Skip to main content

Biocompatibility Testing

  • Chapter
Biomedical Materials

Abstract

The insertion of a foreign material into the body induces a cascade of events, basically at the interface between the implanted material and the tissue, which results in the recognition of the material as foreign matter. The degree of this physiological response depends on the location of implantation and the composition and mechanical properties of the material. Thus, the body’s response to an implanted material is affected by a number of different factors. To evaluate and reduce the risk for unexpected or unwanted side effects, biocompatibility testing is used to examine new biomaterials and biomedical devices destined for implantation. The biological evaluation of the material’s safety is a complex task since it requires knowledge in the disciplines of medicine, biology, pathology, engineering and materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams DF. Definitions in Biomaterials, Elsevier: Amsterdam, 1987.

    Google Scholar 

  2. ISO. Biological Evaluation of Medical Devices – Part 12: Sample Preparation and Reference Materials, 2007.

    Google Scholar 

  3. Campisi J. Cancer, aging and cellular senescence. In Vivo, 2000, 14(1): 183–188.

    Google Scholar 

  4. Pedrinaci S, et al. Protein kinase C-mediated regulation of the expression of CD14 and CD11/CD18 in U937 cells. Int J Cancer, 1990, 45(2): 294–298.

    Article  Google Scholar 

  5. Freshney RI. Culture of Animal Cells: A Manual of Basic Techniques, 4th edn, Wiley & Sons: New York, 2000.

    Google Scholar 

  6. ISO. Biological Evaluation of Medical Devices – Part 5: Tests for In Vitro Cytotoxicity, 1999.

    Google Scholar 

  7. Peters K, et al. Cell type-specific aspects in biocompatibility testing: The intercellular contact in vitro as an indicator for endothelial cell compatibility. J Mater Sci Mater Med, 2008, 19(4): 1637–1644.

    Article  Google Scholar 

  8. Decker T and Lohmann-Matthes ML. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods, 1988, 115(1): 61–69.

    Article  Google Scholar 

  9. Cory AH, et al. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun, 1991, 3(7): 207–212.

    Google Scholar 

  10. Denizot F and Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods, 1986, 89(2): 271–277.

    Article  Google Scholar 

  11. Gillies RJ, Didier N, and Denton M. Determination of cell number in monolayer cultures. Anal Biochem, 1986, 159(1): 109–113.

    Article  Google Scholar 

  12. Klein CL, et al. A new quantitative test method for cell proliferation based on detection of the Ki-67 protein. J Mater Sci Mater Med, 2000, 11(2): 125–132.

    Article  Google Scholar 

  13. Assuncao Guimaraes C and Linden R. Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem, 2004, 271(9): 1638–1650.

    Article  Google Scholar 

  14. ISO. Biological Evaluation of Medical Devices – Part 4: Selection of Tests for Interactions with Blood, 2002.

    Google Scholar 

  15. Garner LA. Contact dermatitis to metals. Dermatol Ther, 2004, 17(4): 321–327.

    Article  Google Scholar 

  16. Basketter D, et al. The chemistry of contact allergy: Why is a molecule allergenic? Contact Dermatitis, 1995, 32(2): 65–73.

    Article  Google Scholar 

  17. Kanerva L. Cross-reactions of multifunctional methacrylates and acrylates. Acta Odontol Scand, 2001, 59(5): 320–329.

    Article  Google Scholar 

  18. Dannaker CJ. Allergic sensitization to a non-bisphenol A epoxy of the cycloaliphatic class. J Occup Med, 1988, 30(8): 641–643.

    Article  Google Scholar 

  19. Shanklin DR and Smalley DL. The immunopathology of siliconosis. History, clinical presentation, and relation to silicosis and the chemistry of silicon and silicone. Immunol Res, 1998, 18(3): 125–173.

    Article  Google Scholar 

  20. Oleffe J and Wilmet J. Generalized eczema and an osteosynthesis screw. Arch Belg Dermatol Syphiligr, 1972, 28(3): 275–278.

    Google Scholar 

  21. Oleffe J and Wilmet J. Generalized dermatitis from an osteosynthesis screw. Contact Dermatitis, 1980, 6(5): 365.

    Article  Google Scholar 

  22. Budinger L and Hertl M. Immunologic mechanisms in hypersensitivity reactions to metal ions: An overview. Allergy, 2000, 55(2): 108–115.

    Article  Google Scholar 

  23. ISO. Biological Evaluation of Medical Devices – Part 10: Tests for Irradiation and Delayed Type Hypersensitivity, 2002.

    Google Scholar 

  24. Buehler EV. Delayed contact hypersensitivity in the guinea pig. Arch Dermatol, 1965, 91: 171–177.

    Article  Google Scholar 

  25. Magnusson B and Kligman AM. The identification of contact allergens by animal assay. The guinea pig maximization test. J Invest Dermatol, 1969, 52(3): 268–276.

    Google Scholar 

  26. Eloy R, et al. Current and future issues in sensitisation testing. Med Device Technol, 2001, 12(7): 12–15.

    Google Scholar 

  27. Kimber I and Weisenberger C. A murine local lymph node assay for the identification of contact allergens. Assay development and results of an initial validation study. Arch Toxicol, 1989, 63(4): 274–282.

    Article  Google Scholar 

  28. Moustacchi E. DNA damage and repair: Consequences on dose-responses. Mutat Res, 2000, 464(1): 35–40.

    Google Scholar 

  29. Ames BN. Identifying environmental chemicals causing mutations and cancer. Science, 1979, 204(4393): 587–593.

    Article  Google Scholar 

  30. Maron DM and Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res, 1983, 113(3–4): 173–215.

    Google Scholar 

  31. Williams GM. Carcinogen-induced DNA repair in primary rat liver cell cultures; a possible screen for chemical carcinogens. Cancer Lett, 1976, 1(4): 231–235.

    Google Scholar 

  32. Collins AR. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol Biotechnol, 2004, 26(3): 249–261.

    Article  Google Scholar 

  33. Clive D, et al. A mutational assay system using the thymidine kinase locus in mouse lymphoma cells. Mutat Res, 1972, 16(7): 77–87.

    Google Scholar 

  34. Applegate ML, et al. Molecular dissection of mutations at the heterozygous thymidine kinase locus in mouse lymphoma cells. Proc Natl Acad Sci U S A, 1990, 87(1): 51–55.

    Article  Google Scholar 

  35. Kato H and Shimada H. Sister chromatid exchanges induced by mitomycin C: A new method of detecting DNA damage at chromosomal level. Mutat Res, 1975, 28(3): 459–464.

    Article  Google Scholar 

  36. Dillehay LE, Jacobson-Kram D, and Williams JR. DNA topoisomerases and models of sister-chromatid exchange. Mutat Res, 1989, 215(1): 15–23.

    Google Scholar 

  37. von Ledebur M and Schmid W. The micronucleus test. Methodological aspects. Mutat Res, 1973, 19(1): 109–117.

    Google Scholar 

  38. ISO. Biological Evaluation of Medical Devices – Part 2: Animal Welfare Requirements, 2006.

    Google Scholar 

  39. Monteiro-Riviere NA, et al. Comparison of an in vitro skin model to normal human skin for dermatological research. Microsc Res Tech, 1997, 37(3): 172–179.

    Article  Google Scholar 

  40. Hartung T, et al. Novel pyrogen tests based on the human fever reaction. The report and recommendations of ECVAM Workshop 43. European Centre for the Validation of Alternative Methods. Altern Lab Anim, 2001, 29(2): 99–123.

    Google Scholar 

  41. Hoffmann S, et al. International validation of novel pyrogen tests based on human monocytoid cells. J Immunol Methods, 2005, 298(1–2): 161–173.

    Article  Google Scholar 

  42. Peters K, et al. Software supported quantification of angiogenesis in an in vitro culture system. Examples of applications in studies of basic research, biocompatibility and drug discovery, in Zubar RV, ed. Trends in Angiogenesis Research, Nova Science Publishers Inc.: New York, 2005, pp. 103–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Peters, K., Unger, R.E., Kirkpatrick, C.J. (2009). Biocompatibility Testing. In: Narayan, R. (eds) Biomedical Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84872-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-84872-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-84871-6

  • Online ISBN: 978-0-387-84872-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics