The Cerebellum: Quality Control, Creativity, Intuition, and Unconscious Working Memory

  • Leonard F. Koziol
  • Deborah Ely Budding


Cerebellum is a Latin word that means “little brain.” While the cerebellum might be little in gross appearance relative to the neocortex, it is certainly not little in terms of its composition and function. The cerebellum actually contains more neurons than the remainder of the human brain, even though it comprises only about ten percent of total brain weight (Houk & Mugnaini, 2003). The cerebellum also lies outside of the cerebral cortex. Perhaps this is one of the reasons why so little attention has historically been paid to understanding its possible contributions to behavior. From the viewpoint of a cortico-centric bias, regions outside the cortex become less important. The cerebellum has traditionally been viewed as a structure coordinating movement, and until recently, this viewpoint has rarely been given a second thought (Bower & Parsons, 2003).


Purkinje Cell Cerebellar Hemisphere Parallel Fiber Climbing Fiber Deep Cerebellar Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackerman, S. L., & Daum, I. (2003). Neuropsychological deficits in cerebellar syndromes. In M. A. Bedard, Y. Agid, S. Chouinard, S. Fahn, & A. Korczyn (Eds.), Mental and behavioral dysfunction in movement disorders (pp. 147–158). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  2. Ahsgren, I., Baldwin, I., Goetzinger-Falk, C., Erikson, A., Flodmark, O., & Gillberg, C. (2005). Ataxia, autism, and the cerebellum: A clinical study of 32 individuals with congenital ataxia. Developmental Medicine and Child Neurology, 47, 193–198.PubMedCrossRefGoogle Scholar
  3. Akshoomoff, N. A., Courchesne, E., & Townsend, J. (1997). Attention coordination and anticipatory control. International Review of Neurobiology, 41, 575–598.PubMedCrossRefGoogle Scholar
  4. Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. American Journal of Psychiatry, 160, 262–273.PubMedCrossRefGoogle Scholar
  5. Allen, G., McColl, R., Barnard, H., Ringe, W. K., Fleckenstein, J., & Cullum, C. M. (2005). Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage, 28, 39–48.PubMedCrossRefGoogle Scholar
  6. Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.Google Scholar
  7. Andreasen, N. C., Nopoulos, P., O’Leary, D. S., Miller, D. D., Wassink, T., & Flaum, M. (1999). Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms. Biological Psychiatry, 46, 908–920.PubMedCrossRefGoogle Scholar
  8. Andreasen, N. C., Paradiso, S., & O’Leary, D. S. (1998). “Cognitive dysmetria” as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24, 203–218.PubMedCrossRefGoogle Scholar
  9. Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64(2), 81–88.Google Scholar
  10. Arslantas, A., Erhan, C., Emre, E., & Esref, T. (2002). Transient cerebellar mutism after posterior fossa surgery. Journal of Postgraduate Medicine, 48, 158–159.PubMedGoogle Scholar
  11. Ashtari, M., Kumra, S., Bhaskar, S. L., Clarke, T., Thaden, E., Cervellione, K. L., et al. (2005). Attention-deficit/hyperactivity disorder: A preliminary diffusion tensor imaging study. Biological Psychiatry, 57, 448–455.PubMedCrossRefGoogle Scholar
  12. Attwell, P. J., Ivarsson, M., Millar, L., & Yeo, C. H. (2002). Cerebellar mechanisms in eyeblink conditioning. Annals of the New York Academy of Sciences, 978, 79–92.PubMedCrossRefGoogle Scholar
  13. Azizi, S. A. (2007). And the olive said to the cerebellum: Organization and functional significance of the olivo-cerebellar system. The Neuroscientist, 13, 616–625.CrossRefGoogle Scholar
