Optical Memory: From 1st to 3rd Generation and its Future


In this section the development of 1st, 2nd, and 3rd generation optical discs is introduced with focus on phase-change rewritable optical discs. The 4th generation and the possible development trends of future optical discs are also discussed.


Optical Disc Optical Storage Data Transfer Rate Bias Power Reflective Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [12.1]
    Blu-ray standardGoogle Scholar
  2. [12.2]
    CD standardGoogle Scholar
  3. [12.3]
    DVD standardGoogle Scholar
  4. [12.4]
    Wuttig, M. and Yamada, N., Phase-change materials for rewritable data storage. Nature Mater. 16, 824-832 (2007)CrossRefGoogle Scholar
  5. [12.5]
    Coombs, J. H., Jongenelis, A. P. J. M., Es-Spiekman, W.V. and Jacobs, B.A.J.: Laser-induced crystallization phenomena in GeTe-based alloys. J. Appl. Phys. 78, 4906-5917 (1995)CrossRefGoogle Scholar
  6. [12.6]
    Coombs, J. H., Jongenelis, A. P. J. M., Es-Spiekman, W.V. and Jacobs, B.A.J.: Composition dependence of nucleation and growth. J. Appl. Phys. 78, 4918- 4928 (1995)CrossRefGoogle Scholar
  7. [12.7]
    Zhou, G.F., Borg, H.J., Rijpers, J.C.N. and Lankhorst, M.: Crystallization behavior of phase change materials: comparison between nucleation- and growth-dominated crystallization, Tech. Digest of Optical Data Storage 2000, 74-76 (2000)CrossRefGoogle Scholar
  8. [12.8]
    Tauc, J.: Amorphous and Liquid Semiconductors. London, New York, Plenum (1974)Google Scholar
  9. [12.9]
    Ovshinsky, S. R., Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450-1453 (1968)CrossRefGoogle Scholar
  10. [12.10]
    Feinleib, J., Neufville, J.D., Moss and S.C., Ovshinsky, S.R.: Rapid reversible light-induced crystallization of amorphous semiconductors. Appl. Phys. Lett. 18, 254-257 (1971)CrossRefGoogle Scholar
  11. [12.11]
    Clemens,P. C.: Reversible optical storage on a low-doped Te-based chalcogenide film with a capping layer. Appl. Opt. 22, 3165- 3168 (1983)CrossRefGoogle Scholar
  12. [12.12]
    Takenaga, M., Yamada, N., Nishiuchi, K., Akahira, N., Ohta, T., Nakamura, S. and Yamashita, T.: TeOx thin films for an optical disc memory. J. Appl. Phys. 54, 5376-5380 (1983)CrossRefGoogle Scholar
  13. [12.13]
    Chen, M., Rubin, K.A., Marello, V., Gerber U.G. and Jipson, V.B.: Reversibility and stability of tellurium alloys for optical data storage applications. Appl. Phys. Lett. 46, 734-736 (1985)CrossRefGoogle Scholar
  14. [12.14]
    Chen, M., Rubin, K. and Barton, R.: Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502-504 (1986)CrossRefGoogle Scholar
  15. [12.15]
    Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. and Takao, M. : Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849-2856 (1991)CrossRefGoogle Scholar
  16. [12.16]
    Mao, Z. L., Chen H. and Jung A.L. : The structure and crystallization characteristics of phase change optical disk material Ge1Sb2Te4. J. Appl. Phys. 78, 2338-2342 (1995)CrossRefGoogle Scholar
  17. [12.17]
    Matsunaga, T. and Yamada, N.: Structural investigation of GeSb2Te4: A high-speed phase-change material. Phys. Rev. B, Vol. 69, 104111 1-8 (2004)Google Scholar
  18. [12.18]
    Naito, M., Ishimaru, M., Hirotsu, Y. and Takashima, M.: Local structure analysis of Ge-Sb-Te phase change materials using high-resolution electron microscopy and nanobeam diffraction. J. Appl. Phys. 95, 8130-8135 (2004)CrossRefGoogle Scholar
  19. [12.19]
    Iwasaki, H., Ide, Y., Harigaya, M., Kageyama and Y., Fujimura, I.: Completely erasable phase change optical disk. Jpn. J. Appl. Phys. 31, 461-465 (1992)CrossRefGoogle Scholar
