Skip to main content

Optical Memory: From 1st to 3rd Generation and its Future

  • Chapter
Phase Change Materials

Abstract

In this section the development of 1st, 2nd, and 3rd generation optical discs is introduced with focus on phase-change rewritable optical discs. The 4th generation and the possible development trends of future optical discs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blu-ray standard

    Google Scholar 

  2. CD standard

    Google Scholar 

  3. DVD standard

    Google Scholar 

  4. Wuttig, M. and Yamada, N., Phase-change materials for rewritable data storage. Nature Mater. 16, 824-832 (2007)

    Article  Google Scholar 

  5. Coombs, J. H., Jongenelis, A. P. J. M., Es-Spiekman, W.V. and Jacobs, B.A.J.: Laser-induced crystallization phenomena in GeTe-based alloys. J. Appl. Phys. 78, 4906-5917 (1995)

    Article  Google Scholar 

  6. Coombs, J. H., Jongenelis, A. P. J. M., Es-Spiekman, W.V. and Jacobs, B.A.J.: Composition dependence of nucleation and growth. J. Appl. Phys. 78, 4918- 4928 (1995)

    Article  Google Scholar 

  7. Zhou, G.F., Borg, H.J., Rijpers, J.C.N. and Lankhorst, M.: Crystallization behavior of phase change materials: comparison between nucleation- and growth-dominated crystallization, Tech. Digest of Optical Data Storage 2000, 74-76 (2000)

    Article  Google Scholar 

  8. Tauc, J.: Amorphous and Liquid Semiconductors. London, New York, Plenum (1974)

    Google Scholar 

  9. Ovshinsky, S. R., Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450-1453 (1968)

    Article  Google Scholar 

  10. Feinleib, J., Neufville, J.D., Moss and S.C., Ovshinsky, S.R.: Rapid reversible light-induced crystallization of amorphous semiconductors. Appl. Phys. Lett. 18, 254-257 (1971)

    Article  Google Scholar 

  11. Clemens,P. C.: Reversible optical storage on a low-doped Te-based chalcogenide film with a capping layer. Appl. Opt. 22, 3165- 3168 (1983)

    Article  Google Scholar 

  12. Takenaga, M., Yamada, N., Nishiuchi, K., Akahira, N., Ohta, T., Nakamura, S. and Yamashita, T.: TeOx thin films for an optical disc memory. J. Appl. Phys. 54, 5376-5380 (1983)

    Article  Google Scholar 

  13. Chen, M., Rubin, K.A., Marello, V., Gerber U.G. and Jipson, V.B.: Reversibility and stability of tellurium alloys for optical data storage applications. Appl. Phys. Lett. 46, 734-736 (1985)

    Article  Google Scholar 

  14. Chen, M., Rubin, K. and Barton, R.: Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502-504 (1986)

    Article  Google Scholar 

  15. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. and Takao, M. : Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849-2856 (1991)

    Article  Google Scholar 

  16. Mao, Z. L., Chen H. and Jung A.L. : The structure and crystallization characteristics of phase change optical disk material Ge1Sb2Te4. J. Appl. Phys. 78, 2338-2342 (1995)

    Article  Google Scholar 

  17. Matsunaga, T. and Yamada, N.: Structural investigation of GeSb2Te4: A high-speed phase-change material. Phys. Rev. B, Vol. 69, 104111 1-8 (2004)

    Google Scholar 

  18. Naito, M., Ishimaru, M., Hirotsu, Y. and Takashima, M.: Local structure analysis of Ge-Sb-Te phase change materials using high-resolution electron microscopy and nanobeam diffraction. J. Appl. Phys. 95, 8130-8135 (2004)

    Article  Google Scholar 

  19. Iwasaki, H., Ide, Y., Harigaya, M., Kageyama and Y., Fujimura, I.: Completely erasable phase change optical disk. Jpn. J. Appl. Phys. 31, 461-465 (1992)

    Article  Google Scholar 

  20. Shinotsuka, M., Shibaguchi, T., Abe, M. and Ide, Y.: Potentiality of the Ag–In–Sb–Te phase change recording material for high density erasable optical discs. Jpn. J. Appl. Phys. 36, 536-538 (1993)