  14. Banich, M. T. (2004). Cognitive neuroscience and neuropsychology (2nd ed.). New York: Houghton-Mifflin.Google Scholar
  15. Bares, M., Lungu, O., Liu, T., Waechter, T., Gomez, C. M., & Ashe, J. (2007). Impaired predictive motor timing in patients with cerebellar disorders. Experimental Brain Research, 180, 355–365.CrossRefGoogle Scholar
  16. Bigelow, N. O., Turner, B. M., Andreasen, N. C., Paulsen, J. S., O’Leary, D. S., & Ho, B. C. (2006). Prism adaptation in schizophrenia. Brain Cognition, 61, 235–242.CrossRefGoogle Scholar
  17. Blumenfeld, H. (2002). Neuroanatomy through clinical cases. Sunderland, MA: Sinauer Associates.Google Scholar
  18. Bower, J. M. (2002). The organization of cerebellar cortical circuitry revisited: Implications for function. Annals of the New York Academy of Sciences, 978, 135–155.PubMedCrossRefGoogle Scholar
  19. Bower, J. M., & Parsons, L. M. (2003). Rethinking the “lesser brain”. Scientific American, 289, 50–57.PubMedCrossRefGoogle Scholar
  20. Brunia, C. H., & van Boxtel, G. J. (2001). Wait and see. International Journal of Psychophysiology, 43, 59–75.PubMedCrossRefGoogle Scholar
  21. Catani, M., Jones, D. K., Daly, E., Embiricos, N., Deeley, Q., Pugliese, L., et al. (2008). Altered cerebellar feedback projections in Asperger syndrome. Neuroimage, 41(4), 1184–1191.Google Scholar
  22. Chavez-Eakle, R. A. (2007). From incubation to insight: Working memory and the role of the cerebellum. Creativity Research Journal, 19, 31–34.CrossRefGoogle Scholar
  23. Courchesne, E., & Allen, G. (1997). Prediction and preparation, fundamental functions of the cerebellum. Learning and Memory, 4, 1–35.PubMedCrossRefGoogle Scholar
  24. Courchesne, E., Townsend, J., Akshoomoff, N. A., Saitoh, O., Yeung-Courchesne, R., Lincoln, A. J., et al. (1994). Impairment in shifting attention in autistic and cerebellar patients. Behavioral Neuroscience, 108, 848–865.PubMedCrossRefGoogle Scholar
  25. Dennis, M., Edelstein, K., Hetherington, R., Copeland, K., Frederick, J., Blaser, S. E., et al. (2004). Neurobiology of perceptual and motor timing in children with spina bifida in relation to cerebellar volume. Brain, 127, 1292–1301.PubMedCrossRefGoogle Scholar
  26. Deoni, S. C., & Catani, M. (2007). Visualization of the deep cerebellar nuclei using quantitative T1 and rho magnetic resonance imaging at 3 Tesla. Neuroimage, 37, 1260–1266.PubMedCrossRefGoogle Scholar
  27. Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71, 44–56.PubMedCrossRefGoogle Scholar
  28. Diedrichsen, J., Criscimagna-Hemminger, S. E., & Shadmehr, R. (2007). Dissociating timing and coordination as functions of the cerebellum. Journal of Neuroscience, 27, 6291–6301.PubMedCrossRefGoogle Scholar
  29. Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12, 961–974.PubMedCrossRefGoogle Scholar
  30. Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41, 252–262.PubMedCrossRefGoogle Scholar
  31. Doyon, J., & Ungerleider, L. G. (2002). Functional anatomy of motor skill learning. In L. Squire & D. Schacter (Eds.), Neuropsychology of memory (3rd ed., pp. 225–238). New York: Guilford Press.Google Scholar
  32. Dreher, J. C., & Grafman, J. (2002). The roles of the cerebellum and basal ganglia in timing and error prediction. European Journal of Neuroscience, 16, 1609–1619.PubMedCrossRefGoogle Scholar
  33. Ekerot, C. F., & Jorntell, H. (2003). Parallel fiber receptive fields: A key to understanding cerebellar operation and learning. Cerebellum, 2, 101–109.PubMedCrossRefGoogle Scholar
