Novel Deposition Methods

  • Delia J. Milliron
  • Qiang Huang
  • Yu Zhu


Recently, alternatives to conventional sputter deposition have emerged as novel routes to phase change materials. Applying chemical vapor deposition (CVD), electrodeposition, or solution-phase deposition to these materials offers potential advantages in fabrication of phase change memory cells or optical discs, yet each method brings its own challenges. In this chapter, we review the basics of each strategy, emphasizing the advantages and the difficulties of applying them to phase change materials. In addition, we discuss the recent reports of chemically synthesized phase change nanowires and nanoparticles and more broadly explore the potential for nanomaterials to contribute to the development and understanding of phase change memory.


Chemical Vapor Deposition Phase Change Material Physical Vapor Deposition Phase Change Memory Phase Change Mate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [11.1]
    Dobkin, D.M., Zuraw, M.K.: Principles of chemical vapor deposition. Kluwer, Dordrecht (2003)Google Scholar
  2. [11.2]
    Pierson, H.O.: Handbook of chemical vapor phase deposition (CVD). Noyes, Park Ridge (1992)Google Scholar
  3. [11.3]
    Cho, S.L., Yi, J.H., Ha, Y.H., Kuh, B.J., Lee, C.M., Park, J.H., Nam, S.D., Horii, H., Cho, B.K., Ryoo, K.C., Park, S.O., Kim, H.S., U-In Chung Moon, J.T., Ryu, B.I.: Highly scalable on-axis confined cell structure for high density PRAM beyond 256mb. Symp. VLSI Tech Dig. 2005, 96-97 (2005)CrossRefGoogle Scholar
  4. [11.4]
    Joseph, E.A., Happ, T. D., Chen, S.-H., Raoux, S., Chen, C.-F., Breitwisch, M., Schrott, A. G., Zaidi, S., Dasaka, R., Yee, B., Zhu, Y., Bergmann, R., Lung, H.-L., Lam, C.: Patterning of N:Ge2Sb2Te5 films and the characterization of etch induced modification for non-volatile phase change memory applications, in VLSI TSA. 2008.Google Scholar
  5. [11.5]
    Kim, R.-Y., Kim, H.-G., Yoon, S.-G.: Structural properties of Ge2Sb2Te5 thin film by metal organic chemical vapor deposition for phase change memory applications. Appl. Phys. Lett. 89, 102107 (2006)CrossRefGoogle Scholar
  6. [11.6]
    Choi, B.J., Choi, S., Shin, Y.C., Hwang, C.S., Lee, J.W., Jeong, J., Kim, Y.J., Hwang, S.-Y., Hong, S.Y.: Cyclic PECVD of Ge2Sb2Te5 films using metallorganic sources. J. Electrochem. Soc. 154, H318-H324 (2007)CrossRefGoogle Scholar
  7. [11.7]
    Kim, R.-Y., Kim, H.-G., Yoon, S.-G.: Growth of Ge-doped Sb2Te3 thin films by metal-organic chemical vapor deposition. Integr. Ferroelectr. 90, 80-87 (2007)CrossRefGoogle Scholar
  8. [11.8]
    Ovshinsky, S.R, and Kamepalli, S., US Patent No. 2006/0172067 A1Google Scholar
  9. [11.9]
    Lee, J., Choi, S., Lee, C., Kang, C., Kim, D.: GeSbTe deposition for the PRAM application. Appl. Surf. Sci. 253, 3969-3967 (2007)CrossRefGoogle Scholar
  10. [11.10]
    Ritala, M., Leskela, M.: Atomic layer deposition. In Nalwa, H.S. (ed.) Handbook of thin film materials, pp. (2002)Google Scholar
  11. [11.11]
    Do, K., Sohn, H., Ko, D.-H.: Phase transformation behavior of N-doped Ge2Sb2+xTe5 thin films (x = 0, 0.2) for phase change memory. J. Electrochem. Soc. 154, H867-H870 (2007)CrossRefGoogle Scholar
  12. [11.12]
    Ebina, A., Hirasaka, M., Nakatani, K.: Oxygen doping effect on Ge–Sb–Te phase change optical disks. J. Vac. Sci. Technol. A. 17, 3463-3466 (1999)CrossRefGoogle Scholar
  13. [11.13]
    Chen, Y.C., Rettner, C.T., Raoux, S., Burr, G.W., Chen, S.H., Shelby, R.M., Salinga, M., Risk, W.P., Happ, T.D., McClelland, G.M., Breitwisch, M., Schrott, A., Philipp, J.B., Lee, M.H., Cheek, R., Nirschl, T., Lamorey, M., Chen, C.F., Joseph, E., Zaidi, S., Yee, B., Lung, H.L., Bergmann, R., Lam, C.: Ultra-thin phase-change bridge memory device using GeSb. Tech. Dig. - Int. Electron Devices Meet. 30, 1-4 (2006)Google Scholar
  14. [11.14]
    Satoh, H., Sugawara, K., Tanaka, K.: Nanoscale phase change in crystalline Ge2Sb2Te5 films using scanning probe microscopes. J. Appl. Phys. 99, 024306 (2006)CrossRefGoogle Scholar
  15. [11.15]
    Lee, J.I., Park, H., Cho, S.L., Park, Y.L., Bae, B.J., Park, J.H., Park, J.S., An, H.G., Bae, J.S., Ahn, D.H., Kim, Y.T., Horii, H., Song, S.A., Shin, J.C., Park, S.O., Kim, H.S., Chung, U.-I., Moon, J.T., Ryu, B.I.: Highly scalable phase change memory with CVD GeSbTe for sub 50 nm generation. Sym. VLSI Tech. Digest 102, 102-103 (2007)Google Scholar
  16. [11.16]
    Romankiw, L.T.: A path: From electroplating through lithographic masks in electronics to liga in mems. Electrochim. Acta. 42, 2985-3005 (1998)CrossRefGoogle Scholar
  17. [11.17]
    Andricacos, P.C., Uzoh, C., Dukovic, J.O., Horkans, J., Deligianni, H.: Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42, 567-574 (1998)CrossRefGoogle Scholar
  18. [11.18]
    Bard, A.J., Faulkner, L.R.: Elecrochemical methods: Fundamentals and applications. John Wiley and Sons Inc, New York (2002)Google Scholar
  19. [11.19]
    Newman, J.S., Thomas-Alyea, K.E.: Electrochemical systems. John Wiley and Sons Inc, New York (2004)Google Scholar
  20. [11.20]
    Schlesinger, M., Paunovic, M.: Fundamentals of electrochemical deposition. John Wiley and Sons Inc, New York (2006)Google Scholar
  21. [11.21]
    Panicker, M.P.R., Knaster, M., Kroger, F.A.: Cathodic deposition of CdTe from aqueous electrolytes. J. Electrochem. Soc. 125, 566-572 (1978)CrossRefGoogle Scholar
  22. [11.22]
    Stickney, J.L.: Electrochemical atomic layer epitaxy (EC-ALE): Nanoscale control in the electrodeposition of compound semiconductors. In Alkire, R.C., Kolb, D.M. (eds.) Advances in electrochemical science and engineering, pp. Wiley-VCH, Verlag GmbH (2001)Google Scholar
  23. [11.23]
    Bonilla, S., Dalchiele, E.A.: Electrochemical deposition and characterization of cdte polycrystalline thin films. Thin Solid Films. 204, 397-403 (1991)CrossRefGoogle Scholar
  24. [11.24]
    Saraby-Reintjes, A., Peter, L.M., Özsan, M.E., Dennison, S., Webster, S.: On the mechanism of the cathodic electrodeposition of cadmium telluride. J. Electrochem. Soc. 140, 2880-2888 (1993)CrossRefGoogle Scholar
  25. [11.25]
    Das, S.K., Morris, G.C.: Preparation and properties of CdS/CdTe thin film solar cell produced by periodic pulse electrodeposition technique. Sol. Ener. Mater. Sol. Cell. 30, 107-118 (1993)CrossRefGoogle Scholar
  26. [11.26]
