Development of Materials for Third Generation Optical Storage Media


In 1987, the breakthrough discovery of the GeTe-Sb2Te3 pseudo-binary alloys removed the difficulties that had inhibited phase-change materials from being used in practical applications. The keys issues that had to be solved were related to i) the material composition and ii) the conceptual change in designing materials for phase-change devices. The prominent features of GeTe-Sb2Te3 pseudo-binary alloys enabled a very fast crystallization process and high cyclability at once, and the conceptual change from “how to crystallize the essentially amorphous material” to “how to amorphize the essentially crystalline material” enabled the application of single phase materials with high crystallization speed and high melting temperature, T m. In this chapter, it will be mainly described how such phase-change alloys were obtained (history), how the compositions are superior (results), and what are the essential points of them (secrets) especially in the optical uses.


Reverse Monte Carlo Chalcogenide Semiconductor Single Phase Composition Crystallization Speed Large Atomic Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [10.1]
    Ovshinsky, S. R.: Reversible Electrical Switching Phenomena in Disordered Structures. Phys. Rev. Lett. 21, 1450–1453 (1968)CrossRefGoogle Scholar
  2. [10.2]
    Yamada, N.: Phase-chase-change optical materials. Mater. Res. Soc. Bulletin 21, 48–50 (1996)Google Scholar
  3. [10.3]
    Wuttig, M, Yamada, N.: Phase-change materials for rewriteable data storage. Nature Mater.6, 824-832 (2007)CrossRefGoogle Scholar
  4. [10.4]
    Nishio, K., Kōga, J., Yamaguchi, T., Yonezawa, F.: Molecular dynamics study on freezing of Lennard-Jones argon in an open-ended cylindrical pore. J. Non-Cryst. Solids 345-346, 694-697 (2004)CrossRefGoogle Scholar
  5. [10.5]
    Feinleib, J., deNeufville, J., Moss, S. C., Ovshinsky, S. R.: Rapid reversible light-induced crystallization of amorphous semiconductors, Appl. Phys. Lett. 18, 254-257 (1971)CrossRefGoogle Scholar
  6. [10.6]
    Bichara, C, Raty, J.-Y., Gaspard, J.-P.: Structure and bonding in liquid tellurium. Phys. Rev. B 53, 206 - 211 (1996)CrossRefGoogle Scholar
  7. [10.7]
    Yamada, N.: Phase Change materials in optical storage application. Mater. Res. Soc. Spring Meeting, San Francisco, March 2008, Phase Change Materials: Science and Applications, tutorial notes.Google Scholar
  8. [10.8]
    Yamada, N.: Research relating to phase change materials and their applications. PhD thesis, Kyoto University, Japan, 2000Google Scholar
  9. [10.9]
    Sakka, S., Mackenzie, J. D.: High pressure effects on glass, J. Non-Cryst. Solids 1, 107-142 (1969)CrossRefGoogle Scholar
  10. [10.10]
    Ohta, T., Inoue, K., Uchida, M., Yoshioka, K., Akiyama, T., Furukawa, S., Nagata, K., Nakamura, S.: Phase change disk media having rapid cooling structure. Jpn. J. Appl. Phys. 28, Supplement 28-3, 123-128 (1989)Google Scholar
  11. [10.11]
    Nishiuchi, K., Yamada, N., Akahira, N., Takenaga, M., Akutagawa, R.: Laser diode beam exposure instrument for rapid quenching of thin-film material. Rev. Sci. Instrum. 63, 3425–3430 (1992)CrossRefGoogle Scholar
  12. [10.12]
    Hansen, M., Anderko, K.: Constitution of Binary Alloys. McGraw-Hill, New York (1958)Google Scholar
  13. [10.13]
    Chen, M., Rubin, K. A., Barton, R. W.: Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502-504 (1986)CrossRefGoogle Scholar
  14. [10.14]
    Yamada, N., Takao, M., Takenaga, M.: Te-Ge-Sn-Au Phase change recording film for optical disk. Proc. SPIE 695, Optical Data Storage II, San Diego, 79-85 (1986)Google Scholar
  15. [10.15]
    Ohno, E., Yamada, N., Kurumizawa, T., Kimura, K., Takao, M.: TeGeSnAu alloys for phase change type optical disk memories. Jpn. J. Appl. Phys. 28, 1235-1240 (1989)CrossRefGoogle Scholar
  16. [10.16]
    Yamada, N., Ohno, E., Akahira, N., Nishiuchi, K., Nagata, K., Takao, M.: Jpn. J. Appl. Phys. 26, Suppl. 26–4, 61-66 (1987)Google Scholar
  17. [10.17]
    Strand, D., Tsu, D.V., Miller, R., Hennessey, M., Jablonski, D.: Optical Routers Based on Ovonic Phase Change Materials. Proc. E\PCOS06 (2006), Grenoble ; available at>.
  18. [10.18]
    Yamada, N., Otoba, M., Kawahara, K., Miyagawa, N., Ohta, H., Akahira, N., Matsunaga, T.: Phase-Change Optical Disk Having a Nitride Interface Layer, Jpn. J. Appl. Phys. 37, 2104-2110 (1998)CrossRefGoogle Scholar
  19. [10.19]
    Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M.: Rapid-phase transition of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991)CrossRefGoogle Scholar
  20. [10.20]
    Yamada, N., Matsunaga, T.: Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020-7028 (2000)CrossRefGoogle Scholar
  21. [10.21]
    Nonaka, T., Ohbayashi, G., Toriumi, Y., Mori, Y., Hashimoto, H.: Crystal structure of GeTe and Ge2Sb25 meta-stable phase. Thin Solid Films 370, 258-261 (2000)CrossRefGoogle Scholar
  22. [10.22]
    Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga J., Tomoya, U.: Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, (2004), 703–708 (2004)CrossRefGoogle Scholar
  23. [10.23]
    Shamoto, S., Yamada, N., Matsunaga, T.: Large displacement of germanium atoms in crystalline Ge2Sb2Te5. Appl. Phys. Lett. 86, 081904 (2005)CrossRefGoogle Scholar
  24. [10.24]
    Kohara S., Kimura S., Tanada H., Yasuda N., Fukuyama Y., Murayama H., Kim J., Takata M., Kato K., Tanaka Y., Usuki T., Suzuyu K., Tanaka H., Moritomo Y., Matsunaga T., Kojima R. and Yamada N., Structural basis for fast phase change of DVD-RAM -Topological order in the amorphous phase. Proc. European Phase Change and Ovonic Science Symp., Zermatt, Switzerland, 2007Google Scholar
  25. [10.25]
    Matsunaga, T., Yamada, N., Kubota, Y.: Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems. Acta Cryst. B60, 685-691 (2004)Google Scholar
  26. [10.26]
    Private communication, Kohara, S. (JASRI) (2006)Google Scholar
  27. [10.27]
    Matsunaga, T., Yamada, N.: A Study of highly symmetrical crystal structures, commonly seen in high-speed phase-change materials, using synchrotron radiation. Jpn. J. Appl. Phys. 41, 1674-1678 (2002)CrossRefGoogle Scholar
  28. [10.28]
    Matsunaga, T., Umetani, Y., Yamada, N.: Structural study of a Ag3.4In3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks. Phys. Rev. B 64, 184116 (2001)Google Scholar
  29. [10.29]
    Matsunaga. T, Yamada, N.: Crystal structure and bonding nature of Ge8Sb2Te11, a suitable matee material for high-speed, high-density phase-change recording. Proc. PCOS2004, 1-4(2004)Google Scholar
  30. [10.30]
    H. M. Rietveld: A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2, 65-71 (1969)CrossRefGoogle Scholar
  31. [10.31]
    Clegg, W., Blake, A.J., Gould, R.O., Main, P., Edited by Clegg, W.: Crystal Structure Analysis Principles and Practice. IUCr Texts on Crystallography 6, International Union of Crystallography / Oxford University Press, 164 (2001)Google Scholar
  32. [10.32]
    Baker, D. A., Paesler, M. A., Lucovsky, G., Agarwal, S. C., Taylor, P. C.: Application of bond constraint theory to the switchable optical memory material Ge2Sb2Te5. Phys. Rev. Lett. 96, 255501 (2006)CrossRefGoogle Scholar
  33. [10.33]
    Kojima, R., Okabayashi, S., Kashihara, T., Horai, K., Matsunaga, T., Ohno, E., Yamada, N., Ohta, T.: Nitrogen doping effect on phase change optical disks. Jpn. J. Appl. Phys. Part 1 37, 2098–2103 (1998)CrossRefGoogle Scholar
  34. [10.34]
    Kojima, R., Yamada, N: Acceleration of crystallization speed by Sn addition to Ge–Sb–Te phase-change recording material. Jpn. J. Appl. Phys. Part 1 40, 5930–5937 (2001)CrossRefGoogle Scholar
  35. [10.35]
    Yusu, K., Nakai, T., Ashida, S., Ohmachi, N., Morishita, N. & Nakamura, N.: Highspeed crystallization characteristics of Ge–Sb–Te–Bi materials used for next generation rewritable DVD with blue laser and NA = 0.65. Proc. E\PCOS05 (2005); available at
  36. [10.36]
    Kusada, H., Hosaka, T., Kojima R., Yamada, N.: Effect of excess Sb on GeTe–Sb2Te3–Bi2Te3 recording films. Proc. 18th Symp. PCOS2005 32–35 (2006)Google Scholar
  37. [10.37]
    Iwasaki, H., Ide, Y., Harigaya, M., Kageyama., Y., Fujimura, I.: Completely erasable phase-change optical disk. Jpn. J. Appl. Phys. Part 1 31, 461–465 (1992)CrossRefGoogle Scholar
  38. [10.38]
    Horie, M., Nobukuni, N., Kiyono, K. & Ohno, T. High-speed rewritable DVD up to 20 m/s with nucleation-free eutectic phase-change material of Ge(Sb70Te30)+Sb. Proc. SPIE 4090, 135–143 (2000)CrossRefGoogle Scholar
  39. [10.39]
    Kato, T., Hirata, H., Komaki, T., Inoue, H., Shingai, H., Hayashida, N., Utsunomiya, H., The phase change optical disc with the data recording rate of 140 Mbps. Jpn. J. Appl. Phys. Part 1 41, 1664–1667 (2002)CrossRefGoogle Scholar
  40. [10.40]
    Iwasaki, H., Harigaya, M., Nonoyama, O., Kageyama, Y., Takahashi, M., Yamada, K., Deguchi, H., Ide, Y.: Completely erasable phase-change optical disc. II. Application of Ag–In–Sb–Te mixed-phase system for rewritable compact disc compatible with CD-velocity and double CD-velocity. Jpn. J. Appl. Phys. Part 1 32, 5241–5247 (1993)CrossRefGoogle Scholar
  41. [10.41]
    Afonso, C. N., Solis, J., Catalina, F. & Kalpouzos, C. Ultrafast reversible phase-change in GeSb films for erasable optical storage. Appl. Phys. Lett. 60, 3123–3125 (1992)CrossRefGoogle Scholar
  42. [10.42]
    Yuzurihara, H., Iwasa, H. & Kaneko, Y. GeSbSnMn for high speed BD-RE media. Proc. 17th Symp. PCOS2005 19–22 (2005)Google Scholar
  43. [10.43]
    Yamada, N., Kojima, R., Uno, M., Akiyama, T., Kitaura, H., Narumi, K., Nishiuchi, K.: Phase-change material for use in rewritable dual-layer optical disk. Proc. SPIE 4342, 55–63 (2002)CrossRefGoogle Scholar
  44. [10.44]
    Nishiuchi, K., Yamada, N., Kawahara, K., Kojima, R.: Effect of dielectric material films on crystallization characteristics of Ge2Sb2Te5 phase-change memory film. Jpn. J. Appl. Phys. 46, 7421-7423 (2007)CrossRefGoogle Scholar
  45. [10.45]
    Private communication, Matsunaga, T. (Panasonic), from EPCOS2007 Presentation (2007)Google Scholar
  46. [10.46]
    Abrikosov, N. Kh., Danilova-Dobryakova, G. T.: Study of the Sb2Te3-GeTe phase diagram. Izv. Akademii Nauk SSSR, Neorg. Mater. 1, 204-209 (1965)Google Scholar
  47. [10.47]
    Shelimova, L.E., Karpinskii, O.G., Konstantinov, P.P., Kretova. M.A., Avilov, E.S., Zemskov, V.S.: Composition and properties of layered compounds in the GeTe–Sb2Te3 System. Inorganic Materials 37, 342-348 (2001)CrossRefGoogle Scholar
  48. [10.48]
    Kifune, K., Kubota, Y., Matsunaga, T, Yamada. N.: Extremely long period-stacking structure in the Sb-Te binary system. Acta Cryst. B61, 492-497 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.AV Core Technology Development Center Matsushita Electric Industrial Co. Ltd. (Panasonic)OsakaJapan

Personalised recommendations