  20. [12.20]
    Shinotsuka, M., Shibaguchi, T., Abe, M. and Ide, Y.: Potentiality of the Ag–In–Sb–Te phase change recording material for high density erasable optical discs. Jpn. J. Appl. Phys. 36, 536-538 (1993)CrossRefGoogle Scholar
  21. [12.21]
    Nishida, T., Terao, M., Miyauchi, Y., Horigome, S., Kaku, T. and Ohtaet, N.: Single-beam overwrite experiment using In-Se based phase-change optical media. Appl. Phys. Lett. 50, 667-669 (1987)CrossRefGoogle Scholar
  22. [12.22]
    Maeda, Y., Andoh, H., Ikuta, I. and Minemura, H.: Reversible phase-change optical data storage in InSbTe alloy films. J. Appl. Phys. 64, 1715-1719 (1988)CrossRefGoogle Scholar
  23. [12.23]
    Jong, C.A, Weileung, F., Lee, C.M. and Chin, T.S.: Mechanical properties of phase-change recording media: GeSbTe films. Jpn. J. Appl. Phys. 40, 3320-3325 (2001)CrossRefGoogle Scholar
  24. [12.24]
    Ohta,T., Inoue, K., Uchida, M., Yoshioka K., Akiyama, T., Furukawa, S., Nagata K. and Nakamura, S.: Phase change disk media having rapid cooling structure. Jpn. J. Appl. Phys. 28 Suppl. 28-3, 123-128 (1989)Google Scholar
  25. [12.25]
    Ohta, T., Uchida, M., Yoshioka, K., Inoue, K., Akiyama, T., Furukawa, S., Kotera, K. and Nakamura, S.: Million cycle overwritable phase change optical disk media. SPIE Proc. 1078, 27-29 (1989)Google Scholar
  26. [12.26]
    Ortiz, C. and Blatter. A.: Laser irradiation of amorphous thin films. Thin Solid Films 218, 209-218 (1992)CrossRefGoogle Scholar
  27. [12.27]
    Solis, J., Rubin, K.A. and Ortiz C.: Structural and optical transformations by laser irradiation of InSb-based thin films , J. Mater. Res. 5, 190-201 (1990)CrossRefGoogle Scholar
  28. [12.28]
    Peng, C., Cheng, L. and Mansuripur, M.: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media. J. Appl. Phys. 82, 4183-4191 (1997)CrossRefGoogle Scholar
  29. [12.29]
    Shi, L.P, Chong, T.C., Hu, X. and Yao, H.B.: Study of the dynamic crystallization behavior of GeSbTe phase change optical disk. Jpn. J. Appl. Phys. 42, 841-847 (2003)CrossRefGoogle Scholar
  30. [12.30]
    Shi, L.P., Chong, T.C., Hu, X., Miao, X.S, and Li, J.M.:, : Investigation on dynamic erasing mechanism on phase change optical disk. Digest of Optical Data Storage 2004, 284 (2004).Google Scholar
  31. [12.31]
    Ohta,T., Nishiuchi, K., Narumi, K., Kitaoka, Y., Ishibashi, H., Yamada, N. and Kozaki, T. : Overview and the future of phase-change optical disk technology. Jpn. J. Appl. Phys. 39, 770-774 (2000)CrossRefGoogle Scholar
  32. [12.32]
    Adachi, Y., Etoh, A., Ishii, M., Maeda, S. and Kojima, K.: New method for adjusting write strategy using sequenced amplitude margin. Jpn. J.Appl. Phys. 45, 1061-1065 (2006)CrossRefGoogle Scholar
  33. [12.33]
    Milster, T.D. and Upton, R. S.: Fundamental principles of crosstalk in optical data storage. Jpn, J. Appl. Phys. 38, 1608-1613 (1999)CrossRefGoogle Scholar
  34. [12.34]
    Morita, S., Nishiyama, M. and Ueda, T. : Super-high-density optical disk using deep groove method. Jpn, J. Appl. Phys. 36, 444-449 (1997)CrossRefGoogle Scholar
  35. [12.35]
    Kudo, H., Minemura, H., Miyamoto, H., Tamura, R. and Adachi, K. : Crosstalk cancellation for 50-GB/Layer optical recording. Jpn.J. Appl. Phys. 44, 3445-3448 (2005)CrossRefGoogle Scholar
  36. [12.36]
    Francia, G. T. D. and Ronchi, A. F. G.: Super-gain antennas and optical resolving power, Nuovo Cimento Suppl. 9, 426-428 (1952)CrossRefGoogle Scholar
  37. [12.37]
    Yamanaka, Y., Hirose, Y. and Fuji, H. : High density optical recording by super-resolution. Jpn, J. Appl. Phys, 28 Supplement 28-3, 197-200 (1989)Google Scholar
  38. [12.38]
    Wang, H.F., Shi, L.P., Yuan, G., Tan, W. and Chong, T.C. : Subwavelength and super-resolution nondiffraction beam. Appl. Phys. Lett. 89, 171102 (2006)CrossRefGoogle Scholar
  39. [12.39]
    Hieslmair, H., Stinebaugh, J., Wong, T., Neill, M., Kuijper, M. and Langereis, G.: 34 GB multilevel-enabled rewritable system using blue laser and high-numeric aperture optics. Jpn. J. Appl. Phys. 42, 1074-1075 (2003)CrossRefGoogle Scholar
  40. [12.40]
    McLaughlin, S., Lo, Y. and Pepin, C., WarlanTech, D.: MultiLevel DVD: coding beyond 3 bits/data-cell. Dig. Int. Symp. Optical Memeory/Optical Data Storage 2002, 380-382 (2002)Google Scholar
  41. [12.41]
    Shi, L.P., Chong, T.C., Tan, P.K., Miao, X.S., Ho, J.J. and Wu, Y.J.: Study of the multi-level reflection modulation recording for phase change optical disks. Jpn. J. Appl. Phys. 39, 733-736 (2000)CrossRefGoogle Scholar
  42. [12.42]
    Bruneau, J.M, Bachevet, B. and Germain, C.: Optical design for a double level rewritable phase change disc. Jpn.J.Appl. Phys. 37, 2168-2175 (1998)CrossRefGoogle Scholar
  43. [12.43]
    Nagata, K., Yamada, N. and Nishiuchi, K.: Rewritable dual-layer phase change optical disk. Jpn. J. Appl. Phys. 38, 1679-1686 (1999)CrossRefGoogle Scholar
  44. [12.44]
    Mijiritskii, A., Hellmig, J. and Borg, H.: Development of recording stacks for a rewritable dual-layer optical disc. Jpn. J. Appl. Phys. 41, 1668-1673 (2002)CrossRefGoogle Scholar
  45. [12.45]
    Hellmig, J., Mijiritskii, A.V., Herman J.B., Musialková, K. and Vromans P.: Dual-Layer Blu-ray disc based on fast-growth phase-change materials. Jpn.J.Appl.Phys. 42, 848-851 (2003)CrossRefGoogle Scholar
  46. [12.46]
    Chong,T.C., Shi, L.P., Qiang, W., Tan, P.K., Miao X.S. and Xu, H.: Superlattice-like structure for phase-change optical recording. J. Appl. Phys, 91, 3981-3987 (2002).CrossRefGoogle Scholar
  47. [12.47]
    Ren, S.Y. and Dow, J.D.: Thermal conductivity of superlattices. Phys. Rev. B 25, 3750- 3755 (1982)CrossRefGoogle Scholar
  48. [12.48]
    Chen, G. and Neagu, M.: Conductivity and heat conduction in supperlattices. Appl. Phys. Lett. 71, 2761-2764 (1997)CrossRefGoogle Scholar
  49. [12.49]
    Fagas,G., Kozorezov, A.G., Lambert, C.J., Wigmore, J.K., Peacock, A., Poelaert, A. and Hartog, R. D.: Lattice dynamics of a disordered solid-solid interface. Phys. Rev B. 60, 6459 -6464 (1999)CrossRefGoogle Scholar
  50. [12.50]
    Ogawa, S., Takeguchi, K. and Morimoto, I. : New layer structure of phase-change optical disk free from the initialization process. Proc. SPIE 3401, 244-251 (1998)CrossRefGoogle Scholar
  51. [12.51]
    Miao, X.S., Chong, T.C., Shi, L.P., Tan, P.K. and Li, F.: New additional layer to realize initialization-free function for digital versatile disk-random access memory disk. Jpn. J. Appl. Phys. 39, 729-732 (2000)CrossRefGoogle Scholar
  52. [12.52]
    Miao, X.S., Shi, L.P., Tan, P.K., Xu, W., Li, J.M., Lim, K.G. and Chong, T.C.: Initialization-free blue-laser optical disc. Jpn. J. Appl. Phys. 44, 3612-3614 (2005)CrossRefGoogle Scholar
  53. [12.53]
    Shi, L.P. and Chong, T.C.: Nanophase change for data storage applications. J. Nanoscience & Nanotechnology, 7, 65-93 (2007)Google Scholar
  54. [12.54]
    INSIC optical storage roadmap 2006Google Scholar
  55. [12.55]
    ISOM optical storage roadmap 2006Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Data Storage InstituteSingapore

Personalised recommendations