    Hayden, B.E., Nandhakumar, I.S.: In situ STM study of CdTe ECALE bilayers on gold. J. Phys. Chem. B. 102, 4897-4905 (1998)CrossRefGoogle Scholar
  27. [11.27]
    Varazo, K., Lay, M.D., Sorenson, T.A., Stickney, J.L.: Formation of the first monolayers of CdTe on Au (111) by electrochemical atomic layer epitaxy (EC-ALE): Studied by LEED, Auger, XPS, and in-situ STM. J. Electroanal. Chem. 522, 104-114 (2002)Google Scholar
  28. [11.28]
    Venkatasamy, V., Jayaraju, N., Cox, S.M., Thambidurai, C., Happek, U., Stickney, J.L.: Optimization of CdTe nanofilm formation by electrochemical atomic layer epitaxy (EC-ALE). J. Appl. Electrochem. 36, 1223-1229 (2006)CrossRefGoogle Scholar
  29. [11.29]
    Colyer, C.L., Cocivera, M.: Thin-film cadmium mercury telluride prepared by nonaqueous electrodeposition. J. Electrochem. Soc. 139, 406-409 (1992)CrossRefGoogle Scholar
  30. [11.30]
    Rajeshwar, K.: Electrosynthesized thin films of group II-VI compound semiconductors, alloys and superstructures. Adv. Mater. 4, 23-29 (1992)CrossRefGoogle Scholar
  31. [11.31]
    Kumaresan, R., Gopalakrishnan, R., Moorthy Babu, S., Ramasamy, P., Kruger, D., Zaumseil, P.: X-ray photoelectron spectroscopic studies of electrodeposited mercury cadmium telluride semiconductor thin films. J. Phys. Chem. Solid. 61, 765-771 (2000)CrossRefGoogle Scholar
  32. [11.32]
    Lincot, D.: Electrodeposition of semiconductors. Thin Solid Films. 487, 40-48 (2005)CrossRefGoogle Scholar
  33. [11.33]
    Vaidyanathan, R., Stickney, J.L., Happek, U.: Quantum confinement in PbSe thin films electrodeposited by electrochemical atomic layer epitaxy (EC-ALE). Electrochim. Acta. 49, 1321-1326 (2004)CrossRefGoogle Scholar
  34. [11.34]
    Venkatasamy, V., Jayaraju, N., Cox, S.M., Thambidurai, C., Mathe, M., Stickney, J.L.: Deposition of HgTe by electrochemical atomic layer epitaxy (EC-ALE). J. Electroanal. Chem. 589, 195-202 (2006)CrossRefGoogle Scholar
  35. [11.35]
    Venkatasamy, V., Jayaraju, N., Cox, S.M., Thambidurai, C., Stickney, J.L.: Studies of HgCdTe formation by electrochemical atomic layer deposition and investigations into bandgap engineering. J. Electrochem. Soc. 154, H720-H725 (2007)CrossRefGoogle Scholar
  36. [11.36]
    Mahalingam, T., Kathalingam, A., Velumani, S., Lee, S., Moon, H., Kim, Y.D.: Electrosynthesis and studies on Zn1-xHgxTe thin films. J. New Mater. Electrochem. Sys. 10, 21 - 25 (2007)Google Scholar
  37. [11.37]
    Orts, J.L., Diaz, R., Herrasti, P., Rueda, F., Fatas, E.: CuInTe2 and In-rich telluride chalcopyrites thin films obtained by electrodeposition techniques. Sol. Ener. Mater. Sol. Cell. 91, 621 - 628 (2007)CrossRefGoogle Scholar
  38. [11.38]
    Taunier, S., Guimard, D., Lincot, D., Guillemoles, J.-F., Grand, P.-P., Method of producing thin films of compound i-iii-vi, promoting the incorporation of iii elements in the film. 2007: US2006015133A1.Google Scholar
  39. [11.39]
    Magri, P., Boulanger, C., Lecuire, J.M.: Synthesis, properties and performances of electrodeposited bismuth telluride films. J. Mater. Chem. 6, 773-779 (1996)CrossRefGoogle Scholar
  40. [11.40]
    Miyazaki, Y., Kajitani, T.: Preparation of Bi2Te3 films by electrodeposition. J. Crystal Growth. 229, 542-546 (2001)CrossRefGoogle Scholar
  41. [11.41]
    Tittes, K., Bund, A., Plieth, W., Bentien, A., Paschen, S., Plötner, M., Gräfe, H., Fischer, W.J.: Electrochemical deposition of Bi2Te3 for thermoelectric microdevices. J. Solid State Electrochem. 7, 714-723 (2003)CrossRefGoogle Scholar
  42. [11.42]
    Wang, W., Huang, Q.H., Jia, F.L., Zhang, Z.R.: Structure and property characterization of Bi2-xSbxTe3 thermoelectric films prepared by electrodeposition. Wuji Cailiao Xuebao(Journal of Inorganic Materials). 20, 1234-1238 (2005)Google Scholar
  43. [11.43]
    Del Frari, D., Diliberto, S., Stein, N., Boulanger, C., Lecuire, J.M.: Comparative study of the electrochemical preparation of Bi2Te3, Sb2Te3, and (BixSb1- x)2Te3 films. Thin Solid Films. 483, 44-49 (2005)CrossRefGoogle Scholar
  44. [11.44]
    Huang, Q., Kellock, A.J., Raoux, S.: Electrodeposition of SbTe phase-change alloys. J. Electrochem. Soc. 155, D104-D109 (2008)CrossRefGoogle Scholar
  45. [11.45]
    Leimkühler, G., Kerkamm, I., Reineke-Koch, R.: Electrodeposition of antimony telluride. J. Electrochem. Soc. 149, C474-C478 (2002)CrossRefGoogle Scholar
  46. [11.46]
    van Pieterson, L., Lankhorst, M.H.R., van Schijndel, M., Kuiper, A.E.T., Roosen, J.H.J.: Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview. J. Appl. Phys. 97, 083520 (2005)CrossRefGoogle Scholar
  47. [11.47]
    Privitera, S., Bongiorno, C., Rimini, E., Zonca, R.: Crystal nucleation and growth processes in Ge2Sb2Te5. Appl. Phys. Lett. 84, 4448-4450 (2004)CrossRefGoogle Scholar
  48. [11.48]
    Huang, Q., Bedell, S.W., Saenger, K.L., Copel, M., Deligianni, H., Romankiw, L.T.: Single-crystalline germanium thin films by electrodeposition and solid-phase epitaxy. Electrochem. and Solid-State Lett. 10, D124-D126 (2007)CrossRefGoogle Scholar
  49. [11.49]
    Fink, C.G., Dokras, V.M.: Electrodeposition and electrowinning of germanium. J. Electrochem. Soc. 95, 80-97 (1949)CrossRefGoogle Scholar
  50. [11.50]
    Huang, Q., Kellock, A.J., Shao, X., Venkatasamy, V., A method of electrodepositing germanium compound materials on a substrate. 2007, International Business Machine: US patent application.Google Scholar
  51. [11.51]
    Sapp, S.A., Lakshmi, B.B., Martin, C.R.: Template synthesis of bismuth telluride nanowires. Adv. Mater. 11, 402-404 (1999)CrossRefGoogle Scholar
  52. [11.52]
    Chen, R., Xu, D., Gui, L.: Silver telluride nanowires prepared by dc electrodeposition in porous anodic alumina templates. J. Mater. Chem. 12, 2435-2438 (2002)CrossRefGoogle Scholar
  53. [11.53]
    Sander, M.S., Prieto, A.L., Gronsky, R., Sands, T., Stacy, A.M.: Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates. Adv. Mater. 14, 665-667 (2002)CrossRefGoogle Scholar
  54. [11.54]
    Chen, R., Xu, D., Guo, G., Tang, Y.: Electrodeposition of thin films and single-crystalline nanowires of Ag7Te4. Chem. Phys. Lett. 377, 205-209 (2003)CrossRefGoogle Scholar
  55. [11.55]
    Gandhi, T., Raja, K.S., Misra, M.: Templated growth of cadmium zinc telluride (czt) nanowires using pulsed-potentials in hot non-aqueous solution. Electrochim. Acta. 51, 5932-5942 (2006)CrossRefGoogle Scholar
  56. [11.56]
    Li, L., Yang, Y., Huang, X., Li, G., Zhang, L.: Pulsed electrodeposition of single-crystalline Bi2Te3 nanowire arrays. Nanotechnology. 17, 1706-1712 (2006)CrossRefGoogle Scholar
  57. [11.57]
    Jin, C., Zhang, G., Qian, T., Li, X., Yao, Z.: Large-area Sb2Te3 nanowire arrays. J. Phys. Chem. B. 109, 1430-1432 (2005)CrossRefGoogle Scholar
  58. [11.58]
    Yang, J., Zhu, W., Gao, X., Bao, S., Fan, X., Duan, X., Hou, J.: Formation and characterization of Sb2Te3 nanofilms on Pt by electrochemical atomic layer epitaxy. J. Phys. Chem. B. 110, 4599-4604 (2006)CrossRefGoogle Scholar
  59. [11.59]
    Huang, Q., Shao, X., Stickney, J.L., Venkatasamy, V., Method of making phase change materials by electrochemical atomic layer deposition. 2007, International Business Machine: US patent application.Google Scholar
  60. [11.60]
    Chern, G.C., Lauks, I.: Spin-coated amorphous-chalcogenide films. J. Appl. Phys. 53, 6979-6982 (1982)CrossRefGoogle Scholar
  61. [11.61]
    Gutwirth, J., Wagner, T., Kohoutek, T., Vlcek, M., Schroeter, S., Kovanda, V., Vlcek, M., Frumar, M.: Physical properties and structure of amorphous Agx(Sb0.33S0.67)(100-x) prepared by optically-induced diffusion and dissolution of silver into spin-coated amorphous Sb33S67 films and their application for optical recording. J. Optoelectron. Adv. Mater. 5, 1139-1146 (2003)Google Scholar
  62. [11.62]
    Hajto, E., Ewen, P.J.S., Belford, R., Hajto, J., Owen, A.E.: Optical-properties of spin-coated amorphous-chalcogenide thin-films. J. Non-Crystall. Solids. 97-8, 1191-1194 (1987)CrossRefGoogle Scholar
  63. [11.63]
    Kohoutek, T., Wagner, T., Frumar, M., Vlcek, M.: Spin coated chalcogenide films of Ge-Se-Te: Physio-chemical properties. Phys. Chem. Glass.-Europ. J. Glass Sci. Tech. Part B. 47, 250-253 (2006)Google Scholar
  64. [11.64]
    Kohoutek, T., Wagner, T., Orava, J., Krbal, M., Fejfar, A., Mates, T., Kasap, S.O., Frumar, M.: Surface morphology of spin-coated As-S-Se chalcogenide films. J. Non-Crystall. Solids. 353, 1437-1440 (2007)CrossRefGoogle Scholar
  65. [11.65]
    Shirakata, S., Kannaka, Y., Hasegawa, H., Kariya, T., Isomura, S.: Properties of Cu(In,Ga)Se2 thin films prepared by chemical spray pyrolysis. Jap. J. Appl. Phys. 38, 4997-5002 (1999)CrossRefGoogle Scholar
  66. [11.66]
    Tembhurkar, Y.D., Hirde, J.P.: Structural, optical and electrical properties of spray pyrolytically deposited films of copper indium diselenide. Thin Solid Films. 215, 65-70 (1992)CrossRefGoogle Scholar
  67. [11.67]
    Milliron, D.J., Mitzi, D.B., Copel, M., Murray, C.E.: Solution processed metal chalcogenide films for p-type transistors. Chem. Mater. 18, 587-590 (2006)CrossRefGoogle Scholar
  68. [11.68]
    Mitzi, D.B., Copel, M., Murray, C.E.: High-mobility p-type transistor based on a spin-coated metal telluride semiconductor. Adv. Mater. 18, 2448-2452 (2006)CrossRefGoogle Scholar
  69. [11.69]
    Mitzi, D.B., Kosbar, L.L., Murray, C.E., Copel, M., Afzali, A.: High-mobility ultrathin semiconducting films prepared by spin coating. Nature. 428, 299-303 (2004)CrossRefGoogle Scholar
  70. [11.70]
    Mitzi, D.B., Raoux, S., Schrott, A.G., Copel, M., Kellock, A., Jordan-Sweet, J.: Solution-based processing of the phase-change material KSb5S8. Chem. Mater. 18, 6278-6282 (2006)CrossRefGoogle Scholar