  34. Fiez, J. A., Petersen, S. E., Cheney, M. K., & Raichle, M. E. (1992). Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain, 115 (Pt. 1), 155–178.PubMedCrossRefGoogle Scholar
  35. Fink, G. R., Marshall, J. C., Weiss, P. H., Stephan, T., Grefkes, C., Shah, N. J., et al. (2003). Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: An fMRI study with clinical implications. Neuroimage, 20, 1505–1517.PubMedCrossRefGoogle Scholar
  36. Fitzpatrick, L. E., Jackson, M., & Crowe, S. F. (2008). The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning. Neuroscience and Biobehavioral Reviews, 32, 466–485.PubMedCrossRefGoogle Scholar
  37. Fox, C. A., & Barnard, J. W. (1957). A quantitative study of the Purkinje cell dendritic branchlets and their relationship to afferent fibres. Journal of Anatomy, 91, 299–313.PubMedGoogle Scholar
  38. Frank, M. J., Scheres, A., & Sherman, S. J. (2007). Understanding decision-making deficits in neurological conditions: Insights from models of natural action selection. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1641–1654.PubMedCrossRefGoogle Scholar
  39. Gautier, J. F., Del, P. A., Chen, K., Salbe, A. D., Bandy, D., Pratley, R. E., et al. (2001). Effect of satiation on brain activity in obese and lean women. Obesity Research, 9, 676–684.PubMedCrossRefGoogle Scholar
  40. Glickstein, M. (1994). Cerebellar agenesis. Brain, 117 (Pt. 5), 1209–1212.PubMedCrossRefGoogle Scholar
  41. Gordon, N. (2007). The cerebellum and cognition. European Journal of Paediatric Neurology, 11, 232–234.PubMedCrossRefGoogle Scholar
  42. Gowen, E., & Miall, R. C. (2005). Behavioural aspects of cerebellar function in adults with Asperger syndrome. Cerebellum, 4, 279–289.PubMedCrossRefGoogle Scholar
  43. Gowen, E., & Miall, R. C. (2007). The cerebellum and motor dysfunction in neuropsychiatric disorders. Cerebellum, 6, 268–279.PubMedCrossRefGoogle Scholar
  44. Griffiths, D., Derbyshire, S., Stenger, A., & Resnick, N. (2005). Brain control of normal and overactive bladder. Journal of Urology, 174, 1862–1867.PubMedCrossRefGoogle Scholar
  45. Grossberg, S., & Seidman, D. (2006). Neural dynamics of autistic behaviors: Cognitive, emotional, and timing substrates. Psychological Review, 113, 483–525.PubMedCrossRefGoogle Scholar
  46. Guzzetta, F., Mercuri, E., & Spano, M. (2000). Congenital lesions of cerebellum. In A. Benton, E. De Renzi, & D. Riva (Eds.), Localization of brain lesions and development functions (pp. 147–152). London: John Libbey.Google Scholar
  47. Hatta, T., Masui, T., Ito, Y., Ito, E., Hasegawa, Y., & Matsuyama, Y. (2004). Relation between the prefrontal cortex and cerebro-cerebellar functions: Evidence from the results of stabilometrical indexes. Applied Neuropsychology, 11, 153–160.PubMedCrossRefGoogle Scholar
  48. Higuchi, S., Imamizu, H., & Kawato, M. (2007). Cerebellar activity evoked by common tool-use execution and imagery tasks: An fMRI study. Cortex, 43, 350–358.PubMedCrossRefGoogle Scholar
  49. Hokkanen, L. S., Kauranen, V., Roine, R. O., Salonen, O., & Kotila, M. (2006). Subtle cognitive deficits after cerebellar infarcts. European Journal of Neurology, 13, 161–170.PubMedCrossRefGoogle Scholar
  50. Holstege, G., & Georgiadis, J. R. (2004). The emotional brain: Neural correlates of cat sexual behavior and human male ejaculation. Progress in Brain Research, 143, 39–45.PubMedCrossRefGoogle Scholar
  51. Horwitz, B., & Smith, J. F. (2008). A link between neuroscience and informatics: Large-scale modeling of memory processes. Methods, 44, 338–347.PubMedCrossRefGoogle Scholar
  52. Houk, J. C., Bastianen, C., Fansler, D., Fishbach, A., Fraser, D., Reber, P. J., et al. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1573–1583.PubMedCrossRefGoogle Scholar
  53. Houk, J. C., & Mugnaini, E. (2003). Cerebellum. In L. Squire, F. E. Bloom, S. K. McConnell, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (pp. 841–872). San Diego: Academic Press.Google Scholar
  54. Hu, D., Shen, H., & Zhou, Z. (2008). Functional asymmetry in the cerebellum: A brief review. Cerebellum, doi: 10.1007/512311-088-0031-2.Google Scholar
  55. Huber, J. F., Bradley, K., Spiegler, B., & Dennis, M. (2007). Long-term neuromotor speech deficits in survivors of childhood posterior fossa tumors: Effects of tumor type, radiation, age at diagnosis, and survival years. Journal of Child Neurology, 22, 848–854.PubMedCrossRefGoogle Scholar
  56. Hubert, V., Beaunieux, H., Chetelat, G., Platel, H., Landeau, B., Danion, J. M., et al. (2007). The dynamic network subserving the three phases of cognitive procedural learning. Human Brain Mapping, 28, 1415–1429.PubMedCrossRefGoogle Scholar
  57. Imamizu, H., Higuchi, S., Toda, A., & Kawato, M. (2007). Reorganization of brain activity for multiple internal models after short but intensive training. Cortex, 43, 338–349.PubMedCrossRefGoogle Scholar
  58. Isope, P., Dieudonne, S., & Barbour, B. (2002). Temporal organization of activity in the cerebellar cortex: A manifesto for synchrony. Annals of the New York Academy of Sciences, 978, 164–174.PubMedCrossRefGoogle Scholar
  59. Ito, M. (1993). Movement and thought: Identical control mechanisms by the cerebellum. Trends in Neurosciences, 16, 448–450.PubMedCrossRefGoogle Scholar
  60. Ito, M. (2002a). Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Annals of the New York Academy of Sciences, 978, 273–288.PubMedCrossRefGoogle Scholar
  61. Ito, M. (2002b). Hopes for cerebellar research in the 21st century. Cerebellum, 1, 93–94.PubMedCrossRefGoogle Scholar
  62. Ito, M. (2005). Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Progress in Brain Research, 148, 95–109.PubMedCrossRefGoogle Scholar
  63. Ito, M. (2007). On “How working memory and the cerebellum collaborate to produce creativity and innovation” by L. R. Vandervert, P. H. Schimpf, and H. Liu. Creativity Research Journal, 19, 35–38.CrossRefGoogle Scholar
  64. Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9, 304–313.PubMedCrossRefGoogle Scholar
  65. Jansen, A., Floel, A., Van, R. J., Konrad, C., Rotte, M., Forster, A. F., et al. (2005). Crossed cerebro-cerebellar language dominance. Human Brain Mapping, 24, 165–172.PubMedCrossRefGoogle Scholar
  66. Jantzen, K. J., Steinberg, F. L., & Kelso, J. A. (2005). Functional MRI reveals the existence of modality and coordination-dependent timing networks. Neuroimage, 25, 1031–1042.PubMedCrossRefGoogle Scholar
  67. Jimenez-Diaz, L., Navarro-Lopez, J. D., Gruart, A., & gado-Garcia, J. M. (2004). Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. Journal of Neuroscience, 24, 9138–9145.PubMedCrossRefGoogle Scholar
  68. Kalashnikova, L. A., Zueva, Y. V., Pugacheva, O. V., & Korsakova, N. K. (2005). Cognitive impairments in cerebellar infarcts. Neuroscience and Behavioral Physiology, 35, 773–779.PubMedCrossRefGoogle Scholar
  69. Karlsgodt, K. H., van Erp, T. G., Poldrack, R. A., Bearden, C. E., Nuechterlein, K. H., & Cannon, T. D. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry, 63, 512–518.PubMedCrossRefGoogle Scholar
  70. Krain, A. L., & Castellanos, F. X. (2006). Brain development and ADHD. Clinical Psychology Review, 26, 433–444.PubMedCrossRefGoogle Scholar
  71. Lang, C. E., & Bastian, A. J. (2001). Additional somatosensory information does not improve cerebellar adaptation during catching. Clinical Neurophysiology, 112, 895–907.PubMedCrossRefGoogle Scholar
  72. Lavond, D. G. (2002). Role of the nuclei in eyeblink conditioning. Annals of the New York Academy of Sciences, 978, 93–105.PubMedCrossRefGoogle Scholar
  73. Leggio, M. G., Tedesco, A. M., Chiricozzi, F. R., Clausi, S., Orsini, A., & Molinari, M. (2008). Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain, 131, 1332–1343.PubMedCrossRefGoogle Scholar
  74. Leroi, I., O’Hearn, E., Marsh, L., Lyketsos, C. G., Rosenblatt, A., Ross, C. A., et al. (2002). Psychopathology in patients with degenerative cerebellar diseases: A comparison to Huntington’s disease. American Journal of Psychiatry, 159, 1306–1314.PubMedCrossRefGoogle Scholar
  75. Limperopoulos, C., & du Plessis, A. J. (2006). Disorders of cerebellar growth and development. Current Opinion in Pediatrics, 18, 621–627.PubMedCrossRefGoogle Scholar
  76. Limperopoulos, C., & du Plessis, A. J. (2007). Injury to the developing cerebellum: Mechanisms and consequences. NeoReviews, 8, e409–e417.CrossRefGoogle Scholar
  77. Limperopoulos, C., Soul, J. S., Gauvreau, K., Huppi, P. S., Warfield, S. K., Bassan, H., et al. (2005). Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics, 115, 688–695.PubMedCrossRefGoogle Scholar
  78. Limperopoulos, C., Soul, J. S., Haidar, H., Huppi, P. S., Bassan, H., Warfield, S. K., et al. (2005). Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics, 116, 844–850.PubMedCrossRefGoogle Scholar
  79. Mackie, S., Shaw, P., Lenroot, R., Pierson, R., Greenstein, D. K., Nugent, T. F., III, et al. (2007). Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. American Journal of Psychiatry, 164, 647–655.PubMedCrossRefGoogle Scholar
  80. Maddox, W. T., Aparicio, P., Marchant, N. L., & Ivry, R. B. (2005). Rule-based category learning is impaired in patients with Parkinson’s disease but not in patients with cerebellar disorders. Journal of Cognitive Neuroscience, 17, 707–723.PubMedCrossRefGoogle Scholar
  81. Makris, N., Hodge, S. M., Haselgrove, C., Kennedy, D. N., Dale, A., Fischl, B., et al. (2003). Human cerebellum: Surface-assisted cortical parcellation and volumetry with magnetic resonance imaging. Journal of Cognitive Neuroscience, 15, 584–599.PubMedCrossRefGoogle Scholar
  82. Messerschmidt, A., Fuiko, R., Prayer, D., Brugger, P. C., Boltshauser, E., Zoder, G., et al. (2008). Disrupted cerebellar development in preterm infants is associated with impaired neurodevelopmental outcome. European Journal of Pediatrics, 167(10), 1141–1147.Google Scholar
  83. Meston, C. M., Levin, R. J., Sipski, M. L., Hull, E. M., & Heiman, J. R. (2004). Women’s orgasm. Annual Review of Sex Research, 15, 173–257.PubMedGoogle Scholar
  84. Mesulam, M. M. (1985). Principles of behavioral neurology. Philadelphia: F. A. Davis.Google Scholar
  85. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research. Brain Research Reviews, 31, 236–250.PubMedCrossRefGoogle Scholar
  86. Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21, 700–712.PubMedGoogle Scholar
  87. Molinari, M., Leggio, M. G., Solida, A., Ciorra, R., Misciagna, S., Silveri, M. C., et al. (1997). Cerebellum and procedural learning: Evidence from focal cerebellar lesions. Brain, 120 (Pt. 10), 1753–1762.PubMedCrossRefGoogle Scholar
  88. Morton, S. M., & Bastian, A. J. (2004). Prism adaptation during walking generalizes to reaching and requires the cerebellum. Journal of Neurophysiology, 92, 2497–2509.PubMedCrossRefGoogle Scholar
  89. Mulder, M. J., Baeyens, D., Davidson, M. C., Casey, B. J., van den, B. E., van, E. H., et al. (2008). Familial vulnerability to ADHD affects activity in the cerebellum in addition to the prefrontal systems. Journal of the American Academy of Child and Adolescent Psychiatry Psychiatry, 47, 68–75.CrossRefGoogle Scholar
  90. Nosarti, C., Giouroukou, E., Healy, E., Rifkin, L., Walshe, M., Reichenberg, A., et al. (2008). Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome. Brain, 131, 205–217.PubMedGoogle Scholar
  91. Nowak, D. A., Timmann, D., & Hermsdorfer, J. (2007). Dexterity in cerebellar agenesis. Neuropsychologia, 45, 696–703.PubMedCrossRefGoogle Scholar
  92. Okugawa, G., Nobuhara, K., Minami, T., Takase, K., Sugimoto, T., Saito, Y., et al. (2006). Neural disorganization in the superior cerebellar peduncle and cognitive abnormality in patients with schizophrenia: A diffusion tensor imaging study. Progress in Neuropsychopharmacology & Biological Psychiatry, 30, 1408–1412.CrossRefGoogle Scholar
  93. Ortiz-Mantilla, S., Choudhury, N., Leevers, H., & Benasich, A. A. (2008). Understanding language and cognitive deficits in very low birth weight children. Developmental Psychobiology, 50, 107–126.PubMedCrossRefGoogle Scholar
  94. Parvizi, J., Anderson, S. W., Martin, C. O., Damasio, H., & Damasio, A. R. (2001). Pathological laughter and crying: A link to the cerebellum. Brain, 124, 1708–1719.PubMedCrossRefGoogle Scholar
  95. Parvizi, J., & Schiffer, R. (2007). Exaggerated crying and tremor with a cerebellar cyst. Journal of Neuropsychiatry Clinical Neurosciences, 19, 187–190.CrossRefGoogle Scholar
  96. Petrosini, L. (2007). “Do what I do” and “do how I do”: Different components of imitative learning are mediated by different neural structures. Neuroscientist, 13, 335–348.PubMedCrossRefGoogle Scholar
  97. Picard, H., Amado, I., Mouchet-Mages, S., Olie, J. P., & Krebs, M. O. (2008). The role of the cerebellum in schizophrenia: An update of clinical, cognitive, and functional evidences. Schizophrenia Bulletin, 34, 155–172.PubMedCrossRefGoogle Scholar
  98. Powell, S., Magnotta, V. A., Johnson, H., Jammalamadaka, V. K., Pierson, R., & Andreasen, N. C. (2008). Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures. Neuroimage, 39, 238–247.PubMedCrossRefGoogle Scholar
  99. Ramnani, N., Behrens, T. E., Johansen-Berg, H., Richter, M. C., Pinsk, M. A., Andersson, J. L., et al. (2006). The evolution of prefrontal inputs to the cortico-pontine system: Diffusion imaging evidence from Macaque monkeys and humans. Cerebral Cortex, 16, 811–818.PubMedCrossRefGoogle Scholar
  100. Rapoport, M., van, R. R., & Mayberg, H. (2000). The role of the cerebellum in cognition and behavior: A selective review. Journal of Neuropsychiatry Clinical Neurosciences, 12, 193–198.CrossRefGoogle Scholar
  101. Ravizza, S. M., McCormick, C. A., Schlerf, J. E., Justus, T., Ivry, R. B., & Fiez, J. A. (2006). Cerebellar damage produces selective deficits in verbal working memory. Brain, 129, 306–320.PubMedCrossRefGoogle Scholar
  102. Richter, S., Dimitrova, A., Hein-Kropp, C., Wilhelm, H., Gizewski, E., & Timmann, D. (2005). Cerebellar agenesis II: Motor and language functions. Neurocase, 11, 103–113.PubMedCrossRefGoogle Scholar
  103. Riva, D. (2000). Cerebellar contribution to behavior and cognition in children. Journal of Neurolinguistics, 13, 215–225.CrossRefGoogle Scholar
  104. Riva, D., & Giorgi, C. (2000a). The cerebellum contributes to higher functions during development: Evidence from a series of children surgically treated for posterior fossa tumours. Brain, 123 (Pt. 5), 1051–1061.PubMedCrossRefGoogle Scholar
  105. Riva, D., & Giorgi, C. (2000b). The contribution of the cerebellum to mental and social functions in developmental age. Fiziologiia Cheloveka, 26, 27–31.PubMedGoogle Scholar
  106. Saling, L. L., & Phillips, J. G. (2007). Automatic behaviour: Efficient not mindless. Brain Research Bulletin, 73, 1–20.PubMedCrossRefGoogle Scholar
  107. Savic-Berglund, I. (2004). Imaging of olfaction and gustation. Nutrition Reviews, 62, S205–S207.PubMedCrossRefGoogle Scholar
  108. Schmahmann, J. D. (1996). Dysmetria of thought: Correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behavioral and Brain Sciences, 19, 472–473.CrossRefGoogle Scholar
  109. Schmahmann, J. D. (2000). The role of the cerebellum in affect and psychosis. Journal of Neurolinguistics, 13, 189–214.CrossRefGoogle Scholar
  110. Schmahmann, J. D. (2004). Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. Journal of Neuropsychiatry Clinical Neurosciences, 16, 367–378.CrossRefGoogle Scholar
  111. Schmahmann, J. D., & Caplan, D. (2006). Cognition, emotion and the cerebellum. Brain, 129, 290–292.PubMedCrossRefGoogle Scholar
  112. Schmahmann, J. D., & Pandya, D. N. (1997). The cerebrocerebellar system. International Review of Neurobiology, 41, 31–60.PubMedCrossRefGoogle Scholar
  113. Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121 (Pt. 4), 561–579.PubMedCrossRefGoogle Scholar
  114. Schmahmann, J. D., Weilburg, J. B., & Sherman, J. C. (2007). The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum, 6, 254–267.PubMedCrossRefGoogle Scholar
  115. Schweizer, T. A., Alexander, M. P., Cusimano, M., & Stuss, D. T. (2007). Fast and efficient visuotemporal attention requires the cerebellum. Neuropsychologia, 45, 3068–3074.PubMedCrossRefGoogle Scholar
  116. Simo, L. S., Krisky, C. M., & Sweeney, J. A. (2005). Functional neuroanatomy of anticipatory behavior: Dissociation between sensory-driven and memory-driven systems. Cerebral Cortex, 15, 1982–1991.PubMedCrossRefGoogle Scholar
  117. Sobel, N., Prabhakaran, V., Hartley, C. A., Desmond, J. E., Zhao, Z., Glover, G. H., et al. (1998). Odorant-induced and sniff-induced activation in the cerebellum of the human. Journal of Neuroscience, 18, 8990–9001.PubMedGoogle Scholar
  118. Stanfield, A. C., McIntosh, A. M., Spencer, M. D., Philip, R., Gaur, S., & Lawrie, S. M. (2007). Towards a neuroanatomy of autism: A systematic review and meta-analysis of structural magnetic resonance imaging studies. European Psychiatry, 23(4), 289–299.Google Scholar
  119. Stargatt, R., Rosenfeld, J. V., Maixner, W., & Ashley, D. (2007). Multiple factors contribute to neuropsychological outcome in children with posterior fossa tumors. Developmental Neuropsychology, 32, 729–748.PubMedCrossRefGoogle Scholar
  120. Steinlin, M. (2007). The cerebellum in cognitive processes: Supporting studies in children. Cerebellum, 6, 237–241.PubMedCrossRefGoogle Scholar
  121. Steinlin, M., Imfeld, S., Zulauf, P., Boltshauser, E., Lovblad, K. O., Ridolfi, L. A., et al. (2003). Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain, 126, 1998–2008.PubMedCrossRefGoogle Scholar
  122. Sugihara, I. (2006). Organization and remodeling of the olivocerebellar climbing fiber projection. Cerebellum, 5, 15–22.PubMedCrossRefGoogle Scholar
  123. Sultan, F., & Glickstein, M. (2007). The cerebellum: Comparative and animal studies. Cerebellum, 6, 168–176.PubMedCrossRefGoogle Scholar
  124. Thomann, P. A., Schlafer, C., Seidl, U., Santos, V. D., Essig, M., & Schroder, J. (2008). The cerebellum in mild cognitive impairment and Alzheimer’s disease—A structural MRI study. Journal of Psychiatric Research, 42(14), 1198–1202.Google Scholar
  125. Timmann, D., Dimitrova, A., Hein-Kropp, C., Wilhelm, H., & Dorfler, A. (2003). Cerebellar agenesis: Clinical, neuropsychological and MR findings. Neurocase, 9, 402–413.PubMedCrossRefGoogle Scholar
  126. Torriero, S., Oliveri, M., Koch, G., Caltagirone, C., & Petrosini, L. (2004). Interference of left and right cerebellar rTMS with procedural learning. Journal of Cognitive Neuroscience, 16, 1605–1611.PubMedCrossRefGoogle Scholar
  127. Torriero, S., Oliveri, M., Koch, G., Lo, G. E., Salerno, S., Petrosini, L., et al. (2007). Cortical networks of procedural learning: Evidence from cerebellar damage. Neuropsychologia, 45, 1208–1214.PubMedCrossRefGoogle Scholar
  128. van Mier, H. I., & Petersen, S. E. (2002). Role of the cerebellum in motor cognition. Annals of the New York Academy of Sciences, 978, 334–353.PubMedCrossRefGoogle Scholar
  129. Vandervert, L. R. (2003). How working memory and cognitive modeling functions of the cerebellum contribute to discoveries in mathematics. New Ideas in Psychology, 21, 15.CrossRefGoogle Scholar
  130. Vandervert, L. R. (2007). Cognitive functions of the cerebellum explain how Ericsson’s deliberate practice produces giftedness. High Ability Studies, 18, 89–92.CrossRefGoogle Scholar
  131. Vandervert, L. R., Schimpf, P. H., & Liu, H. (2007). How working memory and the cerebellum collaborate to produce creativity and innovation. Creativity Research Journal, 19, 1–18.CrossRefGoogle Scholar
  132. Watson, P. J. (1978). Nonmotor functions of the cerebellum. Psychology Bulletin, 85, 944–967.CrossRefGoogle Scholar
  133. Weaver, A. H. (2005). Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proceedings of the National Academy of Sciences of the United States of America, 102, 3576–3580.Google Scholar
  134. Weeks, A. C., Connor, S., Hinchcliff, R., LeBoutillier, J. C., Thompson, R. F., & Petit, T. L. (2007). Eye-blink conditioning is associated with changes in synaptic ultrastructure in the rabbit interpositus nuclei. Learning and Memory, 14, 385–389.PubMedCrossRefGoogle Scholar
  135. Weiner, M. J., Hallett, M., & Funkenstein, H. H. (1983). Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology, 33, 766–772.PubMedCrossRefGoogle Scholar
  136. Welling, H. (2007). Cerebellar creativity: Abstraction of mental movements. Creativity Research Journal, 19, 55–57.CrossRefGoogle Scholar
  137. Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329.PubMedCrossRefGoogle Scholar
  138. Xu, D., Liu, T., Ashe, J., & Bushara, K. O. (2006). Role of the olivo-cerebellar system in timing. Journal of Neuroscience, 26, 5990–5995.PubMedCrossRefGoogle Scholar
  139. Yamazaki, T., & Tanaka, S. (2007). The cerebellum as a liquid state machine. Neural Networks, 20, 290–297.PubMedCrossRefGoogle Scholar
  140. Yarom, Y., & Cohen, D. (2002). The olivocerebellar system as a generator of temporal patterns. Annals of the New York Academy of Sciences, 978, 122–134.PubMedCrossRefGoogle Scholar
  141. Zatorre, R. J., Jones-Gotman, M., & Rouby, C. (2000). Neural mechanisms involved in odor pleasantness and intensity judgments. Neuroreport, 11, 2711–2716.PubMedCrossRefGoogle Scholar
  142. Zhu, J. N., & Wang, J. J. (2007). The cerebellum in feeding control: Possible function and mechanism. Cell Molecular Neurobiology, 28(4), 469–478.Google Scholar
  143. Zhu, J. N., Yung, W. H., Kwok-Chong, C. B., Chan, Y. S., & Wang, J. J. (2006). The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Research Review, 52, 93–106.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Park RidgeUSA
  2. 2.Manhattan BeachUSA

Personalised recommendations