Automaticity and Higher-Order Control in Communication: A Brief Introduction to Language and Social Cognition



Language is a powerful cognitive tool. It enables us to live in groups and to socialize. These are easy things to take for granted, and we often neglect the fact that language is actually much more than a social enabler. At base, language serves as a categorizer. It allows us to organize our world, to acquire information about it, to think about the world, to manipulate ideas, and to express all of this information to others. It evolved because it was biologically adaptive. It was necessary for language to evolve in order to facilitate interaction with a complex environment.


Basal Ganglion Social Cognition Ventral Striatum Implicit Learning Specific Language Impairment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackermann, H. (2008). Cerebellar contributions to speech production and speech perception: Psycholinguistic and neurobiological perspectives. Trends in Neuroscience, 31, 265–272.CrossRefGoogle Scholar
  2. Ackermann, H., Mathiak, K., & Riecker, A. (2007). The contribution of the cerebellum to speech production and speech perception: Clinical and functional imaging data. Cerebellum, 6, 202–213.PubMedCrossRefGoogle Scholar
  3. Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4, 165–178.PubMedCrossRefGoogle Scholar
  4. Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.Google Scholar
  5. Ambridge, B. (2008). Similarity to existing regular past-tense forms affects children’s judgments of novel past-tense forms. In XI International Congress for the Study of Child Language (IASCL), Edinburgh, 28 July–August 1 2008.Google Scholar
  6. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268–277.PubMedCrossRefGoogle Scholar
  7. Baron-Cohen, S. (2004). The cognitive neuroscience of autism. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 945–948.PubMedCrossRefGoogle Scholar
  8. Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U., & Fehr, E. (2008). Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 58, 639–650.PubMedCrossRefGoogle Scholar
  9. Beer, J. S., John, O. P., Scabini, D., & Knight, R. T. (2006). Orbitofrontal cortex and social behavior: Integrating self-monitoring and emotion-cognition interactions. Journal of Cognitive Neuroscience, 18, 871–879.PubMedCrossRefGoogle Scholar
  10. Beer, J. S., & Ochsner, K. N. (2006). Social cognition: A multi level analysis. Brain Research, 1079, 98–105.PubMedCrossRefGoogle Scholar
  11. Blakemore, S. J., Winston, J., & Frith, U. (2004). Social cognitive neuroscience: Where are we heading? Trends in Cognitive Sciences, 8, 216–222.PubMedCrossRefGoogle Scholar
  12. Botez, M. I., & Barbeau, A. (1971). Role of subcortical structures, and particularly of the thalamus, in the mechanisms of speech and language. A review. International Journal of Neurology, 8, 300–320.PubMedGoogle Scholar
  13. Cacioppo, J. T., Norris, C. J., Decety, J., Monteleone, G., & Nusbaum, H. (2008). In the eye of the beholder: Individual differences in perceived social isolation predict regional brain activation to social stimuli. Journal of Cognitive Neuroscience doi: 10.1162/jocn.2009.21007.Google Scholar
  14. Cangelosi, A., & Parisi, D. (2004). The processing of verbs and nouns in neural networks: Insights from synthetic brain imaging. Brain and Language, 89, 401–408.PubMedCrossRefGoogle Scholar
  15. Catani, M., Jones, D. K., Daly, E., Embiricos, N., Deeley, Q., Pugliese, L., et al. (2008). Altered cerebellar feedback projections in Asperger syndrome. Neuroimage, 41(4), 1184–1191.Google Scholar
  16. Ciaramidaro, A., Adenzato, M., Enrici, I., Erk, S., Pia, L., Bara, B. G., et al. (2007). The intentional network: How the brain reads varieties of intentions. Neuropsychologia, 45, 3105–3113.PubMedCrossRefGoogle Scholar
