Frontal–Subcortical Real Estate: Location, Location, Location

  • Leonard F. Koziol
  • Deborah Ely Budding


The previous chapter described the functional neuroanatomy of the basal ganglia. This chapter describes the functions of the separate prototypical circuits that connect the basal ganglia with the cortex. It also describes the current role of neuropsychological testing in evaluating this circuitry. The original conceptualization of these cortical–subcortical loops consisted of five parallel, segregated circuits between the frontal cortex and the basal ganglia (Alexander, DeLong, & Strick, 1986). These circuits were the skeletomotor, oculomotor, dorsolateral prefrontal, orbitofrontal, and anterior cingulate circuits. However, it is now evident that the basal ganglia receive afferents from nearly all cortical regions while sending efferents back to the diverse thalamic nuclei that project to those same cortical areas (Middleton & Strick, 2002).


Basal Ganglion Fluency Task Medial Frontal Cortex Executive Function Deficit Akinetic Mutism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedCrossRefGoogle Scholar
  2. Ardila, A. (2008). On the evolutionary origins of executive functions. Brain and Cognition, 68(1), 92–99.Google Scholar
  3. Baldo, J. V., Delis, D., Kramer, J., & Shimamura, A. P. (2002). Memory performance on the California Verbal Learning Test-II: Findings from patients with focal frontal lesions. Journal of the International Neuropsychological Society, 8, 539–546.PubMedCrossRefGoogle Scholar
  4. Baldo, J. V., Shimamura, A. P., Delis, D. C., Kramer, J., & Kaplan, E. (2001). Verbal and design fluency in patients with frontal lobe lesions. Journal of the International Neuropsychological Society, 7, 586–596.PubMedCrossRefGoogle Scholar
  5. Benton, A. L., Sivan, A. B., des Hamsher, K., Varney, N. R., & Spreen, O. (1994). Contributions to neuropsychological assessment (2nd ed.). New York: Oxford University Press.Google Scholar
  6. Blumenfeld, H. (2002). Neuroanatomy through clinical cases. Sunderland, MA: Sinauer.Google Scholar
  7. Bombois, S., Debette, S., Delbeuck, X., Bruandet, A., Lepoittevin, S., Delmaire, C., et al. (2007). Prevalence of subcortical vascular lesions and association with executive function in mild cognitive impairment subtypes. Stroke, 38, 2595–2597.PubMedCrossRefGoogle Scholar
  8. Bowirrat, A., & Oscar-Berman, M. (2005). Relationship between dopaminergic neurotransmission, alcoholism, and Reward Deficiency syndrome. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 132, 29–37.CrossRefGoogle Scholar
  9. Bradshaw, J. L. (2001). Developmental disorders of the frontostriatal system: Neuropsychological, neuropsychiatric and evolutionary perspectives. Philadelphia: Taylor & Francis, Inc.Google Scholar
  10. Butler, R. W., Rorsman, I., Hill, J., & Tuma, R. (1993). The effects of frontal brain impairment on fluency: Simple and complex paradigms. Neuropsychology, 7, 519–529.CrossRefGoogle Scholar
  11. Carlin, D., Bonerba, J., Phipps, M., Alexander, G., Shapiro, M., & Grafman, J. (2000). Planning impairments in frontal lobe dementia and frontal lobe lesion patients. Neuropsychologia, 38, 655–665.PubMedCrossRefGoogle Scholar
  12. Chow, T. W., & Cummings, J. L. (2007). Frontal-subcortical circuits. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 25–43). New York: Guilford Press.Google Scholar
  13. Culbertson, C. W., & Zillmer, E. (2001). Tower of London-Drexel University (TOL DX): Technical manual. North Tonawanda, NY: Multi-Health Systems.Google Scholar
  14. Cummings, J. L., & Miller, B. L. (2007). Conceptual and clinical aspects of the frontal lobes. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 12–24). New York: The Guilford Press.Google Scholar