    Article  Google Scholar 

  21. Nishida, T., Terao, M., Miyauchi, Y., Horigome, S., Kaku, T. and Ohtaet, N.: Single-beam overwrite experiment using In-Se based phase-change optical media. Appl. Phys. Lett. 50, 667-669 (1987)

    Article  Google Scholar 

  22. Maeda, Y., Andoh, H., Ikuta, I. and Minemura, H.: Reversible phase-change optical data storage in InSbTe alloy films. J. Appl. Phys. 64, 1715-1719 (1988)

    Article  Google Scholar 

  23. Jong, C.A, Weileung, F., Lee, C.M. and Chin, T.S.: Mechanical properties of phase-change recording media: GeSbTe films. Jpn. J. Appl. Phys. 40, 3320-3325 (2001)

    Article  Google Scholar 

  24. Ohta,T., Inoue, K., Uchida, M., Yoshioka K., Akiyama, T., Furukawa, S., Nagata K. and Nakamura, S.: Phase change disk media having rapid cooling structure. Jpn. J. Appl. Phys. 28 Suppl. 28-3, 123-128 (1989)

    Google Scholar 

  25. Ohta, T., Uchida, M., Yoshioka, K., Inoue, K., Akiyama, T., Furukawa, S., Kotera, K. and Nakamura, S.: Million cycle overwritable phase change optical disk media. SPIE Proc. 1078, 27-29 (1989)

    Google Scholar 

  26. Ortiz, C. and Blatter. A.: Laser irradiation of amorphous thin films. Thin Solid Films 218, 209-218 (1992)

    Article  Google Scholar 

  27. Solis, J., Rubin, K.A. and Ortiz C.: Structural and optical transformations by laser irradiation of InSb-based thin films , J. Mater. Res. 5, 190-201 (1990)

    Article  Google Scholar 

  28. Peng, C., Cheng, L. and Mansuripur, M.: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media. J. Appl. Phys. 82, 4183-4191 (1997)

    Article  Google Scholar 

  29. Shi, L.P, Chong, T.C., Hu, X. and Yao, H.B.: Study of the dynamic crystallization behavior of GeSbTe phase change optical disk. Jpn. J. Appl. Phys. 42, 841-847 (2003)

    Article  Google Scholar 

  30. Shi, L.P., Chong, T.C., Hu, X., Miao, X.S, and Li, J.M.:, : Investigation on dynamic erasing mechanism on phase change optical disk. Digest of Optical Data Storage 2004, 284 (2004).

    Google Scholar 

  31. Ohta,T., Nishiuchi, K., Narumi, K., Kitaoka, Y., Ishibashi, H., Yamada, N. and Kozaki, T. : Overview and the future of phase-change optical disk technology. Jpn. J. Appl. Phys. 39, 770-774 (2000)

    Article  Google Scholar 

  32. Adachi, Y., Etoh, A., Ishii, M., Maeda, S. and Kojima, K.: New method for adjusting write strategy using sequenced amplitude margin. Jpn. J.Appl. Phys. 45, 1061-1065 (2006)

    Article  Google Scholar 

  33. Milster, T.D. and Upton, R. S.: Fundamental principles of crosstalk in optical data storage. Jpn, J. Appl. Phys. 38, 1608-1613 (1999)

    Article  Google Scholar 

  34. Morita, S., Nishiyama, M. and Ueda, T. : Super-high-density optical disk using deep groove method. Jpn, J. Appl. Phys. 36, 444-449 (1997)

    Article  Google Scholar 

  35. Kudo, H., Minemura, H., Miyamoto, H., Tamura, R. and Adachi, K. : Crosstalk cancellation for 50-GB/Layer optical recording. Jpn.J. Appl. Phys. 44, 3445-3448 (2005)

    Article  Google Scholar 

  36. Francia, G. T. D. and Ronchi, A. F. G.: Super-gain antennas and optical resolving power, Nuovo Cimento Suppl. 9, 426-428 (1952)

    Article  Google Scholar 

  37. Yamanaka, Y., Hirose, Y. and Fuji, H. : High density optical recording by super-resolution. Jpn, J. Appl. Phys, 28 Supplement 28-3, 197-200 (1989)

    Google Scholar 

  38. Wang, H.F., Shi, L.P., Yuan, G., Tan, W. and Chong, T.C. : Subwavelength and super-resolution nondiffraction beam. Appl. Phys. Lett. 89, 171102 (2006)

