Learning and the Basal Ganglia: Benefiting from Action and Reinforcement

  • Leonard F. Koziol
  • Deborah Ely Budding


Many—if not most—of our daily activities should really be considered organized patterns of behavior that we implement in order to achieve specific goals. This would include activities such as hygiene, dressing, eating, and driving, and would encompass almost any behavior performed the same way every time it is performed because it accomplishes goals when interacting with a “predictable” environment. These are the things that “need” to be done, and in this regard, they are repetitive and predictable. The significance of these behaviors cannot be overemphasized because they are essential to adaptation. The fact that these behaviors are performed easily by most people does not mean that they are “mindless,” or unimportant (Saling & Phillips, 2007). Instead, the ease with which they are performed by most people reveals that these behaviors are highly efficient. In fact, it is the inability to acquire and perform these habitual behaviors efficiently that often brings both children and adults to clinical attention. Impaired “activities of daily living” underpin many of our patients’ presenting complaints and symptoms. Therefore, it is important to understand the neuroanatomy that drives these learning systems.


Attention Deficit Hyperactivity Disorder Basal Ganglion Sequence Learning Indirect Pathway Negative Reinforcement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., ng-Vu, T., et al. (2008). Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron, 58, 261–272.PubMedCrossRefGoogle Scholar
  2. Ardila, A. (2008). On the evolutionary origins of executive functions. Brain Cognition, 68(1), 92–99.Google Scholar
  3. Ashby, F. G., & Ennis, J. M. (2006a). The role of the basal ganglia in category learning. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 46, pp. 1–36). New York: Elsevier.Google Scholar
  4. Ashby, F. G., Ennis, J. M., & Spiering, B. J. (2007). A neurobiological theory of automaticity in perceptual categorization. Psychological Review, 114, 632–656.PubMedCrossRefGoogle Scholar
  5. Ashby, F. G., & O’Brien, J. B. (2005). Category learning and multiple memory systems. Trends in Cognitive Sciences, 9, 83–89.PubMedCrossRefGoogle Scholar
  6. Awh, E., & Vogel, E. K. (2008). The bouncer in the brain. Nature Neuroscience, 11, 5–6.PubMedCrossRefGoogle Scholar
  7. Beiser, D. G., & Houk, J. C. (1998). Model of cortical-basal ganglionic processing: Encoding the serial order of sensory events. Journal of Neurophysiology, 79, 3168–3188.PubMedGoogle Scholar
  8. Bellebaum, C., Koch, B., Schwarz, M., & Daum, I. (2008). Focal basal ganglia lesions are associated with impairments in reward-based reversal learning. Brain, 131, 829–841.PubMedCrossRefGoogle Scholar
  9. Bonci, A., & Jones, S. (2007). The mesocortical dopaminergic system. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 145–164). New York: Guilford Press.Google Scholar
  10. Bradshaw, J. L. (2001). Developmental disorders of the frontostriatal system: Neuropsychological, neuropsychiatric and evolutionary perspectives. Philadelphia: Taylor & Francis, Inc.Google Scholar
  11. Brasted, P. J., & Wise, S. P. (2004). Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum. European Journal of Neuroscience, 19, 721–740.PubMedCrossRefGoogle Scholar
  12. Cervenka, S., Backman, L., Cselenyi, Z., Halldin, C., & Farde, L. (2008). Associations between dopamine D2-receptor binding and cognitive performance indicate functional compartmentalization of the human striatum. Neuroimage, 40, 1287–1295.PubMedCrossRefGoogle Scholar
  13. Chow, T. W., & Cummings, J. L. (2007). Frontal-subcortical circuits. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 25–43). New York: The Guilford Press.Google Scholar
  14. Cincotta, C. M., & Seger, C. A. (2007). Dissociation between striatal regions while learning to categorize via feedback and via observation. The Journal of Cognitive Neuroscience, 19, 249–265.CrossRefGoogle Scholar