  15. Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (1999). Mapping the network for planning: A correlational PET activation study with the Tower of London task. Brain, 122(Pt. 10), 1973–1987.PubMedCrossRefGoogle Scholar
  16. Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (2001). The role of the striatum and hippocampus in planning: A PET activation study in Parkinson’s disease. Brain, 124, 1020–1032.PubMedCrossRefGoogle Scholar
  17. Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70–88.PubMedCrossRefGoogle Scholar
  18. Delis, D., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan executive function system. San Antonio: Psychological Corporation.Google Scholar
  19. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (2000). California verbal learning testSecond edition, adult version. San Antonio, TX: Psychological Corporation.Google Scholar
  20. Denckla, M. B., & Reiss, A. L. (1997). Prefrontal-subcortical circuits in developmental disorders. In N. A. Krasnegor, G. R. Lyon, & P. S. Goldman-Rakic (Eds.), Development of the prefrontal cortex: Evolution, neurobiology, and behavior (pp. 283–294). Baltimore: P. H. Brookes.Google Scholar
  21. Feifel, D., Farber, R. H., Clementz, B. A., Perry, W., & nllo-Vento, L. (2004). Inhibitory deficits in ocular motor behavior in adults with attention-deficit/hyperactivity disorder. Biological Psychiatry, 56, 333–339.PubMedCrossRefGoogle Scholar
  22. Frank, M. J., Santamaria, A., O’Reilly, R. C., & Willcutt, E. (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 32, 1583–1599.PubMedCrossRefGoogle Scholar
  23. Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology and neuropsychology of the frontal lobe (3rd ed.). Philadelphia: Lippincott-Raven.Google Scholar
  24. Gioia, G., Isquith, P., Guy, S., & Kenworthy, S. (2000). The behavior rating inventory of executive function. Lutz, FL: Psychological Assessment Resources.Google Scholar
  25. Goel, V., & Grafman, J. (1995). Are the frontal lobes implicated in “planning” functions? Interpreting data from the Tower of Hanoi. Neuropsychologia, 33, 623–642.PubMedCrossRefGoogle Scholar
  26. Golden, C. (1978). Stroop color and word test. Chicago: Stolting.Google Scholar
  27. Gordon, M. F. (1983). Gordon diagnostic system. Odessa, FL: Psychological Assessment Resources.Google Scholar
  28. Graceffa, A. M., Carlesimo, G. A., Peppe, A., & Caltagirone, C. (1999). Verbal working memory deficit in Parkinson’s disease subjects. European Neurology, 42, 90–94.PubMedCrossRefGoogle Scholar
  29. Grafman, J., Jonas, B., & Salazar, A. (1990). Wisconsin Card Sorting Test performance based on location and size of neuroanatomical lesion in Vietnam veterans with penetrating head injury. Perceptual and Motor Skills, 71, 1120–1122.PubMedGoogle Scholar
  30. Grau-Olivares, M., Arboix, A., Bartres-Faz, D., & Junque, C. (2007). Neuropsychological abnormalities associated with lacunar infarction. Journal of Neurological Sciences, 257, 160–165.CrossRefGoogle Scholar
  31. Grau-Olivares, M., Bartres-Faz, D., Arboix, A., Soliva, J. C., Rovira, M., Targa, C., et al. (2007). Mild cognitive impairment after lacunar infarction: Voxel-based morphometry and neuropsychological assessment. Cerebrovascular Diseases, 23, 353–361.PubMedCrossRefGoogle Scholar
  32. Hager, F., Volz, H. P., Gaser, C., Mentzel, H. J., Kaiser, W. A., & Sauer, H. (1998). Challenging the anterior attentional system with a continuous performance task: A functional magnetic resonance imaging approach. European Archives of Psychiatry and Clinical Neuroscience, 248, 161–170.PubMedCrossRefGoogle Scholar
  33. Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtis, G. (1993). Wisconsin Card Sorting Test (WCST) manual, revised and expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
  34. Heimer, L., Van Hoesen, G. W., Trimble, M., & Zahm, D. S. (2008). Anatomy of neuropsychiatry: The new anatomy of the basal forebrain and its implications for neuropsychiatric illness. San Diego, CA: Academic Press.Google Scholar
  35. Higgins, E. S., & George, M. S. (2007). The neuroscience of clinical psychiatry: The pathophysiology of behavior and mental illness. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  36. Kaplan, E. F., Goodglass, H., & Weintraub, S. (1983). The Boston naming test (2nd ed.). Philadelphia: Lea & Febiger.Google Scholar
  37. Kapur, N., Turner, A., & King, C. (1988). Reduplicative paramnesia: Possible anatomical and neuropsychological mechanisms. Journal of Neurology, Neurosurgery, and Psychiatry, 51, 579–581.PubMedCrossRefGoogle Scholar
  38. Kinsbourne, M. (1993). Development of attention and metacognition. In I. Rapin & S. J. Segalowitz (Eds.), Handbook of neuropsychology (Vol. 7, pp. 261–278). Amsterdam: Elsevier.Google Scholar
  39. Knight, J. A., & Kaplan, E. (2003). The handbook of Rey-Osterrieth Complex Figure usage: Clinical and research applications. Lutz, FL: Psychological Assessment Resources.Google Scholar
  40. Koob, G. F., & Le, M. M. (2008). Addiction and the brain antireward system. Annual Review of Psychology, 59, 29–53.PubMedCrossRefGoogle Scholar
  41. Lapierre, D., Braun, C. M., & Hodgins, S. (1995). Ventral frontal deficits in psychopathy: Neuropsychological test findings. Neuropsychologia, 33, 139–151.PubMedCrossRefGoogle Scholar
  42. Lee, A. Y., & Chui, H. (2007). Vascular disease and the frontal lobes. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 447–471). New York: Guilford Press.Google Scholar
  43. Leng, N. R., & Parkin, A. J. (1989). Aetiological variation in the amnesic syndrome: Comparisons using the Brown-Peterson task. Cortex, 25, 251–259.PubMedGoogle Scholar
  44. Lezak, M., Howieson, D., & Loring, D. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.Google Scholar
  45. Lhermitte, F. (1986). Human autonomy and the frontal lobes. Part II: Patient behavior in complex and social situations: The “environmental dependency syndrome”. Annals of Neurology, 19, 335–343.PubMedCrossRefGoogle Scholar
  46. Lhermitte, F., Pillon, B., & Serdaru, M. (1986). Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: A neuropsychological study of 75 patients. Annals of Neurology, 19, 326–334.PubMedCrossRefGoogle Scholar
  47. Lichter, D. G., & Cummings, J. L. (2001). Introduction and overview. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 1–43). New York: Guilford Press.Google Scholar
  48. Malloy, P. F., & Richardson, E. D. (2001). Assessment of frontal lobe function. In S. P. Salloway, P. F. Malloy, & J. D. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 125–138). Washington, DC: American Psychiatric Publishing.Google Scholar
  49. Matsui, H., Nishinaka, K., Oda, M., Niikawa, H., Komatsu, K., Kubori, T., et al. (2007). Wisconsin Card Sorting Test in Parkinson’s disease: Diffusion tensor imaging. Acta Neurologica Scandinavica, 116, 108–112.PubMedCrossRefGoogle Scholar
  50. Mega, M., & Cummings, J. L. (2001). Frontal subcortical circuits: Anatomy and function. In S. P. Salloway, P. F. Malloy, & J. D. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 15–32). Washington, DC: American Psychiatric Publishing.Google Scholar
  51. Meyers, J. E., & Meyers, K. R. (1995). Rey complex figure test and recognition trial. Odessa, FL: Psychological Assessment Resources.Google Scholar
  52. Middleton, F. A. (2003). Fundamental and clinical evidence for basal ganglia influences on cognition. In M. Bedard, Y. Agid, S. Chouinard, S. Fahn, & A. Korczyn (Eds.), Mental and behavioral dysfunction in movement disorders (pp. 13–33). Totowa, NJ: Humana Press, Inc.CrossRefGoogle Scholar
  53. Middleton, F. A., & Strick, P. L. (2002). Basal-ganglia ’projections’ to the prefrontal cortex of the primate. Cerebral Cortex, 12, 926–935.PubMedCrossRefGoogle Scholar
  54. Mirsky, A. F., Anthony, B. J., Duncan, C. C., Ahearn, M. B., & Kellam, S. G. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychological Review, 2, 109–145.CrossRefGoogle Scholar
  55. Mirsky, A. F., & Duncan, C. C. (2001). A nosology of disorders of attention. Annals of the New York Academy of Sciences, 931, 17–32.PubMedCrossRefGoogle Scholar
  56. Morey, L. C. (1991). Personality assessment inventory. Odessa, FL: Psychological Assessment Resources.Google Scholar
  57. Myers, D. C. (1983). The psychological and perceptual-motor aspects of Huntington’s disease. Rehabilitation Psychology, 28, 13–34.CrossRefGoogle Scholar
  58. Nakaaki, S., Murata, Y., Sato, J., Shinagawa, Y., Hongo, J., Tatsumi, H., et al. (2007). Impairment of decision-making cognition in a case of frontotemporal lobar degeneration (FTLD) presenting with pathologic gambling and hoarding as the initial symptoms. Cognitive and Behavioral Neurology, 20, 121–125.PubMedCrossRefGoogle Scholar
  59. Odhuba, R. A., van, d. B., & Johns, L. C. (2005). Ecological validity of measures of executive functioning. The British Journal of Clinical Psychology, 44, 269–278.PubMedCrossRefGoogle Scholar
  60. Owen, A. M., Roberts, A. C., Hodges, J. R., Summers, B. A., Polkey, C. E., & Robbins, T. W. (1993). Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease. Brain, 116(Pt. 5), 1159–1175.PubMedCrossRefGoogle Scholar
  61. Passetti, F., Clark, L., Mehta, M. A., Joyce, E., & King, M. (2008). Neuropsychological predictors of clinical outcome in opiate addiction. Drug and Alcohol Dependence, 94, 82–91.PubMedCrossRefGoogle Scholar
  62. Piek, J. P., Dawson, L., Smith, L. M., & Gasson, N. (2008). The role of early fine and gross motor development on later motor and cognitive ability. Human Movement Science, doi:10.1016/j.humov.2007.11.002Google Scholar
  63. Pizzagalli, D. A., Evins, A. E., Schetter, E. C., Frank, M. J., Pajtas, P. E., Santesso, D. L., et al. (2008). Single dose of a dopamine agonist impairs reinforcement learning in humans: Behavioral evidence from a laboratory-based measure of reward responsiveness. Psychopharmacology (Berl), 196, 221–232.CrossRefGoogle Scholar
  64. Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., et al. (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25, 5356–5364.PubMedCrossRefGoogle Scholar
  65. Robinson, A. L., Heaton, R. K., Lehman, R. A., & Stilson, D. W. (1980). The utility of the Wisconsin Card Sorting Test in detecting and localizing frontal lobe lesions. Journal of Consulting and Clinical Psychology, 48, 605–614.PubMedCrossRefGoogle Scholar
  66. Saint-Cyr, J. A., & Taylor, A. E. (1992). The mobilization of procedural learning:The “key signature” of the basal ganglia. In L. R. Squire & N. Butters (Eds.), The neuropsychology of memory (2nd ed., pp. 188–202). New York: Guilford Press.Google Scholar
  67. Saling, L. L., & Phillips, J. G. (2007). Automatic behaviour: Efficient not mindless. Brain Research Bulletin, 73, 1–20.PubMedCrossRefGoogle Scholar
  68. Salmon, D. P., & Chan, A. S. (1994). Semantic memory deficits associated with Alzheimer’s disease. In L. S. Cermak (Ed.), Neuropsychological explorations of memory and cognition: Essays in honor of Nelson Butters (pp. 61–76). New York: Plenum Press.Google Scholar