  71. [11.71]
    Milliron, D.J., Raoux, S., Shelby, R.M., Jordan-Sweet, J.: Solution-phase deposition and nanopatterning of GeSbSe phase change materials. Nature Mater. 6, 352-357 (2007)CrossRefGoogle Scholar
  72. [11.72]
    Milliron, D.J., Caldwell, M.A., Wong, H.-S.P.: Synthesis of metal chalcogenide nanodot arrays using block copolymer-derived nanoreactors. Nano Lett. 7, 3504-3507 (2007)CrossRefGoogle Scholar
  73. [11.73]
    Law, M., Goldberger, J., Yang, P.: Semiconductor nanowires and nanotubes. Ann. Rev. Mat. Res. 34, 83-122 (2004)CrossRefGoogle Scholar
  74. [11.74]
    Lu, W., Lieber, C.M.: Semiconductor nanowires. J. Phys. D. 39, R387-R406 (2006)CrossRefGoogle Scholar
  75. [11.75]
    Meister, S., Peng, H., McIlwrath, K., Jarausch, K., Zhang, X.F., Cui, Y.: Synthesis and characterization of phase-change nanowires. Nano Lett. 6, 1514-1517 (2006)CrossRefGoogle Scholar
  76. [11.76]
    Yu, D., Wu, J., Gu, Q., Park, H.: Germanium telluride nanowires and nanohelices with memory-switching behavior. J. Am. Chem. Soc. 128, 8148-8149 (2006)CrossRefGoogle Scholar
  77. [11.77]
    Lee, S.-H., Jung, Y., Agarwal, R.: Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nature Nanotech. 2, 626-630 (2007)CrossRefGoogle Scholar
  78. [11.78]
    Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nature Mater. 6, 841-850 (2007)CrossRefGoogle Scholar
  79. [11.79]
    Raoux, S., Rettner, C. T., Jordan-Sweet, J. L., Kellock, A. J., Topuria, T., Rice, P. M. and Miller, D. C.: Direct observation of amorphous to crystalline phase transitions in nano-particle arrays of phase change materials. J. Appl. Phys. 102, 94305 (2007)CrossRefGoogle Scholar
  80. [11.80]
    Buffat, P., Borel, J.-P.: Size effect on the melting temperature of gold particles. Phys. Rev. A. 13, 2287-2298 (1976)CrossRefGoogle Scholar
  81. [11.81]
    Dick, K., Dhanasekaran, T., Zhang, Z., Meisel, D.: Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312-2317 (2002)CrossRefGoogle Scholar
  82. [11.82]
    Goldstein, A.N., Echer, C.M., Alivisatos, A.P.: Melting in semiconductor nanocrystals. Science. 256, 1425-1427 (1992)CrossRefGoogle Scholar
  83. [11.83]
    Tolbert, S.H., Alivisatos, A.P.: Size dependence of a first order solid-solid phase transition: The wurtzite to rock salt transformation in CdSe nanocrystals. Science. 265, 373-376 (1994)CrossRefGoogle Scholar
  84. [11.84]
    Soares, B.F., Jonsson, F., Zheludev, N.I.: All-optical phase-change memory in a single gallium nanoparticle. Phys. Rev. Lett. 98, 153905 (2007)CrossRefGoogle Scholar
  85. [11.85]
    Soares, B.F., MacDonald, K.F., Zheludev, N.I.: Resetting single nanoparticle structural phase with nanosecond pulses. Appl. Phys. Lett. 91, 043115 (2007)CrossRefGoogle Scholar
  86. [11.86]
    Suh, D.-S., Lee, E., Kim, K.H.P., Noh, J.-S., Shin, W.-C., Kang, Y.-S., Kim, C., Khang, Y., Yoon, H.R., Jo, W.: Nonvolatile switching characteristics of laser-ablated Ge2Sb2Te5 nanoparticles for phase-change memory applications. Appl. Phys. Lett. 90, 023101 (2007)CrossRefGoogle Scholar
  87. [11.87]
    Caldwell, M.A., Raoux, S., Urban, J.J., Milliron, D.J., Wong, H.-S.P.: unpublished.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations