Skip to main content

Phase Change Memory Device Modeling

  • Chapter

Abstract

This chapter provides a review of the most important modeling issues for the simulation of the phase change memory (PCM) operation and reliability. After a short description of the PCM operation principle, the chapter will focus on electrical conduction characteristics for the amorphous and the crystalline phase of the chalcogenide material. The modeling of the programming operation and the methodology for calculating the programming current for phase transition will be described. Modeling-based methods for optimizing and scaling down the reset current will also be discussed. Cell reliability will finally be addressed, showing physics-based modeling approaches for crystallization and structural relaxation processes, which affect the stability of the amorphous phase and PCM data retention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pellizzer, F., Benvenuti, A., Gleixner, B., Kim, Y., Johnson, B., Magistretti, M., Marangon, T., Pirovano, A., Bez, R., Atwood, G.: A 90 nm phase change memory technology for stand-alone non-volatile memory applications. In: Symp. on VLSI Tech. Dig., pp. 122–123. (2006)

    Google Scholar 

  2. Ahn, S. J., Song, Y. J., Jeong, C. W., Shin, J. M., Fai, Y., Hwang, Y. N., Lee, S. H., Ryoo, K. C., Lee, S. Y., Park, J. H., Horii, H., Ha, Y. H., Yi, J. H., Kuh, B. J., Koh, G. H., Jeong, G. T., Jeong, H. S., Kim, K., Ryu, B. Y.: Highly manufacturable high density phase change memory of 64 Mb and beyond. In: IEDM Tech. Dig., pp. 907–910. (2004)

    Google Scholar 

  3. Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F., Bez, R.: Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 452–459 (2004)

    Article  Google Scholar 

  4. Ielmini, D., Lacaita, A. L., Pirovano, A., Pellizzer, F., Bez, R.: Analysis of phase distribution in phase-change nonvolatile memories. IEEE Electron Device Lett. 25, 507–509 (2004)

    Article  Google Scholar 

  5. Pellizzer, F., Pirovano, A., Ottogalli, F., Magistretti, M., Scaravaggi, M., Zuliani, P., Tosi, M., Benvenuti, A., Besana, P., Cadeo, S., Marangon, T., Moranti, R., Piva, R., Spandre, A., Zonca, R., Modelli, A., Varesi, E., Lowrey, T., Lacaita, A., Casagrande G., Bez, R.:Novel μtrench phase change memory cell for embedded and stand alone non volatile memory applications. In: Symp. VLSI Tech. Dig., pp. 18-19. (2004)

    Google Scholar 

  6. Hindley, N. K.: Random phase model of amorphous semiconductors I. Transport and optical properties. J. Non-Crystalline Solids 5, 17–30 (1970)

    Article  Google Scholar 

  7. Ielmini D., Zhang, Y.: Evidence for trap-limited transport in the sub-threshold conduction regime of chalcogenide glasses. Appl. Phys. Lett. 90, 192102 (2007)

    Article  Google Scholar 

  8. Thomas, C. B.: The temperature dependence of the non-ohmic current and switching characteristics of a chalcogenide glass. J. Phys. D 9, 2587–2596 (1976)

    Article  Google Scholar 

  9. Ielmini, D., Zhang, Y.: Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007)

    Article  Google Scholar 

  10. Jonscher, A. K., Hill, R. M.: Electrical conduction in disordered nonmetallic films. In Hass, G., Francombe, M. H., Hoffman, R. W. (eds.) Physics of thin films, Vol. 8. Academic Press, (1975)

    Google Scholar 

  11. Redaelli, A., Pirovano, A., Pellizzer, F., Lacaita, A. L., Ielmini, D., Bez, R.: Electronic switching effect and phase-change transition in chalcogenide materials. IEEE Electron Device Lett. 25, 684–686 (2004)

    Article  Google Scholar 

  12. Ielmini, D., Mantegazza, D., Lacaita, A. L., Pirovano, A., Pellizzer, F.: Parasitic reset in the programming transient of phase change memories. IEEE Electron Device Lett. 26, 799–801 (2005)

    Article  Google Scholar 

  13. Adler, D., Shur, M. S., Silver M., Ovshinsky, S. R.: Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51, 3289–3309 (1980)

    Article  Google Scholar 

  14. Prakash, S., Asokan, S., Ghare, D. B.: A guideline for designing chalcogenide-based glasses for threshold switching characteristics. IEEE Electron Device Lett. 18, 45–47 (1997)

    Article  Google Scholar 

  15. Ovshinsky, S. R.: Localized states in the gap of amorphous semiconductors. Phys. Rev. Lett. 36, 1469–1472 (1976)

    Article  Google Scholar 

  16. Adler, D., Henisch, H. K., Mott, N.: The mechanism of threshold switching in amorphous alloys. Rev. Mod. Phys. 50, 209–220 (1978)

