Advertisement

Phase Change Memory Device Modeling

  • Daniele Ielmini

Abstract

This chapter provides a review of the most important modeling issues for the simulation of the phase change memory (PCM) operation and reliability. After a short description of the PCM operation principle, the chapter will focus on electrical conduction characteristics for the amorphous and the crystalline phase of the chalcogenide material. The modeling of the programming operation and the methodology for calculating the programming current for phase transition will be described. Modeling-based methods for optimizing and scaling down the reset current will also be discussed. Cell reliability will finally be addressed, showing physics-based modeling approaches for crystallization and structural relaxation processes, which affect the stability of the amorphous phase and PCM data retention.

Keywords

Amorphous Phase Bottom Electrode Chalcogenide Glass Threshold Switching Mobility Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [14.1]
    Pellizzer, F., Benvenuti, A., Gleixner, B., Kim, Y., Johnson, B., Magistretti, M., Marangon, T., Pirovano, A., Bez, R., Atwood, G.: A 90 nm phase change memory technology for stand-alone non-volatile memory applications. In: Symp. on VLSI Tech. Dig., pp. 122–123. (2006)Google Scholar
  2. [14.2]
    Ahn, S. J., Song, Y. J., Jeong, C. W., Shin, J. M., Fai, Y., Hwang, Y. N., Lee, S. H., Ryoo, K. C., Lee, S. Y., Park, J. H., Horii, H., Ha, Y. H., Yi, J. H., Kuh, B. J., Koh, G. H., Jeong, G. T., Jeong, H. S., Kim, K., Ryu, B. Y.: Highly manufacturable high density phase change memory of 64 Mb and beyond. In: IEDM Tech. Dig., pp. 907–910. (2004)Google Scholar
  3. [14.3]
    Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F., Bez, R.: Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 452–459 (2004)CrossRefGoogle Scholar
  4. [14.4]
    Ielmini, D., Lacaita, A. L., Pirovano, A., Pellizzer, F., Bez, R.: Analysis of phase distribution in phase-change nonvolatile memories. IEEE Electron Device Lett. 25, 507–509 (2004)CrossRefGoogle Scholar
  5. [14.6]
    Pellizzer, F., Pirovano, A., Ottogalli, F., Magistretti, M., Scaravaggi, M., Zuliani, P., Tosi, M., Benvenuti, A., Besana, P., Cadeo, S., Marangon, T., Moranti, R., Piva, R., Spandre, A., Zonca, R., Modelli, A., Varesi, E., Lowrey, T., Lacaita, A., Casagrande G., Bez, R.:Novel μtrench phase change memory cell for embedded and stand alone non volatile memory applications. In: Symp. VLSI Tech. Dig., pp. 18-19. (2004)Google Scholar
  6. [14.7]
    Hindley, N. K.: Random phase model of amorphous semiconductors I. Transport and optical properties. J. Non-Crystalline Solids 5, 17–30 (1970)CrossRefGoogle Scholar
  7. [14.8]
    Ielmini D., Zhang, Y.: Evidence for trap-limited transport in the sub-threshold conduction regime of chalcogenide glasses. Appl. Phys. Lett. 90, 192102 (2007)CrossRefGoogle Scholar
  8. [14.9]
    Thomas, C. B.: The temperature dependence of the non-ohmic current and switching characteristics of a chalcogenide glass. J. Phys. D 9, 2587–2596 (1976)CrossRefGoogle Scholar
  9. [14.10]
    Ielmini, D., Zhang, Y.: Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007)CrossRefGoogle Scholar
  10. [14.11]
    Jonscher, A. K., Hill, R. M.: Electrical conduction in disordered nonmetallic films. In Hass, G., Francombe, M. H., Hoffman, R. W. (eds.) Physics of thin films, Vol. 8. Academic Press, (1975)Google Scholar
  11. [14.12]
    Redaelli, A., Pirovano, A., Pellizzer, F., Lacaita, A. L., Ielmini, D., Bez, R.: Electronic switching effect and phase-change transition in chalcogenide materials. IEEE Electron Device Lett. 25, 684–686 (2004)CrossRefGoogle Scholar
  12. [14.13]
    Ielmini, D., Mantegazza, D., Lacaita, A. L., Pirovano, A., Pellizzer, F.: Parasitic reset in the programming transient of phase change memories. IEEE Electron Device Lett. 26, 799–801 (2005)CrossRefGoogle Scholar
  13. [14.14]
    Adler, D., Shur, M. S., Silver M., Ovshinsky, S. R.: Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51, 3289–3309 (1980)CrossRefGoogle Scholar
  14. [14.15]