  17. Cohen, H., & Kegl, J. (1999). The contribution of subcortical structures in cognition and language. Brain and Cognition, 40, 287–288.PubMedCrossRefGoogle Scholar
  18. Crosson, B. (1992). Subcortical functions in language and memory. New York: The Guilford Press.Google Scholar
  19. Crosson, B. (1999). Subcortical mechanisms in language: Lexical-semantic mechanisms and the thalamus. Brain and Cognition, 40, 414–438.PubMedCrossRefGoogle Scholar
  20. Cunningham, W. A., & Zelazo, P. D. (2007). Attitudes and evaluations: A social cognitive neuroscience perspective. Trends in Cognitive Sciences, 11, 97–104.PubMedCrossRefGoogle Scholar
  21. Delgado, M. R. (2008). Fool me once, shame on you; fool me twice, shame on oxytocin. Neuron, 58, 470–471.PubMedCrossRefGoogle Scholar
  22. Dronkers, N. F., Wilkins, D. P., Van, V. R., Jr., Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92, 145–177.PubMedCrossRefGoogle Scholar
  23. Duffau, H. (2008). The anatomo-functional connectivity of language revisited new insights provided by electrostimulation and tractography. Neuropsychologia, 46, 927–934.PubMedCrossRefGoogle Scholar
  24. Duffau, H., Gatignol, P., Mandonnet, E., Peruzzi, P., Tzourio-Mazoyer, N., & Capelle, L. (2005). New insights into the anatomo-functional connectivity of the semantic system: A study using cortico-subcortical electrostimulations. Brain, 128, 797–810.PubMedCrossRefGoogle Scholar
  25. Eitam, B., Hassin, R. R., & Schul, Y. (2008). Nonconscious goal pursuit in novel environments: The case of implicit learning. Psychological Science, 19, 261–267.PubMedCrossRefGoogle Scholar
  26. Fawcett, A. J., & Nicolson, R. I. (2007). Dyslexia, learning, and pedagogical neuroscience. Developmental Medicine and Child Neurology, 49, 306–311.PubMedCrossRefGoogle Scholar
  27. ffytche, D. H., & Catani, M. (2005). Beyond localization: From hodology to function. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 767–779.PubMedCrossRefGoogle Scholar
  28. Finch, A. J., Nicolson, R. I., & Fawcett, A. J. (2002). Evidence for a neuroanatomical difference within the olivo-cerebellar pathway of adults with dyslexia. Cortex, 38, 529–539.PubMedCrossRefGoogle Scholar
  29. Fliessbach, K., Weber, B., Trautner, P., Dohmen, T., Sunde, U., Elger, C. E., et al. (2007). Social comparison affects reward-related brain activity in the human ventral striatum. Science, 318, 1305–1308.PubMedCrossRefGoogle Scholar
  30. Frank, M. J., O’Reilly, R. C., & Curran, T. (2006). When memory fails, intuition reigns: Midazolam enhances implicit inference in humans. Psychological Science, 17, 700–707.PubMedCrossRefGoogle Scholar
  31. Frith, C. D., & Frith, U. (2007). Social cognition in humans. Current Biology, 17, R724–R732.PubMedCrossRefGoogle Scholar
  32. Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298, 1569–1579.PubMedCrossRefGoogle Scholar
  33. Heekeren, H. R., Wartenburger, I., Marschner, A., Mell, T., Villringer, A., & Reischies, F. M. (2007). Role of ventral striatum in reward-based decision making. Neuroreport, 18, 951–955.PubMedCrossRefGoogle Scholar
  34. Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58, 284–294.PubMedCrossRefGoogle Scholar
  35. Katzir, T., Misra, M., & Poldrack, R. A. (2005). Imaging phonology without print: Assessing the neural correlates of phonemic awareness using fMRI. Neuroimage, 27, 106–115.PubMedCrossRefGoogle Scholar
  36. Ketteler, D., Kastrau, F., Vohn, R., & Huber, W. (2008). The subcortical role of language processing. High level linguistic features such as ambiguity-resolution and the human brain; an fMRI study. Neuroimage, 39, 2002–2009.PubMedCrossRefGoogle Scholar
  37. Kirsch, J. A., Gunturkun, O., & Rose, J. (2008). Insight without cortex: Lessons from the avian brain. Consciousness and Cognition, 17(2), 475–483.Google Scholar