  15. Clark, L., Bechara, A., Damasio, H., Aitken, M. R., Sahakian, B. J., & Robbins, T. W. (2008). Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain, 131(5), 1311–1322.Google Scholar
  16. Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W. (2001). Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cerebral Cortex, 11, 1136–1143.PubMedCrossRefGoogle Scholar
  17. Cools, R., Lewis, S. J., Clark, L., Barker, R. A., & Robbins, T. W. (2007). L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology, 32, 180–189.PubMedCrossRefGoogle Scholar
  18. Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70–88.PubMedCrossRefGoogle Scholar
  19. Devito, E. E., Blackwell, A. D., Kent, L., Ersche, K. D., Clark, L., Salmond, C. H., et al. (2008). The effects of methylphenidate on decision making in attention-deficit/hyperactivity disorder. Biological Psychiatry, 64(7), 636–639.Google Scholar
  20. Dillon, D. G., Holmes, A. J., Jahn, A. L., Bogdan, R., Wald, L. L., & Pizzagalli, D. A. (2008). Dissociation of neural regions associated with anticipatory versus consummatory phases of incentive processing. Psychophysiology, 45, 36–49.PubMedGoogle Scholar
  21. Dominey, P. F., & Jeannerod, M. (1997). Contribution of frontostriatal function to sequence learning in Parkinson’s disease: Evidence for dissociable systems. Neuroreport, 8, iii–iix.PubMedCrossRefGoogle Scholar
  22. Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12, 961–974.PubMedCrossRefGoogle Scholar
  23. Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41, 252–262.PubMedCrossRefGoogle Scholar
  24. Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proceedings of the National Academy of Sciences of the United States of America, 99, 1017–1022.Google Scholar
  25. Doyon, J., & Ungerleider, L. G. (2002). Functional anatomy of motor skill learning. In L. Squire & D. Schacter (Eds.), Neuropsychology of memory (3rd ed., pp. 225–238). New York: Guilford Press.Google Scholar
  26. Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17, 51–72.PubMedCrossRefGoogle Scholar
  27. Frank, M. J., & Claus, E. D. (2006). Anatomy of a decision: Striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological Review, 113, 300–326.PubMedCrossRefGoogle Scholar
  28. Frank, M. J., & O’Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol. Behavioral Neuroscience, 120, 497–517.PubMedCrossRefGoogle Scholar
  29. Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007). Hold your horses: Impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318, 1309–1312.PubMedCrossRefGoogle Scholar
  30. Frank, M. J., Santamaria, A., O’Reilly, R. C., & Willcutt, E. (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 32, 1583–1599.PubMedCrossRefGoogle Scholar
  31. Frank, M. J., Scheres, A., & Sherman, S. J. (2007). Understanding decision-making deficits in neurological conditions: Insights from models of natural action selection. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1641–1654.PubMedCrossRefGoogle Scholar
  32. Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306, 1940–1943.PubMedCrossRefGoogle Scholar
  33. Geffen, G., Isles, R., Preece, M., & Geffen, L. (2008). Memory systems involved in professional skills: A case of dense amnesia due to herpes simplex viral encephalitis. Neuropsychological Rehabilitation, 18, 89–108.PubMedCrossRefGoogle Scholar
  34. Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70, 119–136.PubMedCrossRefGoogle Scholar
  35. Hazeltine, E., Poldrack, R., & Gabrieli, J. D. (2000). Neural activation during response competition. Journal of Cognitive Neuroscience, 12(Suppl. 2), 118–129.PubMedCrossRefGoogle Scholar
  36. Heekeren, H. R., Wartenburger, I., Marschner, A., Mell, T., Villringer, A., & Reischies, F. M. (2007). Role of ventral striatum in reward-based decision making. Neuroreport, 18, 951–955.PubMedCrossRefGoogle Scholar
  37. Heimer, L., Alheid, G. F., de Olmos, J. S., Groenewegen, H. J., Haber, S. N., Harlan, R. E., et al. (1997). The accumbens: Beyond the core-shell dichotomy. Journal of Neuropsychiatry Clinical Neuroscience, 9, 354–381.Google Scholar
