Advertisement

Thought in Action: Procedural Learning, Processing Speed, and Automaticity

  • Leonard F. Koziol
  • Deborah Ely Budding
Chapter

Abstract

Learning and memory are essential to almost everything we do, from the time we wake in the morning to the time we turn-in for the night. Memory is one of the functions that provides continuity to our existence. We must remember what we have done earlier in order to direct what we are doing now. We often must recollect experience in order to plan for the activities of the future, whether we are thinking five minutes ahead, five hours ahead, five days ahead, or five months ahead. When we engage “working memory,” which is the temporary storage of information for the purpose of task completion, we are very often recalling information from longer-term, declarative/episodic recall in order to provide information to assist us in solving the problems of the present. We rely upon what is stored in declarative/episodic memory in order to make plans for the future. We are unable to adapt adequately without these essential functions. Disturbance in these types of memory represent the most frequent complaints for neuropsychological evaluation (Squire & Shimamura, 1996).

Keywords

Processing Speed Practice Effect Procedural Learning Neuropsychological Evaluation Continuous Performance Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Banich, M. T. (2004). Cognitive neuroscience and neuropsychology (2nd ed.). Boston: Houghton Mifflin.Google Scholar
  2. Beauchamp, M. H., Dagher, A., Aston, J. A., & Doyon, J. (2003). Dynamic functional changes associated with cognitive skill learning of an adapted version of the Tower of London task. Neuroimage, 20, 1649–1660.PubMedCrossRefGoogle Scholar
  3. Bigelow, N. O., Turner, B. M., Andreasen, N. C., Paulsen, J. S., O'Leary, D. S., & Ho, B. C. (2006). Prism adaptation in schizophrenia. Brain and Cognition, 61, 235–242.PubMedCrossRefGoogle Scholar
  4. Delis, D., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan executive function system. San Antonio: Psychological Corporation.Google Scholar
  5. Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41, 252–262.PubMedCrossRefGoogle Scholar
  6. Doyon, J., & Ungerleider, L. G. (2002). Functional anatomy of motor skill learning. In L. R. Squire & D. L. Schacter (Eds.), The neuropsychology of memory (3rd ed., pp. 225–238). New York: Guilford Press.Google Scholar
  7. Duff, K., Beglinger, L. J., Schultz, S. K., Moser, D. J., McCaffrey, R. J., Haase, R. F. et al. (2007). Practice effects in the prediction of long-term cognitive outcome in three patient samples: a novel prognostic index. Archives of Clinical Neuropsychology, 22, 15–24.PubMedCrossRefGoogle Scholar
  8. Faure, P., & Korn, H. (2001). Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. Comptes Rendus De L Academie Des Sciences Serie III, 324, 773–793.CrossRefGoogle Scholar
  9. Fernandez-Ruiz, J., Diaz, R., Hall-Haro, C., Vergara, P., Mischner, J., Nunez, L. et al. (2003). Normal prism adaptation but reduced after-effect in basal ganglia disorders using a throwing task. European Journal of Neuroscience, 18, 689–694.PubMedCrossRefGoogle Scholar
  10. Fernandez-Ruiz, J., Hall, C., Vergara, P., & Diiaz, R. (2000). Prism adaptation in normal aging: slower adaptation rate and larger aftereffect. Brain Research Cognitive Brain Research, 9, 223–226.PubMedCrossRefGoogle Scholar
  11. Foerde, K., Poldrack, R. A., Khan, B. J., Sabb, F. W., Bookheimer, S. Y., Bilder, R. M. et al. (2008). Selective corticostriatal dysfunction in schizophrenia: Examination of motor and cognitive skill learning. Neuropsychology, 22, 100–109.PubMedCrossRefGoogle Scholar
  12. Gabrieli, J. D., Corkin, S., Mickel, S. F., & Growdon, J. H. (1993). Intact acquisition and long-term retention of mirror-tracing skill in Alzheimer's disease and in global amnesia. Behavioral Neuroscience, 107, 899–910.PubMedCrossRefGoogle Scholar
  13. Gabrieli, J. D., Stebbins, G. T., Singh, J., Willingham, D. B., & Goetz, C. G. (1997). Intact mirror-tracing and impaired rotary-pursuit skill learning in patients with Huntington's disease: evidence for dissociable memory systems in skill learning. Neuropsychology, 11, 272–281.PubMedCrossRefGoogle Scholar
  14. Hubert, V., Beaunieux, H., Chetelat, G., Platel, H., Landeau, B., Danion, J. M. et al. (2007). The dynamic network subserving the three phases of cognitive procedural learning. Human Brain Mapping, 28, 1415–1429.PubMedCrossRefGoogle Scholar
  15. Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R. et al. (1998). The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Science of the United States of America, 95, 861–868.Google Scholar
  16. Korkman, M., Kirk, U., & Kemp, S. (1998). NEPSY: A developmental neuropsychological assessment. San Antonio, TX: Psychological Corporation.Google Scholar
  17. Kubler, A., Dixon, V., & Garavan, H. (2006). Automaticity and reestablishment of executive control-an fMRI study. Journal of Cognitive Neuroscience, 18, 1331–1342.PubMedCrossRefGoogle Scholar
  18. Lezak, M., Howieson, D., & Loring, D. (2004). Neuropsychological assessment (4th ed.) New York: Oxford University Press.Google Scholar
  19. Luu, P., Tucker, D. M., & Stripling, R. (2007). Neural mechanisms for learning actions in context. Brain Research, 1179, 89–105.PubMedCrossRefGoogle Scholar
  20. McCaffrey, R. J., Duff, K., & Westervelt, H. J. (2000). Practitioner's guide to evaluating change with neuropsychological assessment instruments. New York: Kluwer Academic/Plenum Publishers.Google Scholar
  21. Milberg, W. P., Hebben, N., & Kaplan, E. (1996). The Boston process approach to neuropsychological assessment. In I. Grant & K. M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric disorders (pp. 58–80). New York: Oxford University Press.Google Scholar
  22. Morton, S. M., & Bastian, A. J. (2004). Prism adaptation during walking generalizes to reaching and requires the cerebellum. Journal of Neurophysiology, 92, 2497–2509.PubMedCrossRefGoogle Scholar
  23. Nakahara, H., Doya, K., & Hikosaka, O. (2001). Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences – a computational approach. Journal of Cognitive Neuroscience, 13, 626–647.PubMedCrossRefGoogle Scholar
  24. Nicolson, R. (2000). Dyslexia and dyspraxia: Commentary. Dyslexia, 6, 203–204.PubMedCrossRefGoogle Scholar
  25. Nissen, M. J. (1992). Procedural and declarative learning: Distinctions and interactions. In L. R. Squire & N. Butters (Eds.), Neuropsychology of memory (2nd ed., pp. 203–210). New York: The Guilford Press.Google Scholar
  26. Ouellet, M. C., Beauchamp, M. H., Owen, A. M., & Doyon, J. (2004). Acquiring a cognitive skill with a new repeating version of the Tower of London task. Canadian Journal of Experimental Psychology, 58, 272–288.PubMedCrossRefGoogle Scholar
  27. Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y. et al. (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25, 5356–5364.PubMedCrossRefGoogle Scholar
  28. Rabbitt, P., Scott, M., Lunn, M., Thacker, N., Lowe, C., Pendleton, N. et al. (2007). White matter lesions account for all age-related declines in speed but not in intelligence. Neuropsychology, 21, 363–370.PubMedCrossRefGoogle Scholar
  29. Reichenberg, A., & Harvey, P. D. (2007). Neuropsychological impairments in schizophrenia: Integration of performance-based and brain imaging findings. Psychological Bulletin, 133, 833–858.PubMedCrossRefGoogle Scholar
  30. Reitan, R. M., & Wolfson, D. (2008). Can neuropsychological testing produce unequivocal evidence of brain damage? I. Testing for specific deficits. Applied Neuropsychology, 15, 33–38.PubMedCrossRefGoogle Scholar
  31. Saling, L. L., & Phillips, J. G. (2007). Automatic behaviour: efficient not mindless. Brain Research Bulletin, 73, 1–20.PubMedCrossRefGoogle Scholar
  32. Salthouse, T. A. (2005). Relations between cognitive abilities and measures of executive functioning. Neuropsychology, 19, 532–545.PubMedCrossRefGoogle Scholar
  33. Schmidtke, K., Manner, H., Kaufmann, R., & Schmolck, H. (2002). Cognitive procedural learning in patients with fronto-striatal lesions. Learning and Memory, 9, 419–429.PubMedCrossRefGoogle Scholar
  34. Schweighofer, N., Doya, K., Fukai, H., Chiron, J. V., Furukawa, T., & Kawato, M. (2004). Chaos may enhance information transmission in the inferior olive. Proceedings of the National Academy of Sciences of the United States of America, 101, 4655–4660.Google Scholar
  35. Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience Biobehavioral Reviews, 32, 265–278.CrossRefGoogle Scholar
  36. Seger, C. A., & Cincotta, C. M. (2006). Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cerebral Cortex, 16, 1546–1555.PubMedCrossRefGoogle Scholar
  37. Squire, L. R., & Shimamura, A. P. (1996). The neuropsychology of memory dysfunction and its assessment. In I. Grant & K. Adams (Eds.), Neuropsychological assessement of neuropsychiatric disorders (pp. 232–262). New York: Oxford University Press.Google Scholar
  38. Sweet, L. H., Paskavitz, J. F., O'Connor, M. J., Browndyke, J. N., Wellen, J. W., & Cohen, R. A. (2005). FMRI correlates of the WAIS-III symbol search subtest. Journal of the International Neuropsychological Society, 11, 471–476.PubMedCrossRefGoogle Scholar
  39. Wechsler, D. (1997). Wechsler adult intelligence scales, Third Edition (WAIS-III). San Antonio: The Psychological Corporation.Google Scholar
  40. Wechsler, D. (2003). Wechsler intelligence scale for children – Fourth Edition (WISC-IV). San Antonio: The Psychological Corporation.Google Scholar
  41. Weiner, M. J., Hallett, M., & Funkenstein, H. H. (1983). Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology, 33, 766–772.PubMedCrossRefGoogle Scholar
  42. Willingham, D. B. (1992). Systems of motor skill. In L. R. Squire & N. Butters (Eds.), Neuropsychology of memory (2nd ed., pp. 166–178). New York: The Guilford Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Park RidgeUSA
  2. 2.Manhattan BeachUSA

Personalised recommendations