  38. Klin, A., Volkmar, F. R., Sparrow, S. S., Cicchetti, D. V., & Rourke, B. P. (1995). Validity and neuropsychological characterization of Asperger syndrome: Convergence with nonverbal learning disabilities syndrome. Journal of Child Psychological Psychiatry, 36, 1127–1140.CrossRefGoogle Scholar
  39. Knutson, K. M., Mah, L., Manly, C. F., & Grafman, J. (2007). Neural correlates of automatic beliefs about gender and race. Human Brain Mapping., 28, 915–930.PubMedCrossRefGoogle Scholar
  40. Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., et al. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446, 908–911.PubMedCrossRefGoogle Scholar
  41. Kolb, B., & Whishaw, I. Q. (2008). Fundamentals of human neuropsychology. New York: Worth.Google Scholar
  42. Lamm, C., Batson, C. D., & Decety, J. (2007). The neural substrate of human empathy: Effects of perspective-taking and cognitive appraisal. Journal of Cognitive Neuroscience, 19, 42–58.PubMedCrossRefGoogle Scholar
  43. Lieberman, M. (2000). Intuition: A social cognitive neuroscience approach. Psychological Bulletin, 126(1), 109–137.Google Scholar
  44. Lieberman, P. (2002). On the nature and evolution of the neural bases of human language. American Journal of Physical Anthropology, Suppl. 35, 36–62.CrossRefGoogle Scholar
  45. Lieberman, M. D. (2007). The X- and C-Systems: The neural basis of automatic and controlled social cognition. In E. Harman-Jones & P. Winkielman (Eds.), Social neuroscience: Integrating biological and psychological explanations of social behavior (pp. 290–315). New York: Guilford Press.Google Scholar
  46. Mann, V. (2003). Language processes: Keys to reading disabilities. In H. L. Swanson, K. A. Harris, & S. Graham (Eds.), Handbook of learning disabilities (pp. 213–228). New York: Guilford Press.Google Scholar
  47. Mega, M., Cummings, J. L., Salloway, S., & Malloy, P. (1997). The limbic system: An anatomic, phylogenetic, and clinical perspective. In S. P. Salloway, P. Malloy, &J. L. Cummings (Eds.), The neuropsychiatry of limbic and subcortical disorders (pp. 3–18). Washington, DC: American Psychiatric Press, Inc.Google Scholar
  48. Newman, A. J., Ullman, M. T., Pancheva, R., Waligura, D. L., & Neville, H. J. (2007). An ERP study of regular and irregular English past tense inflection. Neuroimage, 34, 435–445.PubMedCrossRefGoogle Scholar
  49. Nicolson, R. I., & Fawcett, A. J. (2006). Do cerebellar deficits underlie phonological problems in dyslexia? Developmental Science, 9, 259–262.PubMedCrossRefGoogle Scholar
  50. Nicolson, R. I., & Fawcett, A. J. (2007). Procedural learning difficulties: Reuniting the developmental disorders? Trends in Neurosciences, 30, 135–141.PubMedCrossRefGoogle Scholar
  51. Pexman, P. M., Hargreaves, I. S., Edwards, J. D., Henry, L. C., & Goodyear, B. G. (2007). Neural correlates of concreteness in semantic categorization. Journal of Cognitive Neuroscience, 19, 1407–1419.PubMedCrossRefGoogle Scholar
  52. Picard, H., Amado, I., Mouchet-Mages, S., Olie, J. P., & Krebs, M. O. (2008). The role of the cerebellum in schizophrenia: An update of clinical, cognitive, and functional evidences. Schizophrenia Bulletin, 34, 155–172.PubMedCrossRefGoogle Scholar
  53. Podell, K., Lovell, M., & Goldberg, E. (2001). Lateralization of frontal lobe functions. In S. Salloway, P. Malloy, & J. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 83–100). Washington, DC: American Psychiatric.Google Scholar
  54. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRefGoogle Scholar
  55. Rizzolatti, G., Fogassi, L., & Gallese, V. (2006). Mirrors of the mind. Scientific American, 295, 54–61.PubMedCrossRefGoogle Scholar
  56. Rourke, B. P. (1989). Nonverbal learning disabilities: The syndrome and the model. New York: Guilford Press.Google Scholar
  57. Rourke, B. P., & Tsatsanis, K. D. (1996). Syndrome of nonverbal learning disabilities: Psycholinguistic assets and deficits. Topics in Language Disorders, 16, 30–44.CrossRefGoogle Scholar
  58. Ruschemeyer, S. A., Brass, M., & Friederici, A. D. (2007). Comprehending prehending: Neural correlates of processing verbs with motor stems. Journal of Cognitive Neuroscience, 19, 855–865.PubMedCrossRefGoogle Scholar
  59. Salmelin, R., & Kujala, J. (2006). Neural representation of language: Activation versus long-range connectivity. Trends in Cognitive Sciences, 10, 519–525.PubMedCrossRefGoogle Scholar
  60. Schmahmann, J. D., Weilburg, J. B., & Sherman, J. C. (2007). The neuropsychiatry of the cerebellum-insights from the clinic. Cerebellum, 6(3), 254–267.Google Scholar
  61. Schore, A. N. (2002). Dysregulation of the right brain: A fundamental mechanism of traumatic attachment and the psychopathogenesis of posttraumatic stress disorder. The Australian and New Zealand Journal of Psychiatry, 36, 9–30.PubMedCrossRefGoogle Scholar
  62. Schore, A. N. (2005). Back to basics: Attachment, affect regulation, and the developing right brain: Linking developmental neuroscience to pediatrics. Pediatrics in Review, 26, 204–217.PubMedCrossRefGoogle Scholar
  63. Schulte-Ruther, M., Markowitsch, H. J., Fink, G. R., & Piefke, M. (2007). Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: A functional magnetic resonance imaging approach to empathy. Journal of Cognitive Neuroscience, 19, 1354–1372.PubMedCrossRefGoogle Scholar
  64. Schutter, D. J., & van, H. J. (2005). The cerebellum on the rise in human emotion. Cerebellum, 4, 290–294.PubMedCrossRefGoogle Scholar
  65. Shamay-Tsoory, S. G., & Aharon-Peretz, J. (2007). Dissociable prefrontal networks for cognitive and affective theory of mind: A lesion study. Neuropsychologia, 45, 3054–3067.PubMedCrossRefGoogle Scholar
  66. Siegel, D. J. (2007). The mindful brain: Reflection and attunement in the cultivation of well-being. New York: W. W. Norton.Google Scholar
  67. Squire, L. R. (1987). Memory and brain. New York: Oxford University Press.Google Scholar
  68. Squire, L. R., Clark, J., & Bayley, P. J. (2004). Medial temporal lobe functions and memory. In M. Gazzinaga (Ed.), The cognitive neurosciences (3rd ed., pp. 691–708).Google Scholar
  69. Subiaul, F., Vonk, J., Okamoto-Barth, S., & Barth, J. (2008). Do chimpanzees learn reputation by observation? Evidence from direct and indirect experience with generous and selfish strangers. Animal Cognition, 11(4), 611–623.Google Scholar
  70. Uddin, L. Q., Kaplan, J. T., Molnar-Szakacs, I., Zaidel, E., & Iacoboni, M. (2005). Self-face recognition activates a frontoparietal “mirror” network in the right hemisphere: An event-related fMRI study. Neuroimage, 25, 926–935.PubMedCrossRefGoogle Scholar
  71. Ullman, M. T. (2001). A neurocognitive perspective on language: The declarative/procedural model. Nature Reviews Neuroscience, 2, 717–726.PubMedCrossRefGoogle Scholar
  72. Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 92(1–2), 231–270.Google Scholar
  73. Ullman, M. T. (2006). Is Broca’s area part of a basal ganglia thalamocortical circuit? Cortex, 42, 480–485.PubMedCrossRefGoogle Scholar
  74. Ullman, M. T., & Pierpont, E. I. (2005). Specific language impairment is not specific to language: The procedural deficit hypothesis. Cortex, 41, 399–433.PubMedCrossRefGoogle Scholar
  75. Vlachos, F., Papathanasiou, I., & Andreou, G. (2007). Cerebellum and reading. Folia Phoniatrica et Logopaedica, 59, 177–183.PubMedCrossRefGoogle Scholar
  76. Walenski, M., & Ullman, M. T. (2005). The science of language. The Linguistic Review, 22(2–4), 327–346.Google Scholar
  77. Yener, G. G., & Zaffos, A. (1999). Memory and the frontal lobes. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes (pp. 288–303). New York: Guilford Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Park RidgeUSA
  2. 2.Manhattan BeachUSA

Personalised recommendations