    Prakash, S., Asokan, S., Ghare, D. B.: A guideline for designing chalcogenide-based glasses for threshold switching characteristics. IEEE Electron Device Lett. 18, 45–47 (1997)CrossRefGoogle Scholar
  15. [14.16]
    Ovshinsky, S. R.: Localized states in the gap of amorphous semiconductors. Phys. Rev. Lett. 36, 1469–1472 (1976)CrossRefGoogle Scholar
  16. [14.17]
    Adler, D., Henisch, H. K., Mott, N.: The mechanism of threshold switching in amorphous alloys. Rev. Mod. Phys. 50, 209–220 (1978)CrossRefGoogle Scholar
  17. [14.18]
    Mott, N. F.: Electrons in Glass. In: Lundqvist, S. (ed.) Nobel Lectures, Physics 1971-1980. World Scientific Publishing Co., Singapore (1992)Google Scholar
  18. [14.19]
    Emin, D.: Current-driven threshold switching of a small polaron semiconductor to a metastable conductor. Phys. Rev. B 74, 035206 (2006)CrossRefGoogle Scholar
  19. [14.20]
    Jonscher, A. K.: Energy losses in hopping conduction at high electric fields. J. Phys. C 4, 1331–1340 (1971)CrossRefGoogle Scholar
  20. [14.21]
    Jonscher, A. K., Loh, C. K.: Poole-Frenkel conduction in high alternating electric fields. J. Phys. C 4, 1341–1347 (1971)CrossRefGoogle Scholar
  21. [14.22]
    Lacaita, A. L., Redaelli, A., Ielmini, D., Pellizzer, F., Pirovano, A., Benvenuti, A., Bez, R.: Electrothermal and phase-change dynamics in chalcogenide-based memories. In: IEDM Tech. Dig., pp. 911-914. (2004)Google Scholar
  22. [14.23]
    Russo, U., Ielmini, D., Redaelli, A., Lacaita, A. L.: Modeling of programming and read performance in phase-change memories – Part I: cell optimization and scaling. IEEE Trans. Electron Devices 55, 506-514, (2008)CrossRefGoogle Scholar
  23. [14.24]
    Hwang, Y. N., Lee, S. H., Ahn, S. J., Lee, S. Y., Ryoo, K. C., Hong, H. S., Koo, H. C., Yeung, F., Oh, J. H., Kim, H. J., Jeong, W. C., Park, J. H., Horii, H., Ha, Y. H., Yi, J. H., Koh, G. H., Jeong, G. T., Jeong, H. S., Kim, K.: Writing current reduction for high-density phase-change RAM. In: IEDM Tech. Dig., pp. 893-896. (2003)Google Scholar
  24. [14.25]
    International Roadmap for Semiconductors—Process Integration, Devices, and Structures. 2007 Release. http://www.itrs.net/(2007). Accessed 17 April 2008.
  25. [14.26]
    Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F., Hudgens, S., Bez, R.: Scaling analysis of phase change memory technology. In: IEDM Tech. Dig., pp. 699-702. (2003)Google Scholar
  26. [14.27]
    Pirovano, A., Redaelli, A., Pellizzer, F., Ottogalli, F., Tosi, M., Ielmini, D., Lacaita, A. L., Bez, R.: Reliability study of phase-change non volatile memories. IEEE Trans. Device Mater. Rel. 4, 422–427 (2004)CrossRefGoogle Scholar
  27. [14.28]
    Redaelli, A., Ielmini, D., Russo, U., Lacaita, A. L.: Intrinsic data retention in nanoscaled phase-change memories – Part II: Statistical analysis and prediction of failure time. IEEE Trans. Electron Devices 53, 3040–3046 (2006)CrossRefGoogle Scholar
  28. [14.29]
    Russo, U., Ielmini, D., Lacaita, A. L.: Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolations. IEEE Trans. Electron Devices 54, 2769 – 2777 (2007)CrossRefGoogle Scholar
  29. [14.30]
    Russo, U., Ielmini, D., Redaelli, A., Lacaita, A. L.: Intrinsic data retention in nanoscaled PCMs—Part I: Monte Carlo model for crystallization and percolation. IEEE Trans. Electron Devices 53, 3032–3039 (2006)CrossRefGoogle Scholar
  30. [14.31]
    Stathis, J. H.: Percolation models for gate oxide breakdown. J. Appl. Phys. 86, 5757–5766 (1999)CrossRefGoogle Scholar
  31. [14.32]
    Ielmini, D., Spinelli, A. S., Lacaita, A. L., van Duuren, M. J.: Impact of correlated generation of oxide defects on SILC and breakdown distributions. IEEE Trans. Electron Devices 51, 1281–1287 (2004)CrossRefGoogle Scholar
  32. [14.33]
    Christian, J. W.: The Theory of Transformations in Metals and Alloys. Oxford, U.K. (1975)Google Scholar
  33. [14.34]
    Senkader, S., Wright, C. D.: Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J. Appl. Phys. 95, 504–511 (2004)CrossRefGoogle Scholar
  34. [14.35]
    Peng, C., Cheng, L., Mansuripur, M.: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase change optical recording media. J. Appl. Phys. 82, 4183–4191 (1997)CrossRefGoogle Scholar
  35. [14.36]
