Skip to main content

4th Generation Optical Memories Based on Super-resolution Near-field structure (Super-RENS) and Near-field Optics

  • Chapter
Phase Change Materials
  • 4565 Accesses

Abstract

Phase-change materials have additional potential for future nanotechnological devices besides their applications in optical disks and solid-state memory devices. When comparing the crystalline state and amorphous state, phasechange materials usually have two distinctly different refractive indices. Especially, one phase shows a positive dielectric constant, while the other one shows a negative constant. Once these phases exist together with a boundary on the nanometer length scale, the optical contrast can be used to produce localized plasmons there. Such a condition can be generated by focusing a laser beam on thin multilayer stacks. This is called super-resolution near-field structure (super-RENS). Since its invention in 1998, ultra-high density optical storage system based on this principle has been developed. In this chapter, the basic concept of plasmons and near-field optics, multilayer design, and the physical background this technology is based on in phase-change films are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ovshinsky S.R.: Reversible Electrical Switching Phenomena in Disordered Structures, Phys. Rev. Lett. 21, 1450- 1453 (1968)

    Article  Google Scholar 

  2. Yamada N. Ohno E., Nishiuchi K., Akahira N. and Takao M.: Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin-films for an optical disk memory. J. Appl. Phys. 69, 2849-2856 (1991)

    Article  Google Scholar 

  3. Born B. and Wolf E. :Principles of Optics, Cambridge (1999)

    Google Scholar 

  4. Paesler M. and Moyer P.: Near-field optics- Theory, Instrumentation, and Applications, John Willey & Sons (1996)

    Google Scholar 

  5. Shalaev V. M. and Kawata S.: Nanophotonics with Surface plasmons, Elsevier (2007)

    Google Scholar 

  6. Raether H.: Surface Plasmons – on smooth and rough surfaces and on gratings. Springer (1988)

    Google Scholar 

  7. Tominaga J., Nakano T. and Atoda N.:An approach for recording and readout beyond the diffraction limit with an Sb thin film. Appl. Phys. Lett. 73, 2078-2080 (1998)

    Article  Google Scholar 

  8. Tominaga J. and Nakano T.: Optical near-field recording – science and technology. Springer (2005)

    Google Scholar 

  9. Tominaga J., Nakano T., Atoda N., Fuji H. and Sato A.: The characteristics and the potential of super-resolution near-field structure. Jpn. J. Appl. Phys. 39, 957-961 (2000)

    Article  Google Scholar 

  10. Fuji H., Katayama H., Tominaga J., Men L. Nakano T. and Atoda N.: A near-field recording and readout technology using a metallic probe in an optical disc. Jpn. J. Appl. Phys. 39, 980- 981(2000)

    Article  Google Scholar 

  11. Kikukawa T., Nanano T., Shima T. and Tominaga J.: Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disc with platinum-oxide layer. Appl. Phys. Lett.81, 4697-4699 (2002)

    Article  Google Scholar 

  12. Shima T., Nakano T. and Tominaga J.: Effect of SiO2 addition to PtOx recording layer of super-resolution near-field structure disc. Jpn. J. Appl. Phys. 46, 3912-3916 (2007)

    Article  Google Scholar 

  13. Kim J., Bae J., Hwang I., Lee J., Park H., Chung C., Kim h., Park I., and Tominaga J.: Error rate reduction of super-resolution near-field structure disc. Jpn. J. Appl. Phys. 46, 3933-3935 (2007)

    Article  Google Scholar 

  14. Fuji H., Kikukawa T. and Tominaga J.: Bit-by-bit detection on suoer-resolution nearfield structure disk with platinum oxide layer. Jpn. J. Appl. Phys., 42, L589-591 (2003)

    Article  Google Scholar 

  15. Tominaga J., Shima T., Kuwahara M., Fukaya T., Kolobov A. and Nakano T., Ferroelectric catastrophe: beyond nanometer-scale optical resolution. Nanotechnology 15, 411-415 (2004)

    Article  Google Scholar 

  16. Kuwahara M., Shima T., Fons P., Fukaya T. and Tominaga J.: On a thermally induced readout mechanism in super-resolution optical disks. J. Appl. Phys. 100, 043106 (2006)

    Article  Google Scholar 

  17. CASTEP code: Materials Studio 4.2. Accelrys. Com.

    Google Scholar 

  18. Kolobov. A., Fons P., Frenkel A., Ankudinov A., Tominaga J. and Uruga T.: Understanding the phase-change mechanism of rewritable optical media. Nature Materials 3, 703-708 (2004)

    Article  Google Scholar 

  19. Tominaga J., Fons P., Shima T., Kurihara K., Nakano T., Kolobov A. and Petit S.: Localized light focusing and super-resolution readout via chalcogenide thin film. Mater. Rec. Soc. Symp. Proc. 918, 41-51 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Tominaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tominaga, J. (2009). 4th Generation Optical Memories Based on Super-resolution Near-field structure (Super-RENS) and Near-field Optics. In: Raoux, S., Wuttig, M. (eds) Phase Change Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84874-7_13

Download citation

Publish with us

Policies and ethics