    Article  Google Scholar 

  17. Mott, N. F.: Electrons in Glass. In: Lundqvist, S. (ed.) Nobel Lectures, Physics 1971-1980. World Scientific Publishing Co., Singapore (1992)

    Google Scholar 

  18. Emin, D.: Current-driven threshold switching of a small polaron semiconductor to a metastable conductor. Phys. Rev. B 74, 035206 (2006)

    Article  Google Scholar 

  19. Jonscher, A. K.: Energy losses in hopping conduction at high electric fields. J. Phys. C 4, 1331–1340 (1971)

    Article  Google Scholar 

  20. Jonscher, A. K., Loh, C. K.: Poole-Frenkel conduction in high alternating electric fields. J. Phys. C 4, 1341–1347 (1971)

    Article  Google Scholar 

  21. Lacaita, A. L., Redaelli, A., Ielmini, D., Pellizzer, F., Pirovano, A., Benvenuti, A., Bez, R.: Electrothermal and phase-change dynamics in chalcogenide-based memories. In: IEDM Tech. Dig., pp. 911-914. (2004)

    Google Scholar 

  22. Russo, U., Ielmini, D., Redaelli, A., Lacaita, A. L.: Modeling of programming and read performance in phase-change memories – Part I: cell optimization and scaling. IEEE Trans. Electron Devices 55, 506-514, (2008)

    Article  Google Scholar 

  23. Hwang, Y. N., Lee, S. H., Ahn, S. J., Lee, S. Y., Ryoo, K. C., Hong, H. S., Koo, H. C., Yeung, F., Oh, J. H., Kim, H. J., Jeong, W. C., Park, J. H., Horii, H., Ha, Y. H., Yi, J. H., Koh, G. H., Jeong, G. T., Jeong, H. S., Kim, K.: Writing current reduction for high-density phase-change RAM. In: IEDM Tech. Dig., pp. 893-896. (2003)

    Google Scholar 

  24. International Roadmap for Semiconductors—Process Integration, Devices, and Structures. 2007 Release. http://www.itrs.net/(2007). Accessed 17 April 2008.

  25. Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F., Hudgens, S., Bez, R.: Scaling analysis of phase change memory technology. In: IEDM Tech. Dig., pp. 699-702. (2003)

    Google Scholar 

  26. Pirovano, A., Redaelli, A., Pellizzer, F., Ottogalli, F., Tosi, M., Ielmini, D., Lacaita, A. L., Bez, R.: Reliability study of phase-change non volatile memories. IEEE Trans. Device Mater. Rel. 4, 422–427 (2004)

    Article  Google Scholar 

  27. Redaelli, A., Ielmini, D., Russo, U., Lacaita, A. L.: Intrinsic data retention in nanoscaled phase-change memories – Part II: Statistical analysis and prediction of failure time. IEEE Trans. Electron Devices 53, 3040–3046 (2006)

    Article  Google Scholar 

  28. Russo, U., Ielmini, D., Lacaita, A. L.: Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolations. IEEE Trans. Electron Devices 54, 2769 – 2777 (2007)

    Article  Google Scholar 

  29. Russo, U., Ielmini, D., Redaelli, A., Lacaita, A. L.: Intrinsic data retention in nanoscaled PCMs—Part I: Monte Carlo model for crystallization and percolation. IEEE Trans. Electron Devices 53, 3032–3039 (2006)

    Article  Google Scholar 

  30. Stathis, J. H.: Percolation models for gate oxide breakdown. J. Appl. Phys. 86, 5757–5766 (1999)

    Article  Google Scholar 

  31. Ielmini, D., Spinelli, A. S., Lacaita, A. L., van Duuren, M. J.: Impact of correlated generation of oxide defects on SILC and breakdown distributions. IEEE Trans. Electron Devices 51, 1281–1287 (2004)

    Article  Google Scholar 

  32. Christian, J. W.: The Theory of Transformations in Metals and Alloys. Oxford, U.K. (1975)

    Google Scholar 

  33. Senkader, S., Wright, C. D.: Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J. Appl. Phys. 95, 504–511 (2004)

    Article  Google Scholar 

  34. Peng, C., Cheng, L., Mansuripur, M.: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase change optical recording media. J. Appl. Phys. 82, 4183–4191 (1997)

    Article  Google Scholar 

  35. Ruitenberg, G., Petford-Long, A. K., Doole, R. C.: Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films. J. Appl. Phys. 92, 3116–3123 (2002)

    Article  Google Scholar 

  36. Kalb, J., Spaepen, F., Wuttig, M.: Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240–5242 (2004)

    Article  Google Scholar 

  37. Singh, H. B., Holz, A.: Stability limit of supercooled liquids. Solid State Commun. 4, 985–987 (1983)

    Article  Google Scholar 

  38. Kalb, J. A., Spaepen, F., Wutting, M.: Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. J. Appl. Phys. 98, 54910 (2005)

    Article  Google Scholar 

  39. Mantegazza, D., Ielmini, D., Pirovano, A., Varesi, E., Lacaita, A. L.: Statistical analysis and modeling of programming and retention in PCM arrays. In: IEDM Tech. Dig. 311–314. (2007)

    Google Scholar 

  40. Roorda, S., Sinke, W. C., Poate, J. M., Jacobson, D. C., Dierker, S., Dennis, B. S., Eaglesham, D. J., Spaepen, F., Fuoss, P.: Structural relaxation and defect annihilation in pure amorphous silicon. Phys. Rev. B 44, 3702–3725 (1991)

    Article  Google Scholar 

  41. Khonik, V. A., Kitagawa, K., Morii, H.: On the determination of the crystallization activation energy of metallic glasses. J. Appl. Phys. 87 8440–8443 (2000)

    Article  Google Scholar 

  42. Koughia, K., Shakoor, Z., Kasap, S. O., Marshall, J. M.: Density of localized electronic states in a-Se from electron time-of-flight photocurrent measurements. J. Appl. Phys. 97, 3706–3716 (2005)

    Article  Google Scholar 

  43. Kasap, S. O., Yannacopoulus, S.: Kinetics of structural relaxations in the glassy semiconductor a-Se. J. Mater. Res. 4, 893–905 (1989)

    Article  Google Scholar 

  44. Pirovano, A., Lacaita, A. L., Pellizzer, F., Kostylev, S. A., Benvenuti, A., Bez, R.: Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Trans. Electron Devices 51, 714–719 (2004)

    Article  Google Scholar 

  45. Ielmini, D., Lacaita, A. L., Mantegazza, D.: Recovery and drift dynamics of resistance and threshold voltages in phase-change memories. IEEE Trans. Electron Devices 54, 308–315 (2007)

    Article  Google Scholar 

  46. Roorda, S., Doorn, S., Sinke, W. C., Scholte, P. M. L. O., van Loenen, E.: Calorimetric evidence for structural relaxation in amorphous silicon. Phys. Rev. Lett. 62, 1880–1883 (1989)

    Article  Google Scholar 

  47. Kalb, J. A., Wuttig, M., Spaepen, F.: Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748–754 (2007)

    Article  Google Scholar 

  48. Kasap, S. O., Polischuk, B., Aiyah, V., Yannacopoulos, S.: Drift mobility relaxation in a-Se. J. Appl. Phys. 67, 1918–1922 (1990)

    Article  Google Scholar 

  49. Ielmini, D., Lavizzari, S., Sharma D., Lacaita, A. L.: Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation. In: IEDM Tech. Dig., pp. 939–942. (2007)

    Google Scholar 

  50. Russo, U., Ielmini, D., Redaelli, A., Lacaita, A. L.: Modeling of programming and read performance in phase-change memories . Part II: Program disturb and mixed scaling approach. IEEE Trans. Electron Devices 55, 515-522 (2008)

    Article  Google Scholar 

  51. Hirasawa, M., Orii, T., Seto, T.: Size-dependent crystallization of Si nanoparticles. Appl. Phys. Lett 88, 093119 (2006)

    Article  Google Scholar 

  52. Raoux, S., Rettner, C. T., Jordan-Sweet, J. L., Deline, V. R., Philipp, J. B., Lung, H.-L., Scaling properties of phase change nanostructures and thin films. In: European Symposium on Phase Change and Ovonic Science. (2006)

    Google Scholar 

  53. Qiao, B., Feng, J., Lai, Y., Cai, Y., Lin, Y., Tang, T., Cai B., Chen, B.: Si–Sb–Te films for phase-change random access memory. Semiconductor Science and Technology 21, 1073-1076 (2006)

    Article  Google Scholar 

  54. Morikawa, T., Kurotsuchi, K., Kinoshita, M., Matsuzaki, N., Matsui, Y., Fujisaki, Y., Hanzawa, S., Kotabe, A., Terao, M., Moriya, H., Iwasaki, T., Matsuoka, M., Nitta, F., Moniwa, M., Koga, T., Takaura, N.: Doped In-Ge-Te phase change memory featuring stable operation and good data retention. In: IEDM Tech. Dig., pp. 307–310. (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Ielmini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ielmini, D. (2009). Phase Change Memory Device Modeling. In: Raoux, S., Wuttig, M. (eds) Phase Change Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84874-7_14

Download citation

Publish with us

Policies and ethics