  38. Heimer, L., Van Hoesen, G. W., Trimble, M., & Zahm, D. S. (2008). Anatomy of neuropsychiatry: The new anatomy of the basal forebrain and its implications for neuropsychiatric illness. San Diego, CA: Academic Press.Google Scholar
  39. Holroyd, C. B., Baker, T. E., Kerns, K. A., & Muller, U. (2008). Electrophysiological evidence of atypical motivation and reward processing in children with attention-deficit hyperactivity disorder. Neuropsychologia, 46, 2234–2242.PubMedCrossRefGoogle Scholar
  40. Houk, J. C., Bastianen, C., Fansler, D., Fishbach, A., Fraser, D., Reber, P. J., et al. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1573–1583.PubMedCrossRefGoogle Scholar
  41. Isaias, I. U., Siri, C., Cilia, R., De, G. D., Pezzoli, G., & Antonini, A. (2008). The relationship between impulsivity and impulse control disorders in Parkinson’s disease. Movement Disorders, 23, 411–415.PubMedCrossRefGoogle Scholar
  42. Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110, 316–339.PubMedCrossRefGoogle Scholar
  43. Klimkowicz-Mrowiec, A., Slowik, A., Krzywoszanski, L., Herzog-Krzywoszanska, R., & Szczudlik, A. (2008). Severity of explicit memory impairment due to Alzheimer’s disease improves effectiveness of implicit learning. Journal of Neurology, 255(4), 502–509.Google Scholar
  44. Knowlton, B. J. (2002). The role of the basal ganglia in learning and memory. In L. R. Squire & D. L. Schacter (Eds.), The neuropsychology of memory (3rd ed., pp. 143–153). New York: Guilford Press.Google Scholar
  45. Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic classification learning in amnesia. Learning and Memory, 1, 106–120.PubMedGoogle Scholar
  46. Kobayakawa, M., Koyama, S., Mimura, M., & Kawamura, M. (2008). Decision making in Parkinson’s disease: Analysis of behavioral and physiological patterns in the Iowa gambling task. Movement Disorders, 23, 547–552.PubMedCrossRefGoogle Scholar
  47. Landau, S. M., Lal, R., O’Neil, J. P., Baker, S., & Jagust, W. J. (2008). Striatal dopamine and working memory. Cerebral Cortex. doi:10.1093/cercor/bhno95Google Scholar
  48. Lawrence, A. D. (2000). Error correction and the basal ganglia: Similar computations for action, cognition and emotion? Trends in Cognitive Sciences, 4, 365–367.PubMedCrossRefGoogle Scholar
  49. Lawrence, A. D., Watkins, L. H., Sahakian, B. J., Hodges, J. R., & Robbins, T. W. (2000). Visual object and visuospatial cognition in Huntington’s disease: Implications for information processing in corticostriatal circuits. Brain, 123(Pt. 7), 1349–1364.PubMedCrossRefGoogle Scholar
  50. Levy, F. (2008). Pharmacological and therapeutic directions in ADHD: Specificity in the PFC. Behavioral Brain Function, 4, 12.CrossRefGoogle Scholar
  51. Lewis, S. J., Slabosz, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2005). Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia, 43, 823–832.PubMedCrossRefGoogle Scholar
  52. Li, S., Ostwald, D., Giese, M., & Kourtzi, Z. (2007). Flexible coding for categorical decisions in the human brain. Journal of Neuroscience, 27, 12321–12330.PubMedCrossRefGoogle Scholar
  53. Lieberman, M. D. (2000). Intuition: A social cognitive neuroscience approach. Psychological Bulletin, 126, 109–137.PubMedCrossRefGoogle Scholar
  54. Loh, M., Pasupathy, A., Miller, E. K., & Deco, G. (2008). Neurodynamics of the prefrontal cortex during conditional visuomotor associations. Journal of Cognitive Neuroscience, 20, 421–431.PubMedCrossRefGoogle Scholar
  55. Maddox, W. T., Ashby, F. G., & Bohil, C. J. (2003). Delayed feedback effects on rule-based and information-integration category learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29, 650–662.PubMedCrossRefGoogle Scholar
  56. Maddox, W. T., Ashby, F. G., Ing, A. D., & Pickering, A. D. (2004). Disrupting feedback processing interferes with rule-based but not information-integration category learning. Memory & Cognition, 32, 582–591.CrossRefGoogle Scholar
  57. Maddox, W. T., Bohil, C. J., & Ing, A. D. (2004). Evidence for a procedural-learning-based system in perceptual category learning. Psychonomic Bulletin & Review, 11, 945–952.CrossRefGoogle Scholar