    Ruitenberg, G., Petford-Long, A. K., Doole, R. C.: Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films. J. Appl. Phys. 92, 3116–3123 (2002)CrossRefGoogle Scholar
  36. [14.37]
    Kalb, J., Spaepen, F., Wuttig, M.: Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240–5242 (2004)CrossRefGoogle Scholar
  37. [14.38]
    Singh, H. B., Holz, A.: Stability limit of supercooled liquids. Solid State Commun. 4, 985–987 (1983)CrossRefGoogle Scholar
  38. [14.39]
    Kalb, J. A., Spaepen, F., Wutting, M.: Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. J. Appl. Phys. 98, 54910 (2005)CrossRefGoogle Scholar
  39. [14.40]
    Mantegazza, D., Ielmini, D., Pirovano, A., Varesi, E., Lacaita, A. L.: Statistical analysis and modeling of programming and retention in PCM arrays. In: IEDM Tech. Dig. 311–314. (2007)Google Scholar
  40. [14.41]
    Roorda, S., Sinke, W. C., Poate, J. M., Jacobson, D. C., Dierker, S., Dennis, B. S., Eaglesham, D. J., Spaepen, F., Fuoss, P.: Structural relaxation and defect annihilation in pure amorphous silicon. Phys. Rev. B 44, 3702–3725 (1991)CrossRefGoogle Scholar
  41. [14.42]
    Khonik, V. A., Kitagawa, K., Morii, H.: On the determination of the crystallization activation energy of metallic glasses. J. Appl. Phys. 87 8440–8443 (2000)CrossRefGoogle Scholar
  42. [14.43]
    Koughia, K., Shakoor, Z., Kasap, S. O., Marshall, J. M.: Density of localized electronic states in a-Se from electron time-of-flight photocurrent measurements. J. Appl. Phys. 97, 3706–3716 (2005)CrossRefGoogle Scholar
  43. [14.44]
    Kasap, S. O., Yannacopoulus, S.: Kinetics of structural relaxations in the glassy semiconductor a-Se. J. Mater. Res. 4, 893–905 (1989)CrossRefGoogle Scholar
  44. [14.45]
    Pirovano, A., Lacaita, A. L., Pellizzer, F., Kostylev, S. A., Benvenuti, A., Bez, R.: Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Trans. Electron Devices 51, 714–719 (2004)CrossRefGoogle Scholar
  45. [14.46]
    Ielmini, D., Lacaita, A. L., Mantegazza, D.: Recovery and drift dynamics of resistance and threshold voltages in phase-change memories. IEEE Trans. Electron Devices 54, 308–315 (2007)CrossRefGoogle Scholar
  46. [14.47]
    Roorda, S., Doorn, S., Sinke, W. C., Scholte, P. M. L. O., van Loenen, E.: Calorimetric evidence for structural relaxation in amorphous silicon. Phys. Rev. Lett. 62, 1880–1883 (1989)CrossRefGoogle Scholar
  47. [14.48]
    Kalb, J. A., Wuttig, M., Spaepen, F.: Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748–754 (2007)CrossRefGoogle Scholar
  48. [14.49]
    Kasap, S. O., Polischuk, B., Aiyah, V., Yannacopoulos, S.: Drift mobility relaxation in a-Se. J. Appl. Phys. 67, 1918–1922 (1990)CrossRefGoogle Scholar
  49. [14.50]
    Ielmini, D., Lavizzari, S., Sharma D., Lacaita, A. L.: Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation. In: IEDM Tech. Dig., pp. 939–942. (2007)Google Scholar
  50. [14.51]
    Russo, U., Ielmini, D., Redaelli, A., Lacaita, A. L.: Modeling of programming and read performance in phase-change memories . Part II: Program disturb and mixed scaling approach. IEEE Trans. Electron Devices 55, 515-522 (2008)CrossRefGoogle Scholar
  51. [14.52]
    Hirasawa, M., Orii, T., Seto, T.: Size-dependent crystallization of Si nanoparticles. Appl. Phys. Lett 88, 093119 (2006)CrossRefGoogle Scholar
  52. [14.53]
    Raoux, S., Rettner, C. T., Jordan-Sweet, J. L., Deline, V. R., Philipp, J. B., Lung, H.-L., Scaling properties of phase change nanostructures and thin films. In: European Symposium on Phase Change and Ovonic Science. (2006)Google Scholar
  53. [14.54]
    Qiao, B., Feng, J., Lai, Y., Cai, Y., Lin, Y., Tang, T., Cai B., Chen, B.: Si–Sb–Te films for phase-change random access memory. Semiconductor Science and Technology 21, 1073-1076 (2006)CrossRefGoogle Scholar
  54. [14.55]
    Morikawa, T., Kurotsuchi, K., Kinoshita, M., Matsuzaki, N., Matsui, Y., Fujisaki, Y., Hanzawa, S., Kotabe, A., Terao, M., Moriya, H., Iwasaki, T., Matsuoka, M., Nitta, F., Moniwa, M., Koga, T., Takaura, N.: Doped In-Ge-Te phase change memory featuring stable operation and good data retention. In: IEDM Tech. Dig., pp. 307–310. (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations