Familiarity and Novelty—Evaluating the Frontostriatal System

  • Leonard F. Koziol
  • Deborah Ely Budding


Previous chapters of this book have demonstrated that behavioral output is a function of cooperation between three brain regions, namely, the cortex, the basal ganglia, and the cerebellum. It was proposed that posterior cortices primarily function to process sensory–perceptual information. The frontal lobes and prefrontal cortices generate action or motor programs. The basal ganglia participate in attention and action selections and in binding action sequences as instrumental and procedural learning mechanisms. The cerebellum refines these selections of potential behavioral output to meet the amplification requirements of the given behavioral context. This “division of labor” has implications for neuropsychological testing because test results are affected by these same three brain-related sources of variability.


Basal Ganglion Neuropsychological Test Word Reading Medial Temporal Lobe Rule Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychology Review, 16, 17–42.PubMedCrossRefGoogle Scholar
  2. Ashby, F. G., & Ennis, J. M. (2006). The role of the basal ganglia in category learning. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 46, pp. 1–36). New York: Elsevier.Google Scholar
  3. Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829–839.PubMedCrossRefGoogle Scholar
  4. Baker, J. G. (1996). Memory and emotion processing in cortical and subcortical dementia. Journal of General Psychology, 123, 185–191.PubMedCrossRefGoogle Scholar
  5. Baron, I. S. (2004). Neuropsychological evaluation of the child. New York: Oxford University Press.Google Scholar
  6. Beauchamp, M. H., Dagher, A., Aston, J. A., & Doyon, J. (2003). Dynamic functional changes associated with cognitive skill learning of an adapted version of the Tower of London task. Neuroimage, 20, 1649–1660.PubMedCrossRefGoogle Scholar
  7. Beck, L. H., Bransome, E. D., Jr., Mirsky, A. F., Rosvold, H. E., & Sarason, I. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20, 343–350.PubMedCrossRefGoogle Scholar
  8. Ben-Yehudah, G., Guediche, S., & Fiez, J. A. (2007). Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum, 6, 193–201.PubMedCrossRefGoogle Scholar
  9. Berman, K. F., Ostrem, J. L., Randolph, C., Gold, J., Goldberg, T. E., Coppola, R. et al. (1995). Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study. Neuropsychologia, 33, 1027–1046.PubMedCrossRefGoogle Scholar
  10. Bondi, M. W., Serody, A. B., Chan, A. S., Eberson-Shumate, S. C., Delis, D. C., Hansen, L. A. et al. (2002). Cognitive and neuropathologic correlates of Stroop Color-Word Test performance in Alzheimer's disease. Neuropsychology, 16, 335–343.PubMedCrossRefGoogle Scholar
  11. Buchsbaum, M. S., Nuechterlein, K. H., Haier, R. J., Wu, J., Sicotte, N., Hazlett, E. et al. (1990). Glucose metabolic rate in normals and schizophrenics during the Continuous Performance Test assessed by positron emission tomography. British Journal of Psychiatry, 156, 216–227.PubMedCrossRefGoogle Scholar
  12. Cohen, R. A., Malloy, P. F., & Jenkins, M. A. (1998). Disorders of attention. In P. J. Snyder & P. D. Nussbaum (Eds.), Clinical neuropsychology: A pocket handbook for assessment (pp. 541–572). Washington, D.C.: American Psychological Association.Google Scholar
  13. Cohen, R. M., Semple, W. E., Gross, M., Holcomb, H. H., Dowling, M. S., & Nordahl, T. E. (1988). Functional localization of sustained attention: Comparison to sensory stimulation in the absence of instruction. Neuropsychiatry, Neuropsychology and Behavioral Neurology, 1, 3–20.Google Scholar
  14. Culbertson, W., & Zillmer, E. (2001). Tower of London-Drexel University (2nd ed.). North Tonawanda,NY: Multi-Health Systems.Google Scholar
  15. D'Esposito, M. (2008). Working memory. In G.Goldenberg & B. Miller (Eds.), Neuropsychology and behavioral neurology (pp. 237–247). Amsterdam: Elsevier.CrossRefGoogle Scholar
  16. Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (1999). Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain, 122, 1973–1987.PubMedCrossRefGoogle Scholar
  17. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1987). California verbal learning test. San Antonio, TX: The Psychological Corporation.Google Scholar
  18. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1994). California verbal learning test—children's version. San Antonio, TX: The Psychological Corporation.Google Scholar
  19. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (2000). California verbal learning test—second edition, adult version. San Antonio, TX: The Psychological Corporation.Google Scholar
  20. Denckla, M. B. & Reiss, A. L. (1997). Prefrontal-subcortical circuits in developmental disorders. In N. A. Krasnegor, G. R. Lyon, & P. S. Goldman-Rakic (Eds.), Development of the prefrontal cortex: Evolution, neurobiology, and behavior (pp. 283–294). Baltimore, MD: Paul H. Brookes.Google Scholar
  21. Franceschi, M., Caffarra, P., De, V. L., Pelati, O., Pradelli, S., Savare, R. et al. (2007). Visuospatial planning and problem solving in Alzheimer's disease patients: a study with the Tower of London Test. Dementia and Geriatric Cognitive Disorders, 24, 424–428.Google Scholar
  22. Frank, M. J., Loughry, B., & O'Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cognitive Affective and Behavioral Neuroscience, 1, 137–160.CrossRefGoogle Scholar
  23. Fuentes, L. J. (2004). Inhibitory processing in the attentional networks. In M. I. Posner (Ed.), Cognitive neuroscience of attention (pp. 45–55). New York: The Guilford Press.Google Scholar
  24. Goldberg, E., Podell, K., Bilder, R., & Jaeger, J. (2000). The executive control battery. Melbourne, Australia: Psychology Press.Google Scholar
  25. Golden, C. (1978). Stroop color and word test. Chicago: Stolting.Google Scholar
  26. Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70, 119–136.PubMedCrossRefGoogle Scholar
  27. Hager, F., Volz, H. P., Gaser, C., Mentzel, H. J., Kaiser, W. A., & Sauer, H. (1998). Challenging the anterior attentional system with a continuous performance task: a functional magnetic resonance imaging approach. European Archives of Psychiatry and Clinical Neuroscience, 248, 161–170.PubMedCrossRefGoogle Scholar
  28. Hazy, T. E., Frank, M. J., & O'Reilly, R. C. (2006). Banishing the homunculus: making working memory work. Neuroscience, 139, 105–118.PubMedCrossRefGoogle Scholar
  29. Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtis, G. (1993). Wisconsin Card Sorting Test (WCST)manual, revised and expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
  30. Hirata, K., Tanaka, H., Zeng, X. H., Hozumi, A., & Arai, M. (2006). The role of the basal ganglia and cerebellum in cognitive impairment: a study using event-related potentials. Supplement of the Clinical Neurophysiology, 59, 49–55.CrossRefGoogle Scholar
  31. Hodgetts, H. M. & Jones, D. M. (2006). Interruption of the Tower of London task: support for a goal-activation approach. Journal of Experimental Psychology General, 135, 103–115.PubMedCrossRefGoogle Scholar
  32. Kelly, T. P. (2000). The clinical neuropsychology of attention in school-aged children. Child Neuropsychology, 6, 24–36.PubMedCrossRefGoogle Scholar
  33. Keri, S. (2008). Interactive memory systems and category learning in schizophrenia. Neuroscience and Biobehavioral Reviews, 32, 206–218.PubMedCrossRefGoogle Scholar
  34. Kinsbourne, M. (1993). Development of attention and metacognition. In I. Rapin & S. J. Segalowitz (Eds.), Handbook of neuropsychology, (Vol. 7, pp. 261–278). Amsterdam: Elsevier.Google Scholar
  35. Konishi, S., Kawazu, M., Uchida, I., Kikyo, H., Asakura, I., & Miyashita, Y. (1999). Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test. Cerebral Cortex, 9, 745–753.PubMedCrossRefGoogle Scholar
  36. Korkman, M., Kirk, U., & Kemp, S. (1997). NEPSY: A developmental neuropsychological assessment. San Antoinio, TX: The Psychological Corporation.Google Scholar
  37. Kubler, A., Dixon, V., & Garavan, H. (2006). Automaticity and reestablishment of executive control-an fMRI study. Journal of Cognition Neuroscience, 18, 1331–1342.CrossRefGoogle Scholar
  38. Lazeron, R. H., Rombouts, S. A., Machielsen, W. C., Scheltens, P., Witter, M. P., Uylings, H. B. et al. (2000). Visualizing brain activation during planning: the tower of London test adapted for functional MR imaging. AJNR American Journal of Neuroradiology, 21, 1407–1414.PubMedGoogle Scholar
  39. Lezak, M. (1995). Neuropsychological assessment. New York: Oxford University Press.Google Scholar
  40. Lezak, M., Howieson, D., & Loring, D. (2004). Neuropsychological Assessment, Fourth Edition. New York: Oxford University Press.Google Scholar
  41. Lezak, M., Howieson, D., & Loring, D. (2004a). Neuropsychological assessment (4th ed.). New York: Oxford University Press.Google Scholar
  42. Lombardi, W. J., Andreason, P. J., Sirocco, K. Y., Rio, D. E., Gross, R. E., Umhau, J. C. et al. (1999). Wisconsin Card Sorting Test performance following head injury: dorsolateral fronto-striatal circuit activity predicts perseveration. Journal of Clinical and Experimental Neuropsychology, 21, 2–16.PubMedCrossRefGoogle Scholar
  43. Malloy, P. F., & Richardson, E. D. (2001). Assessment of frontal lobe function. In S. P. Salloway, P. F. Malloy, & J. D. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 125–138). Washington, D.C.: American Psychiatric Publishing.Google Scholar
  44. McDermott, K. B., & Buckner, R. L. (2002). Functional neuroimaging studies of human memory retrieval. In L. R. Squire & D. L. Schacter (Eds.), The Neuropsychology of Memory (3rd ed., pp. 166–171). New York: Guilford Press.Google Scholar
  45. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103–107.PubMedCrossRefGoogle Scholar
  46. Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error-related brain activation during a Go/NoGo response inhibition task. Human Brain Mapping, 12, 131–143.PubMedCrossRefGoogle Scholar
  47. Mesulam, M. M. (1985). Principles of behavioral neurology. Philadelphia: F.A. Davis.Google Scholar
  48. Middleton, F. A. (2003). Fundamental and clinical evidence for basal ganglia influences on cognition. In M. Bedard, Y. Agid, S. Chouinard, S. Fahn, & A. Korczyn (Eds.), Mental and behavioral dysfunction in movement disorders (pp. 13–34). Totowa, N.J.: Humana Press, Inc.CrossRefGoogle Scholar
  49. Monchi, O., Petrides, M., Mejia-Constain, B., & Strafella, A. P. (2007). Cortical activity in Parkinson's disease during executive processing depends on striatal involvement. Brain, 130, 233–244.PubMedCrossRefGoogle Scholar
  50. Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. Journal of Neuroscience, 21, 7733–7741.PubMedGoogle Scholar
  51. Nagano-Saito, A., Leyton, M., Monchi, O., Goldberg, Y. K., He, Y., & Dagher, A. (2008). Dopamine depletion impairs frontostriatal functional connectivity during a set-shifting task. Journal of Neuroscience, 28, 3697–3706.PubMedCrossRefGoogle Scholar
  52. Ouellet, M. C., Beauchamp, M. H., Owen, A. M., & Doyon, J. (2004). Acquiring a cognitive skill with a new repeating version of the Tower of London task. Canadian Journal of Experimental Psychology, 58, 272–288.PubMedCrossRefGoogle Scholar
  53. Owen, A. M. (1997). Cognitive planning in humans: Neuropsychological, neuroanatomical and neuropharmacological perspectives. Progress in Neurobiology, 53, 431–450.PubMedCrossRefGoogle Scholar
  54. Owen, A. M. (2004). Cognitive dysfunction in Parkinson's disease: the role of frontostriatal circuitry. Neuroscientist, 10, 525–537.PubMedCrossRefGoogle Scholar
  55. Owen, A. M., Doyon, J., Dagher, A., Sadikot, A., & Evans, A. C. (1998). Abnormal basal ganglia outflow in Parkinson's disease identified with PET. Implications for higher cortical functions. Brain, 121(Pt 5), 949–965.PubMedCrossRefGoogle Scholar
  56. Owen, A. M., Roberts, A. C., Hodges, J. R., Summers, B. A., Polkey, C. E., & Robbins, T. W. (1993). Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. Brain, 116(Pt 5), 1159–1175.PubMedCrossRefGoogle Scholar
  57. Phillips, L. H., Wynn, V., Gilhooly, K. J., Della, S. S., & Logie, R. H. (1999). The role of memory in the Tower of London task. Memory, 7, 209–231.PubMedCrossRefGoogle Scholar
  58. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.PubMedCrossRefGoogle Scholar
  59. Rao, S. M., Bobholz, J. A., Hammeke, T. A., Rosen, A. C., Woodley, S. J., Cunningham, J. M. et al. (1997). Functional MRI evidence for subcortical participation in conceptual reasoning skills. Neuroreport, 8, 1987–1993.PubMedCrossRefGoogle Scholar
  60. Ravizza, S. M., McCormick, C. A., Schlerf, J. E., Justus, T., Ivry, R. B., & Fiez, J. A. (2006). Cerebellar damage produces selective deficits in verbal working memory. Brain, 129, 306–320.PubMedCrossRefGoogle Scholar
  61. Ray Li, C. S., Yan, P., Sinha, R., & Lee, T. W. (2008). Subcortical processes of motor response inhibition during a stop signal task. Neuroimage, 41, 1352–1363.CrossRefGoogle Scholar
  62. Rebok, G. W., Smith, C. B., Pascualvaca, D. M., Mirsky, A. F., Anthony, B. J., & Kellam, S. G. (1997). Developmental changes in attentional performance in urban children from eight to thirteen years. Child Neuropsychology, 3, 28–46.CrossRefGoogle Scholar
  63. Reichenberg, A., & Harvey, P. D. (2007). Neuropsychological impairments in schizophrenia: Integration of performance-based and brain imaging findings. Psychological Bulletin, 133, 833–858.PubMedCrossRefGoogle Scholar
  64. Richer, F. & Chouinard, S. (2003). Cognitive control in fronto-striatal disorders. In M. A. Bedard, S. Fahn, & Y. Agid (Eds.), Mental and behavioral dysfunction in movement disorders. New York: Humana Press.Google Scholar
  65. Robertson, I. H. (2004). Examining attentional rehabilitation. In M. I. Posner (Ed.), Cognitive neuroscience of attention (pp. 407–419). New York: The Guilford Press.Google Scholar
  66. Rugg, M. D., Otten, L. J., & Henson, R. N. (2002). The neural basis of episodic memory: evidence from functional neuroimaging. Philosophical Transactions of the Royal Society of London Series B Biological Science, 357, 1097–1110.CrossRefGoogle Scholar
  67. Rush, B. K., Barch, D. M., & Braver, T. S. (2006). Accounting for cognitive aging: context processing, inhibition or processing speed? Neuropsychology Development and Cognition B Aging Neuropsychology and Cognition, 13, 588–610.CrossRefGoogle Scholar
  68. Saling, L. L., & Phillips, J. G. (2007). Automatic behaviour: Efficient not mindless. Brain Research Bulletin, 73, 1–20.PubMedCrossRefGoogle Scholar
  69. Salmon, D. P., & Chan, A. S. (1994). Semantic memory deficits associated with Alzheimer's disease. In L. S.Cermak (Ed.), Neuropsychological explorations of memory and cognition (pp. 61–76). New York: Plenum Press.Google Scholar
  70. Schall, U., Johnston, P., Lagopoulos, J., Juptner, M., Jentzen, W., Thienel, R. et al. (2003). Functional brain maps of Tower of London performance: A positron emission tomography and functional magnetic resonance imaging study. Neuroimage, 20, 1154–1161.PubMedCrossRefGoogle Scholar
  71. Schmidt, M. (1996). Rey auditory-verbal learning test. Los Angeles: Western Psychological Services.Google Scholar
  72. Schulz, K. P., Fan, J., Tang, C. Y., Newcorn, J. H., Buchsbaum, M. S., Cheung, A. M. et al. (2004). Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event-related FMRI study. Ameican Journal of Psychiatry, 161, 1650–1657.CrossRefGoogle Scholar
  73. Seger, C. A. (2006). The basal ganglia in human learning. Neuroscientist, 12(4), 285–290.Google Scholar
  74. Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32, 265–278.PubMedCrossRefGoogle Scholar
  75. Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention. Trends in Cognitive Sciences, 12, 182–186.PubMedCrossRefGoogle Scholar
  76. Spreen, O. & Strauss, E. (1998). A Compendium of neuropsychological tests (2nd ed.). New York: Oxford University Press.Google Scholar
  77. Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.PubMedCrossRefGoogle Scholar
  78. Starkstein, S. E., & Kremer, J. (2001). The disinhibition syndrome and frontal-subcortical circuits. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 163–176). New York: The Guilford Press.Google Scholar
  79. Starkstein, S. E., & Robinson, R. G. (1996). Mood disorders in neurodegenerative diseases. Seminars in Clinical Neuropsychiatry, 1, 272–281.PubMedGoogle Scholar
  80. Strauss, E., Sherman, E., & Spreen, O. (2006). A compendium of neuropsychological tests (3rd ed.). New York: Oxford University Press.Google Scholar
  81. Strub, R. L., & Black, F. W. (2000). The mental status exam in neurology (4th ed.). Philadelphia: F. A. Davis.Google Scholar
  82. Toates, F. (2005a). Evolutionary psychology: Towards a more integrative model. Biology and Philosophy, 20, 305–328.Google Scholar
  83. Wagner, A. D. (2002). Cognitive control and episodic memory :Contributions from prefrontal cortex. In L. R. Squire & D. L. Schacter (Eds.), The neuropsychology of memory (3rd ed., pp. 174–192). New York: Guilford Press.Google Scholar
  84. Welsh, M. C., Pennington, B. F., & Groisser, D. B. (1991). A normative-developmental study of executive function: A window on prefrontal function in children. Developmental Neuropsychology, 7, 131–149.CrossRefGoogle Scholar
  85. Welsh, M. C., Satterlee-Cartmell, T., & Stine, M. (1999). Towers of Hanoi and London: Contribution of working memory and inhibition to performance. Brain and Cognition, 41, 231–242.PubMedCrossRefGoogle Scholar
  86. Wu, J. C., Gillin, J. C., Buchsbaum, M. S., Hershey, T., Hazlett, E., Sicotte, N. et al. (1991). The effect of sleep deprivation on cerebral glucose metabolic rate in normal humans assessed with positron emission tomography. Sleep, 14, 155–162.PubMedGoogle Scholar
  87. Wu, J. C., Gillin, J. C., Buchsbaum, M. S., Hershey, T., Johnson, J. C., & Bunney, W. E., Jr. (1992). Effect of sleep deprivation on brain metabolism of depressed patients. American Journal of Psychiatry, 149, 538–543.PubMedGoogle Scholar
  88. Yener, G. G., & Zaffos, A. (1999). Memory and the frontal lobes. In B. L.Miller & J. L. Cummings (Eds.), The human frontal lobes (pp. 288–303). New York: Guilford Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Park RidgeUSA
  2. 2.Manhattan BeachUSA

Personalised recommendations