 nm technology and beyond. Proc. European Solid-State Device Research Conference ‘07, pp. 222-225 (2007)

    Google Scholar 

  10. Bez, R., Pellizzer, F.: Progress and perspective of phase-change memory. European\Phase-Change and Ovonic Symposium ‘07,http://www.epcos.org/library/papers/pdf_2007/paper03_RobertoBez.pdf (2007)

  11. Ottogalli, F., Pirovano, A., Pellizzer, F., Tosi, M., Zuliani, P., Bonetalli, P., Bez, R.: Phase-change memory technology for embedded applications”. Proc. European Solid-State Device Research Conference ‘04, pp. 293-296 (2004).

    Google Scholar 

  12. Lacaita, A. L., Redaelli, A., Ielmini, D., Pellizzer, F., Pirovano, A., Benvenuti, A., Bez, R.: Electrothermal and phase-change dynamics in chalcogenide based memories. International Electron Device Meeting Tech. Dig., pp. 911-914 (2004)

    Google Scholar 

  13. Gleixner, B., Pirovano, A., Sarkar, J., Ottogalli, F., Tortorelli, I., Tosi, M., Bez, R.: Data retention characterization of phase-change memory arrays. Proc. International Reliability Physics Symposium ‘07, pp. 542-546 (2007)

    Google Scholar 

  14. Kim, K., Ahn, S.-J.: Reliability investigations for manufacturable high density PRAM. Proc. International Reliability Physics Symposium ‘05, pp. 157-162 (2005)

    Google Scholar 

  15. Pirovano, A., Redaelli, A., Pellizzer, F., Ottogalli, F., Tosi, M., Ielmini, D.: Reliability study of phase-change nonvolatile memories. IEEE Trans. On Device and Materials Reliability4, n. 3, 422-427 (2004)

    Article  Google Scholar 

  16. Pirovano, A., Lacaita, A. L., Pellizzer, F., Kostylev, S. A., Benvenuti, A., Bez, R.: Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Trans. Electron Devices51, 714-719 (2004)

    Article  Google Scholar 

  17. Redaelli, A., Ielmini D., Lacaita, A. L., Pellizzer, F.: Pirovano, A., Bez, R.: Impact of crystallization statistics on data retention for phase change memories. International Electron Device Meeting Tech. Dig., pp. 742-745 (2005)

    Google Scholar 

  18. Redaelli, A., Pirovano, A., Ielmini, D., Lacaita, A.: Intrinsic data retention in nanoscaled phase-change memories—part II: statistical analysis and prediction of failure time. IEEE Trans. Electron Devices53, 3040-3046 (2006)

    Article  Google Scholar 

  19. Mantegazza, D., Ielmini, D., Pirovano, A., Gleixner, B., Lacaita, A. L., Varesi, E., Pellizzer, F., Bez R.: Electrical characterization of anomalous cells in phase change memory arrays. International Electron Device Meeting Tech. Dig., pp. 1-4 (2006)

    Google Scholar 

  20. Ovonic Unified Memory presentation,http://ovonyx.com/technology/technical-presentation.html. Accessed August 22, 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bez, R., Gleixner, R.J., Pellizzer, F., Pirovano, A., Atwood, G. (2009). Phase Change Memory Cell Concepts and Designs. In: Raoux, S., Wuttig, M. (eds) Phase Change Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84874-7_16

Download citation

Publish with us

Policies and ethics