  69. Sbordone, R. J. (2001). Limitations of neuropsychological testing to predict the cognitive and behavioral functioning of persons with brain injury in real-world settings. NeuroRehabilitation, 16, 199–201.PubMedGoogle Scholar
  70. Schnider, A., & Gutbrod, K. (1999). Traumatic brain injury. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes: Functions and disorders (pp. 487–508). New York: Guilford Press.Google Scholar
  71. Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 298, 199–209.PubMedCrossRefGoogle Scholar
  72. Shallice, T., & Burgess, P. W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114(Pt. 2), 727–741.PubMedCrossRefGoogle Scholar
  73. Sillitoe, R. V., & Vogel, M. W. (2008). Desire, disease, and the origins of the dopaminergic system. Schizophrenia Bulletin, 34, 212–219.PubMedCrossRefGoogle Scholar
  74. Silver, C. H. (2000). Ecological validity of neuropsychological assessment in childhood traumatic brain injury. The Journal of Head Trauma Rehabilitation, 15, 973–988.PubMedCrossRefGoogle Scholar
  75. Spreen, O., & Strauss, E. (1998). A compendium of neuropsychological tests (2nd ed.). New York: Oxford University Press.Google Scholar
  76. Stewart, J. T. (2006). The frontal/subcortical dementias: Common dementing illnesses associated with prominent and disturbing behavioral changes. Geriatrics, 61, 23–27.PubMedGoogle Scholar
  77. Strauss, E., Sherman, E., & Spreen, O. (2006). A compendium of neuropsychological tests (3rd ed.). New York: Oxford University Press.Google Scholar
  78. Stuss, D. T. (2007). New approaches to prefrontal lobe testing. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 292–305). New York: Guilford Press.Google Scholar
  79. Stuss, D. T., Alexander, M. P., Hamer, L., Palumbo, C., Dempster, R., Binns, M., et al. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. Journal of the International Neuropsychological Society, 4, 265–278.PubMedGoogle Scholar
  80. Su, C. Y., Chen, H. M., Kwan, A. L., Lin, Y. H., & Guo, N. W. (2007). Neuropsychological impairment after hemorrhagic stroke in basal ganglia. Archives of Clinical Neuropsychology, 22, 465–474.PubMedCrossRefGoogle Scholar
  81. Tanabe, J., Thompson, L., Claus, E., Dalwani, M., Hutchison, K., & Banich, M. T. (2007). Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Human Brain Mapping, 28, 1276–1286.PubMedCrossRefGoogle Scholar
  82. Thomas, M. J., Kalivas, P. W., & Shaham, Y. (2008). Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. British Journal of Pharmacology, 154, 327–342.Google Scholar
  83. Trites, R. (1977). Grooved pegboard test. Lafayette, IN: Lafayette Instrument.Google Scholar
  84. von Hofsten, C. (2007). Action in development. Developmental Science, 10, 54–60.CrossRefGoogle Scholar
  85. Watkins, L. H., Rogers, R. D., Lawrence, A. D., Sahakian, B. J., Rosser, A. E., & Robbins, T. W. (2000). Impaired planning but intact decision making in early Huntington’s disease: Implications for specific fronto-striatal pathology. Neuropsychologia, 38, 1112–1125.PubMedCrossRefGoogle Scholar
  86. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: The Psychological Corporation.Google Scholar
  87. Wechsler, D. (2001). Wechsler individual achievement test (2nd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
  88. Yener, G. G., & Zaffos, A. (1999). Memory and the frontal lobes. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes: Functions and disorders (pp. 288–303). New York: Guilford Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Park RidgeUSA
  2. 2.Manhattan BeachUSA

Personalised recommendations