  58. Maddox, W. T., Love, B. C., Glass, B. D., & Filoteo, J. V. (2008). When more is less: Feedback effects in perceptual category learning. Cognition, 108(2); 578–589.Google Scholar
  59. Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 377–384.PubMedCrossRefGoogle Scholar
  60. Martinussen, R., & Tannock, R. (2006). Working memory impairments in children with attention-deficit hyperactivity disorder with and without comorbid language learning disorders. Journal of Clinical Experimental Neuropsychology, 28, 1073–1094.CrossRefGoogle Scholar
  61. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103–107.PubMedCrossRefGoogle Scholar
  62. Mega, M., & Cummings, J. L. (2001). Frontal subcortical circuits: Anatomy and function. In S. P. Salloway, P. F. Malloy, & J. D. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 15–32). Washington, DC: American Psychiatric Publishing.Google Scholar
  63. Merims, D., & Giladi, N. (2008). Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson’s disease. Parkinsonism & Related Disorders, 14(4),273–280.Google Scholar
  64. Middleton, F. A., & Strick, P. L. (1996). Basal ganglia and cerebellar output influences non-motor function. Molecular Psychiatry, 1, 429–433.PubMedGoogle Scholar
  65. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42, 183–200.PubMedCrossRefGoogle Scholar
  66. Miller, R. (2008). A theory of the basal ganglia and their disorders. Boca Raton, FL: CRC Press.Google Scholar
  67. Moustafa, A., Sherman, S., Frank, M. (2008). A dopaminergic basis for working memory, learning and attentional set shifting in parkinsonism. Neuropsychologia, 46(13): 3144–3156.Google Scholar
  68. Nagy, O., Kelemen, O., Benedek, G., Myers, C. E., Shohamy, D., Gluck, M. A., et al. (2007). Dopaminergic contribution to cognitive sequence learning. Journal of Neural Transmission, 114, 607–612.PubMedCrossRefGoogle Scholar
  69. Niv, Y. (2007). Cost, benefit, tonic, phasic: What do response rates tell us about dopamine and motivation? Annals of the New York Academy of Sciences, 1104, 357–376.PubMedCrossRefGoogle Scholar
  70. Pally, R. (2005). Non-conscious prediction and a role for consciousness in correcting prediction errors. Cortex, 41, 643–662.PubMedCrossRefGoogle Scholar
  71. Pally, R. (2007). The predicting brain: Unconscious repetition, conscious reflection and therapeutic change. The Internation Journal of Psycho-analysis, 88, 861–881.CrossRefGoogle Scholar
  72. Perretta, J. G., Pari, G., & Beninger, R. J. (2005). Effects of Parkinson disease on two putative nondeclarative learning tasks: Probabilistic classification and gambling. Cognitive and Behavioral Neurology, 18, 185–192.PubMedCrossRefGoogle Scholar
  73. Piontelli, A. (1992). From fetus to child: An observational and psychoanalytic study (New Library of Psychoanalysis, No. 15). New York: Routledge.Google Scholar
  74. Piontelli, A., Bocconi, L., Boschetto, C., Kustermann, A., & Nicolini, U. (1999). Differences and similarities in the intra-uterine behaviour of monozygotic and dizygotic twins. Twin Research, 2, 264–273.PubMedGoogle Scholar
  75. Pizzagalli, D. A., Evins, A. E., Schetter, E. C., Frank, M. J., Pajtas, P. E., Santesso, D. L., et al. (2008). Single dose of a dopamine agonist impairs reinforcement learning in humans: Behavioral evidence from a laboratory-based measure of reward responsiveness. Psychopharmacology, 196, 221–232.PubMedCrossRefGoogle Scholar
  76. Poldrack, R. A., & Foerde, K. (2008). Category learning and the memory systems debate. Neuroscience and Biobehavioral Reviews, 32, 197–205.PubMedCrossRefGoogle Scholar
  77. Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., et al. (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25, 5356–5364.PubMedCrossRefGoogle Scholar
  78. Ponzi, A. (2008). Dynamical model of salience gated working memory, action selection and reinforcement based on basal ganglia and dopamine feedback. Neural Networks, 21, 322–330.PubMedCrossRefGoogle Scholar
  79. Quay, H. C. (1988). The behavioral reward and inhibition system in childhood behavior disorder. In L. M. Bloomingdale (Ed.), Attention deficit disorder(Vol. 3, pp. 176–186). New York: Pergamon Press.Google Scholar
  80. Rao, H., Di, X., Chan, R. C., Ding, Y., Ye, B., & Gao, D. (2008). A regulation role of the prefrontal cortex in the fist-edge-palm task: Evidence from functional connectivity analysis. Neuroimage, 41, 1345–1351.PubMedCrossRefGoogle Scholar
  81. Robbins, T. W., & Everett, B. J. (2003). Motivation and reward. In L. R. Squire, F. E. Bloom, J. L. Roberts, N. C. Spitzer, N. C. Zigmond, & M. K. McConnell (Eds.), Fundamental neuroscience (2nd ed., pp. 1109–1126). San Diego, CA: Academic Press.Google Scholar
  82. Sagvolden, T., Johansen, E. B., Aase, H., & Russell, V. A. (2005). A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral Brain Science, 28, 397–419.CrossRefGoogle Scholar
  83. Saling, L. L., & Phillips, J. G. (2007). Automatic behaviour: Efficient not mindless. Brain Research Bulletin, 73, 1–20.PubMedCrossRefGoogle Scholar
  84. Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concurrent multitasking. Psychological Review, 115, 101–130.PubMedCrossRefGoogle Scholar
  85. Scheres, A., Dijkstra, M., Ainslie, E., Balkan, J., Reynolds, B., Sonuga-Barke, E., et al. (2006). Temporal and probabilistic discounting of rewards in children and adolescents: Effects of age and ADHD symptoms. Neuropsychologia, 44, 2092–2103.PubMedCrossRefGoogle Scholar
  86. Scheres, A., Milham, M. P., Knutson, B., & Castellanos, F. X. (2007). Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61, 720–724.PubMedCrossRefGoogle Scholar
  87. Seger, C. A. (2006). The basal ganglia in human learning. Neuroscientist, 12, 285–290.PubMedCrossRefGoogle Scholar
  88. Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32, 265–278.PubMedCrossRefGoogle Scholar
  89. Seger, C. A. (2009). The involvement of corticostriatal loops in learning across tasks, species, and methodologies. In H. Groenwegen & H. Berendse (Eds.), The basal ganglia IX: Proceedings of the 9th triennial meeting of the international basal ganglia society. Springer.Google Scholar
  90. Seger, C. A., & Cincotta, C. M. (2005). The roles of the caudate nucleus in human classification learning. Journal of Neuroscience, 25, 2941–2951.PubMedCrossRefGoogle Scholar
  91. Seger, C. A., & Cincotta, C. M. (2006). Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cerebral Cortex, 16, 1546–1555.PubMedCrossRefGoogle Scholar
  92. Shohamy, D., Myers, C. E., Grossman, S., Sage, J., Gluck, M. A., & Poldrack, R. A. (2004). Cortico-striatal contributions to feedback-based learning: Converging data from neuroimaging and neuropsychology. Brain, 127, 851–859.PubMedCrossRefGoogle Scholar
  93. Shohamy, D., Myers, C. E., Kalanithi, J., & Gluck, M. A. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience and Biobehavioral Reviews, 32, 219–236.PubMedCrossRefGoogle Scholar
  94. Sil’kis, I. G. (2008). The role of dopamine-dependent negative feedback in the hippocampus-basal ganglia-thalamus-hippocampus loop in the extinction of responses. Neuroscience and Behavioral Physiology, 38, 399–405.PubMedCrossRefGoogle Scholar
  95. Sillitoe, R. V., & Vogel, M. W. (2008). Desire, disease, and the origins of the dopaminergic system. Schizophrenia Bulletin, 34, 212–219.PubMedCrossRefGoogle Scholar
  96. Smith, J. G., & McDowall, J. (2006). The implicit sequence learning deficit in patients with Parkinson’s disease: A matter of impaired sequence integration? Neuropsychologia, 44, 275–288.PubMedCrossRefGoogle Scholar
  97. Squire, L. R., Clark, J., & Bayley, P. J. (2004). Medial temporal lobe functions and memory. In M. Gazzinaga (Ed.), The cognitive neurosciences (3rd ed., pp. 691–708). Cambridge, MA:MIT Press.Google Scholar
  98. Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.PubMedCrossRefGoogle Scholar
  99. Torta, D. M., & Castelli, L. (2008). Reward pathways in Parkinson’s disease: Clinical and theoretical implications. Psychiatry Clinical Neuroscience, 62, 203–213.CrossRefGoogle Scholar
  100. Zand, R. (2008). Is dopamine agonist therapy associated with developing pathological gambling in Parkinson’s disease patients? European Neurology, 59, 183–186.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Park RidgeUSA
  2. 2.Manhattan BeachUSA

Personalised recommendations