    Article  Google Scholar 

  39. Hieslmair, H., Stinebaugh, J., Wong, T., Neill, M., Kuijper, M. and Langereis, G.: 34 GB multilevel-enabled rewritable system using blue laser and high-numeric aperture optics. Jpn. J. Appl. Phys. 42, 1074-1075 (2003)

    Article  Google Scholar 

  40. McLaughlin, S., Lo, Y. and Pepin, C., WarlanTech, D.: MultiLevel DVD: coding beyond 3 bits/data-cell. Dig. Int. Symp. Optical Memeory/Optical Data Storage 2002, 380-382 (2002)

    Google Scholar 

  41. Shi, L.P., Chong, T.C., Tan, P.K., Miao, X.S., Ho, J.J. and Wu, Y.J.: Study of the multi-level reflection modulation recording for phase change optical disks. Jpn. J. Appl. Phys. 39, 733-736 (2000)

    Article  Google Scholar 

  42. Bruneau, J.M, Bachevet, B. and Germain, C.: Optical design for a double level rewritable phase change disc. Jpn.J.Appl. Phys. 37, 2168-2175 (1998)

    Article  Google Scholar 

  43. Nagata, K., Yamada, N. and Nishiuchi, K.: Rewritable dual-layer phase change optical disk. Jpn. J. Appl. Phys. 38, 1679-1686 (1999)

    Article  Google Scholar 

  44. Mijiritskii, A., Hellmig, J. and Borg, H.: Development of recording stacks for a rewritable dual-layer optical disc. Jpn. J. Appl. Phys. 41, 1668-1673 (2002)

    Article  Google Scholar 

  45. Hellmig, J., Mijiritskii, A.V., Herman J.B., Musialková, K. and Vromans P.: Dual-Layer Blu-ray disc based on fast-growth phase-change materials. Jpn.J.Appl.Phys. 42, 848-851 (2003)

    Article  Google Scholar 

  46. Chong,T.C., Shi, L.P., Qiang, W., Tan, P.K., Miao X.S. and Xu, H.: Superlattice-like structure for phase-change optical recording. J. Appl. Phys, 91, 3981-3987 (2002).

    Article  Google Scholar 

  47. Ren, S.Y. and Dow, J.D.: Thermal conductivity of superlattices. Phys. Rev. B 25, 3750- 3755 (1982)

    Article  Google Scholar 

  48. Chen, G. and Neagu, M.: Conductivity and heat conduction in supperlattices. Appl. Phys. Lett. 71, 2761-2764 (1997)

    Article  Google Scholar 

  49. Fagas,G., Kozorezov, A.G., Lambert, C.J., Wigmore, J.K., Peacock, A., Poelaert, A. and Hartog, R. D.: Lattice dynamics of a disordered solid-solid interface. Phys. Rev B. 60, 6459 -6464 (1999)

    Article  Google Scholar 

  50. Ogawa, S., Takeguchi, K. and Morimoto, I. : New layer structure of phase-change optical disk free from the initialization process. Proc. SPIE 3401, 244-251 (1998)

    Article  Google Scholar 

  51. Miao, X.S., Chong, T.C., Shi, L.P., Tan, P.K. and Li, F.: New additional layer to realize initialization-free function for digital versatile disk-random access memory disk. Jpn. J. Appl. Phys. 39, 729-732 (2000)

    Article  Google Scholar 

  52. Miao, X.S., Shi, L.P., Tan, P.K., Xu, W., Li, J.M., Lim, K.G. and Chong, T.C.: Initialization-free blue-laser optical disc. Jpn. J. Appl. Phys. 44, 3612-3614 (2005)

    Article  Google Scholar 

  53. Shi, L.P. and Chong, T.C.: Nanophase change for data storage applications. J. Nanoscience & Nanotechnology, 7, 65-93 (2007)

    Google Scholar 

  54. INSIC optical storage roadmap 2006

    Google Scholar 

  55. ISOM optical storage roadmap 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luping Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shi, L. (2009). Optical Memory: From 1st to 3rd Generation and its Future. In: Raoux, S., Wuttig, M. (eds) Phase Change Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84874-7_12

Download citation

Publish with us

Policies and ethics