History of Phase Change Memories

  • Chung H. Lam


This chapter reviews the history of phase change materials particularly in the applications of information storage. The chapter starts with the discovery of a one way resistance transformation phenomenon in a chalcogenide, namely molybdenite (MoS2). Then the evolution of the understanding of the underlying physics governing the phase change characteristics by various investigators is reviewed along with the applications of the phase change characteristics in information storage applications. The chapter ends with a table summarizing critical events in the phase change memory developments.


Phase Change Phase Change Material High Resistance State Phase Change Memory Reset Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1.1]
    Waterman, A. T.: Positive ionisation of certain hot salts, together with some observations on the electrical properties of molybdenite at high temperatures. Phil. Mag. 33, 225 (1917)Google Scholar
  2. [1.2]
    Waterman, A. T.: The electrical conductivity of molydenite, Phys. Rev. 21, 540-549 (1923)CrossRefGoogle Scholar
  3. [1.3]
    Wang, A.: Pulse transfer controlling devices. US Patent 2,708,722 (1955)Google Scholar
  4. [1.4]
    Burke, H. K. and Michon, G. J.: Integrated bistable memory cell. US Patent 3,389,383 (1968)Google Scholar
  5. [1.5]
    Dennard, R. H.: Field-effect transistor memory. US Patent 3,387,286 (1968)Google Scholar
  6. [1.6]
    Kahng, D.: Field effect semiconductor apparatus with memory involving entrapment of charge carriers. US Patent 3,500,142 (1970)Google Scholar
  7. [1.7]
    Wegener, H. A. R.: Electrically alterable non-destructive readout field effect transistor memory. US Patent 3,508,211 (1970)Google Scholar
  8. [1.8]
    Pearson, A. D., Northover, W. R., Dewald, J. F. and Peck Jr., W. F.: Chemical, physical, and electrical properties of some unusual inorganic glasses. Adv. in Glass Tech., pp. 357-365, Plenum Press, New York (1962)Google Scholar
  9. [1.9]
    Dewald, J. F., Pearson, A. D., Northover, W. R. and Peck Jr., W. F.: Semiconducting glasses. J. of Electrochem. Soc., p. 243C, (1962)Google Scholar
  10. [1.10]
    Ovshinsky, S. R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 22, 1450-1453 (1968)CrossRefGoogle Scholar
  11. [1.11]
    Dewald, J. F., Northover, W. R. and Pearson, A. D.: Multiple resistance semiconductor elements. US Patent 3,241,009 (1966)Google Scholar
  12. [1.12]
    Northover, W. R. and Pearson, A. D.: Glass composition. US Patent 3,117,013 (1964)Google Scholar
  13. [1.13]
    Ovshinsky, S. R.: Symmetrical current controlling device. US Patent 3,271,591 (1966)Google Scholar
  14. [1.14]
    Ovshinsky, S. R.: A history of the phase change technology. Memoires Optiques et Systemes, (1994),
  15. [1.15]
    Shanefield, D. J. and Lighty, P. E.: Solid state element comprising semiconductive glass composition exhibiting negative incremental resistance. US Patent 3,448,425 (1969)Google Scholar
  16. [1.16]
    Shanefield, D. J.: Operating circuit for phase change memory devices. US Patent 3,448,302.Google Scholar
  17. [1.17]
    Neale, R. G., Nelson, D. L. and Moore, G. E.: Nonvolatile and reprogrammable, the read mostly memory is here. Electronics, pp. 56-60, Sept. 30 (1970)Google Scholar
  18. [1.18]
    Frohman-Bentchkowsky, D: An integrated Metal-Nitride-Oxide-Silicon (MNOS) memory. Proc. IEEE Lett. 57 1190-1192 (1969)CrossRefGoogle Scholar
  19. [1.19]
    Frohman-Bentchkowsky, D: A fully decoded 2048-bit electrically programmable FAMOS read-only memory. IEEE J. of Solid-State Circuits, SC-6, pp. 301-306 (1971)CrossRefGoogle Scholar
  20. [1.20]
    Iizuka, H., Sato, T., Masuoka, F., Ohuchi, K., Hara, H. and Takeishi, Y.: A fully-decoded 2048-bit avalanche-injection type, electrical alterable ROM. IEEE Int.. Electron Devices Meeting, Washington, D.C. (1972)Google Scholar
  21. [1.21]
    Chua, L. O.: Memristor – the missing circuit element. IEEE Trans. on Circuit Theory, CT-18, pp. 507-519 (1971)CrossRefGoogle Scholar
  22. [1.22]
    Special Issue on Amorphous Semiconductor Devices. IEEE Trans. on Electron Devices, ED-20, February (1973)Google Scholar
  23. [1.23]
    Shanks, R. R. and Davis, C.: A 1024-bit nonvolatile 15ns bipolar read-write memory. ISSCC Digest of Technical Papers, pp. 112-113, February (1978)Google Scholar
  24. [1.24]
    Moore, G. E.: Cramming more components onto integrated. Circuits. Electronics, 38, pp. 114–117, April 19 (1965)Google Scholar
  25. [1.25]
    Lai, S. and Lowrey, T.: OUM – A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. IEDM Digest of Technical Papers, pp. 803-806, December (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations