The Basal Ganglia: Beyond the Motor System—From Movement to Thought

  • Leonard F. Koziol
  • Deborah Ely Budding


In studying and practising a cortico-centric model of neuropsychology, few students or clinicians likely pay much attention to or fully understand the functions of the basal ganglia, a set of interconnected subcortical nuclei arising from the mammalian forebrain. This is, in part, due to the fact that the anatomical subdivisions of the basal ganglia can seem confusing. Some regions of the basal ganglia can be broken down into multiple components. Several basal ganglia structures feature further subdivisions, and some components of the basal ganglia can have more than one name, based on which structures are grouped together. There are reasons for these differences, which will be described in the course of this chapter.


Prefrontal Cortex Basal Ganglion Deep Brain Stimulation Work Memory Task Indirect Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albin, R. L., & Mink, J. W. (2006). Recent advances in Tourette syndrome research. Trends in Neuroscience, 29, 175–182.CrossRefGoogle Scholar
  2. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedCrossRefGoogle Scholar
  3. An, S. K., Mataix-Cols, D., Lawrence, N. S., Wooderson, S., Giampietro, V., Speckens, A., et al. (2008). To discard or not to discard: The neural basis of hoarding symptoms in obsessive-compulsive disorder. Molecular Psychiatry, doi: 10.1038/ Scholar
  4. Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442–481.PubMedCrossRefGoogle Scholar
  5. Ashby, F. G., Ell, S. W., Valentin, V. V., & Casale, M. B. (2005). FROST: A distributed neurocomputational model of working memory maintenance. Journal of Cognitive Neuroscience, 17, 1728–1743.PubMedCrossRefGoogle Scholar
  6. Ashby, F. G., & Spiering, B. J. (2004). The neurobiology of category learning. Behavioral and Cognitive Neuroscience Reviews, 3, 101–113.PubMedCrossRefGoogle Scholar
  7. Awh, E., & Vogel, E. K. (2008). The bouncer in the brain. Nature Neuroscience, 11, 5–6.PubMedCrossRefGoogle Scholar
  8. Baddeley, A. (1998). The central executive: A concept and some misconceptions. Journal of the International Neuropsychological Society, 4, 523–526.PubMedCrossRefGoogle Scholar
  9. Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews. Neuroscience, 4, 829–839.PubMedCrossRefGoogle Scholar
  10. Bar-Gad, I., Morris, G., & Bergman, H. (2003). Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Progress in Neurobiology, 71, 439–473.PubMedCrossRefGoogle Scholar
  11. Bedard, M. A., Agid, Y., Chouinard, S., Fahn, S., & Korczyn, A. (2003). Mental and behavioral dysfunction in movement disorders. Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  12. Bradshaw, J. L. (2001). Developmental disorders of the frontostriatal system: Neuropsychological, neuropsychiatric and evolutionary perspectives. Philadelphia: Taylor & Francis, Inc.Google Scholar
  13. Brass, S. D., Benedict, R. H., Weinstock-Guttman, B., Munschauer, F., & Bakshi, R. (2006). Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter T2 hypointensity in multiple sclerosis. Multiple Sclerosis, 12, 437–444.PubMedCrossRefGoogle Scholar
  14. Buchsbaum, B. R., Olsen, R. K., Koch, P., & Berman, K. F. (2005). Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron, 48, 687–697.PubMedCrossRefGoogle Scholar
  15. Cavedini, P., Gorini, A., & Bellodi, L. (2006). Understanding obsessive-compulsive disorder: Focus on decision making. Neuropsychological Review, 16, 3–15.CrossRefGoogle Scholar
  16. Chang, C., Crottaz-Herbette, S., & Menon, V. (2007). Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage, 34, 1253–1269.PubMedCrossRefGoogle Scholar
  17. Cincotta, C. M., & Seger, C. A. (2007). Dissociation between striatal regions while learning to categorize via feedback and via observation. Journal of Cognitive Neuroscience, 19, 249–265.PubMedCrossRefGoogle Scholar
  18. D’Esposito, M. (2008). Working memory. In G. Goldenberg & B. Miller (Eds.), Neuropsychology and behavioral neurology (pp. 237–247). Amsterdam: Elsevier.CrossRefGoogle Scholar
  19. Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (1999). Mapping the network for planning: A correlational PET activation study with the Tower of London task. Brain, 122(Pt. 10), 1973–1987.PubMedCrossRefGoogle Scholar
  20. Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70–88.PubMedCrossRefGoogle Scholar
  21. Denckla, M. B., & Reiss, A. L. (1997). Prefrontal-subcortical circuits in developmental disorders. In N. A. Krasnegor, G. R. Lyon, & P. S. Goldman-Rakic (Eds.), Development of the prefrontal cortex: Evolution, neurobiology, and behavior (pp. 283–294). Baltimore: P. H. Brookes.Google Scholar
  22. Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Shehzad, Z., et al. (2008). Functional connectivity of human striatum: A resting state fMRI study. Cerebral Cortex, doi: 10.1093/cercor/bhn041.Google Scholar
  23. Dujardin, K., Blairy, S., Defebvre, L., Krystkowiak, P., Hess, U., Blond, S., et al. (2004). Subthalamic nucleus stimulation induces deficits in decoding emotional facial expressions in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 202–208.PubMedGoogle Scholar
  24. Filoteo, J. V., Maddox, W. T., Simmons, A. N., Ing, A. D., Cagigas, X. E., Matthews, S., et al. (2005). Cortical and subcortical brain regions involved in rule-based category learning. Neuroreport, 16, 111–115.PubMedCrossRefGoogle Scholar
  25. Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17, 51–72.PubMedCrossRefGoogle Scholar
  26. Frank, M. J. (2006). Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 19, 1120–1136.PubMedCrossRefGoogle Scholar
  27. Frank, M. J., & Claus, E. D. (2006). Anatomy of a decision: Striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological Review, 113, 300–326.PubMedCrossRefGoogle Scholar
  28. Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective & Behavioral Neuroscience, 1, 137–160.CrossRefGoogle Scholar
  29. Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007). Hold your horses: Impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318, 1309–1312.PubMedCrossRefGoogle Scholar
  30. Frank, M. J., Santamaria, A., O’Reilly, R. C., & Willcutt, E. (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 32, 1583–1599.PubMedCrossRefGoogle Scholar
  31. Frank, M. J., Scheres, A., & Sherman, S. J. (2007). Understanding decision-making deficits in neurological conditions: Insights from models of natural action selection. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1641–1654.PubMedCrossRefGoogle Scholar
  32. Frank, M. J., Seeberger, L. C., O’Reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism science, 306, 1940–1943.Google Scholar
  33. Frith, C. D., Blakemore, S. J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 355, 1771–1788.PubMedCrossRefGoogle Scholar
  34. Fuster, J. M. (1997). The prefrontal cortex—Anatomy, physiology and neuropsychology of the frontal lobe (3rd ed.). Philadelphia: Lippincott-Raven.Google Scholar
  35. Gabrieli, J. D. (1996). Memory systems analyses of mnemonic disorders in aging and age-related diseases. Proceedings of the National Academy of Sciences of the United States of America, 93, 13534–13540.Google Scholar
  36. Garavan, H., Kelley, D., Rosen, A., Rao, S. M., & Stein, E. A. (2000). Practice-related functional activation changes in a working memory task. Microscopy Research and Technique, 51, 54–63.PubMedCrossRefGoogle Scholar
  37. Geday, J., Ostergaard, K., Johnsen, E., & Gjedde, A. (2007). STN-stimulation in Parkinson’s disease restores striatal inhibition of thalamocortical projection. Human Brain Mapping, doi: 10.1002/hbm.20486.Google Scholar
  38. Gerton, B. K., Brown, T. T., Meyer-Lindenberg, A., Kohn, P., Holt, J. L., Olsen, R. K., et al. (2004). Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia, 42, 1781–1787.PubMedCrossRefGoogle Scholar
  39. Goldman-Rakic, P. S. (1992). Working memory and the mind. Scientific American, 267, 110–117.PubMedCrossRefGoogle Scholar
  40. Goldman-Rakic, P. S. (1996). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351, 1445–1453.PubMedCrossRefGoogle Scholar
  41. Graybiel, A. M. (2001). Neural networks: Neural systems V: Basal ganglia. American Journal of Psychiatry, 158, 21.PubMedCrossRefGoogle Scholar
  42. Graybiel, A. M. (2005). The basal ganglia: Learning new tricks and loving it. Current Opinion in Neurobiology, 15, 638–644.PubMedCrossRefGoogle Scholar
  43. Gruber, A. J., Dayan, P., Gutkin, B. S., & Solla, S. A. (2006). Dopamine modulation in the basal ganglia locks the gate to working memory. Journal of Computational Neuroscience, 20, 153–166.PubMedCrossRefGoogle Scholar
  44. Habeck, C., Rakitin, B. C., Moeller, J., Scarmeas, N., Zarahn, E., Brown, T., et al. (2005). An event-related fMRI study of the neural networks underlying the encoding, maintenance, and retrieval phase in a delayed-match-to-sample task. Brain Research. Cognitive Brain Research, 23, 207–220.PubMedCrossRefGoogle Scholar
  45. Hayter, A. L., Langdon, D. W., & Ramnani, N. (2007). Cerebellar contributions to working memory. Neuroimage, 36, 943–954.PubMedCrossRefGoogle Scholar
  46. Hazy, T. E., Frank, M. J., & O’reilly, R. C. (2006). Banishing the homunculus: Making working memory work. Neuroscience, 139, 105–118.PubMedCrossRefGoogle Scholar
  47. Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2007). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1601–1613.PubMedCrossRefGoogle Scholar
  48. Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtis, G. (1993). Wisconsin Card Sorting Test (WCST) manual, revised and expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
  49. Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews. Neuroscience, 9, 467–479.PubMedCrossRefGoogle Scholar
  50. Heimer, L., Van Hoesen, G. W., Trimble, M., & Zahm, D. S. (2008). Anatomy of neuropsychiatry: The new anatomy of the basal forebrain and its implications for neuropsychiatric illness. San Diego, CA: Academic Press.Google Scholar
  51. Hikosaka, O., Takikawa, Y., & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Review, 80, 953–978.Google Scholar
  52. Hikosaka, O., & Wurtz, R. H. (1985). Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. Journal of Neurophysiology, 53, 292–308.PubMedGoogle Scholar
  53. Houk, J. C. (2005). Agents of the mind. Biological Cybernetics, 92, 427–437.PubMedCrossRefGoogle Scholar
  54. Houk, J. C., Bastianen, C., Fansler, D., Fishbach, A., Fraser, D., Reber, P. J., et al. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1573–1583.PubMedCrossRefGoogle Scholar
  55. Houk, J. C., & Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex, 5, 95–110.PubMedCrossRefGoogle Scholar
  56. Joel, D., & Weiner, I. (2000). The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, 96, 451–474.PubMedCrossRefGoogle Scholar
  57. Keri, S. (2008). Interactive memory systems and category learning in schizophrenia. Neuroscience and Biobehavioral Reviews, 32, 206–218.PubMedCrossRefGoogle Scholar
  58. Kim, S. H., Park, K. H., Sung, Y. H., Lee, Y. B., Park, H. M., & Shin, D. J. (2008). Dementia mimicking a sudden cognitive and behavioral change induced by left globus pallidus infarction: Review of two cases. Journal of the Neurological Sciences, 272(1–2):178–182.Google Scholar
  59. Knowlton, B. J. (2002). The role of the basal ganglia in learning and memory. In L. R. Squire & D. L. Schacter (Eds.), The neuropsychology of memory (3rd ed., pp. 143–153). New York: The Guilford Press.Google Scholar
  60. Lawrence, A. D., Watkins, L. H., Sahakian, B. J., Hodges, J. R., & Robbins, T. W. (2000). Visual object and visuospatial cognition in Huntington’s disease: Implications for information processing in corticostriatal circuits. Brain, 123(Pt. 7), 1349–1364.PubMedCrossRefGoogle Scholar
  61. Leung, H. C., Oh, H., Ferri, J., & Yi, Y. (2007). Load response functions in the human spatial working memory circuit during location memory updating. Neuroimage, 35, 368–377.PubMedCrossRefGoogle Scholar
  62. Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2004). Striatal contributions to working memory: A functional magnetic resonance imaging study in humans. European Jouranl of Neuroscience, 19, 755–760.CrossRefGoogle Scholar
  63. Lewis, S. J., Slabosz, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2005). Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia, 43, 823–832.PubMedCrossRefGoogle Scholar
  64. Linden, D. E. (2007). The working memory networks of the human brain. Neuroscientist, 13, 257–267.PubMedCrossRefGoogle Scholar
  65. Lombardi, W. J., Gross, R. E., Trepanier, L. L., Lang, A. E., Lozano, A. M., & Saint-Cyr, J. A. (2000). Relationship of lesion location to cognitive outcome following microelectrode-guided pallidotomy for Parkinson’s disease: Support for the existence of cognitive circuits in the human pallidum. Brain, 123(Pt. 4), 746–758.PubMedCrossRefGoogle Scholar
  66. McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V., & Redgrave, P. (2005). Subcortical loops through the basal ganglia. Trends in Neuroscience, 28, 401–407.CrossRefGoogle Scholar
  67. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103–107.PubMedCrossRefGoogle Scholar
  68. Menon, V., Anagnoson, R. T., Glover, G. H., & Pfefferbaum, A. (2000). Basal ganglia involvement in memory-guided movement sequencing. Neuroreport, 11, 3641–3645.PubMedCrossRefGoogle Scholar
  69. Middleton, F. A. (2003). Fundamental and clinical evidence for basal ganglia influences on cognition. In M. Bedard, Y. Agid, S. Chouinard, S. Fahn, & A. Korczyn (Eds.), Mental and behavioral dysfunction in movement disorders (pp. 13–34). Totowa, NJ: Humana Press, Inc.CrossRefGoogle Scholar
  70. Middleton, F. A., & Strick, P. L. (1996). Basal ganglia and cerebellar output influences non-motor function. Molecular Psychiatry, 1, 429–433.PubMedGoogle Scholar
  71. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42, 183–200.PubMedCrossRefGoogle Scholar
  72. Middleton, F. A., & Strick, P. L. (2001). Revised neuroanatomy of frontal-subcortical circuits. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 44–58). New York: The Guilford Press.Google Scholar
  73. Miller, R. (2008). A theory of the basal ganglia and their disorders. Boca Raton, FL: CRC Press.Google Scholar
  74. Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.PubMedCrossRefGoogle Scholar
  75. Mink, J. W. (2003). The Basal Ganglia and involuntary movements: Impaired inhibition of competing motor patterns. Archives of Neurology, 60, 1365–1368.PubMedCrossRefGoogle Scholar
  76. Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card Sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. Journal of Neuroscience, 21, 7733–7741.PubMedGoogle Scholar
  77. Muller, N. G., & Knight, R. T. (2006). The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience, 139, 51–58.PubMedCrossRefGoogle Scholar
  78. Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., et al. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84, 289–300.PubMedGoogle Scholar
  79. Obwegeser, A. A., Uitti, R. J., Lucas, J. A., Witte, R. J., Turk, M. F., & Wharen, R. E., Jr. (2000). Predictors of neuropsychological outcome in patients following microelectrode-guided pallidotomy for Parkinson’s disease. Journal of Neurosurgery, 93, 410–420.PubMedCrossRefGoogle Scholar
  80. Parent, A., & Cicchetti, F. (1998). The current model of basal ganglia organization under scrutiny. Movement Disorders, 13, 199–202.PubMedCrossRefGoogle Scholar
  81. Petrides, M., Alivisatos, B., Evans, A. C., & Meyer, E. (1993). Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proceedings of the National Academy of Sciences of the United States of America, 90, 873–877.Google Scholar
  82. Ponzi, A. (2008). Dynamical model of salience gated working memory, action selection and reinforcement based on basal ganglia and dopamine feedback. Neural Networks, 21, 322–330.PubMedCrossRefGoogle Scholar
  83. Ranganath, C. (2006). Working memory for visual objects: Complementary roles of inferior temporal, medial temporal, and prefrontal cortex. Neuroscience, 139, 277–289.PubMedCrossRefGoogle Scholar
  84. Rao, S. M., Bobholz, J. A., Hammeke, T. A., Rosen, A. C., Woodley, S. J., Cunningham, J. M., et al. (1997). Functional MRI evidence for subcortical participation in conceptual reasoning skills. Neuroreport, 8, 1987–1993.PubMedCrossRefGoogle Scholar
  85. Ravizza, S. M., McCormick, C. A., Schlerf, J. E., Justus, T., Ivry, R. B., & Fiez, J. A. (2006). Cerebellar damage produces selective deficits in verbal working memory. Brain, 129, 306–320.PubMedCrossRefGoogle Scholar
  86. Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.PubMedCrossRefGoogle Scholar
  87. Ricciardi, E., Bonino, D., Gentili, C., Sani, L., Pietrini, P., & Vecchi, T. (2006). Neural correlates of spatial working memory in humans: A functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience, 139, 339–349.PubMedCrossRefGoogle Scholar
  88. Richardson, J. T. E., Engle, R. W., Hasher, L., Logie, R. H., Stoltzfus, E. R., & Zacks, R. T. (1996). Working memory and human cognition. New York: Oxford University Press.CrossRefGoogle Scholar
  89. Ross, R. G., Harris, J. G., Olincy, A., & Radant, A. (2000). Eye movement task measures inhibition and spatial working memory in adults with schizophrenia, ADHD, and a normal comparison group. Psychiatry Research, 95, 35–42.PubMedCrossRefGoogle Scholar
  90. Saint-Cyr, J. A. (2003a). Frontal-striatal circuit functions: Context, sequence, and consequence. Journal of the International Neuropsychological Society, 9, 103–127.PubMedGoogle Scholar
  91. Saint-Cyr, J. A. (2003b). Neuropsychology for movement disorders neurosurgery. The Canadian Journal of Neurological Sciences, 30(Suppl. 1), S83–S93.PubMedGoogle Scholar
  92. Saint-Cyr, J. A., & Taylor, A. E. (1992). The mobilization of procedural learning: The “key signature” of the basal ganglia. In L. R. Squire & N. Butters (Eds.), The neuropsychology of memory (2nd ed., pp. 188–202). New York: Guilford Press.Google Scholar
  93. Salmon, D. P., Heindel, W. C., & Hamilton, J. M. (2001). Cognitive abilities mediated by frontal-subcortical circuits. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 114–150). New York: The Guilford Press.Google Scholar
  94. Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concurrent multitasking. Psychological Review, 115, 101–130.PubMedCrossRefGoogle Scholar
  95. Schlosser, R. G., Wagner, G., & Sauer, H. (2006). Assessing the working memory network: Studies with functional magnetic resonance imaging and structural equation modeling. Neuroscience, 139, 91–103.PubMedCrossRefGoogle Scholar
  96. Seger, C. A. (2006). The basal ganglia in human learning. The Neuroscientist, 12, 285–290.PubMedCrossRefGoogle Scholar
  97. Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32, 265–278.PubMedCrossRefGoogle Scholar
  98. Seger, C. A., & Cincotta, C. M. (2005). The roles of the caudate nucleus in human classification learning. Journal of Neuroscience, 25, 2941–2951.PubMedCrossRefGoogle Scholar
  99. Seger, C. A., & Cincotta, C. M. (2006). Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cerebral Cortex, 16, 1546–1555.PubMedCrossRefGoogle Scholar
  100. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.PubMedCrossRefGoogle Scholar
  101. Smith, E. E., & Jonides, J. (2003). Executive control and thought. In L.Squire, F. E. Bloom, M. K. McConnell, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (2nd ed., pp. 1377–1394). New York: Academic Press.Google Scholar
  102. Spinks, R., Nopoulos, P., Ward, J., Fuller, R., Magnotta, V. A., & Andreasen, N. C. (2005). Globus pallidus volume is related to symptom severity in neuroleptic naive patients with schizophrenia. Schizophrenia Research, 73, 229–233.PubMedCrossRefGoogle Scholar
  103. Squire, L. R., Clark, R. E., & Bayley, P. J. (2004). Medial temporal lobe function and memory. In M. S. Gazzaniga (Ed.), The cognitive neurosciences III (3rd ed., pp. 691–708). Cambridge, MA: MIT Press.Google Scholar
  104. Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.PubMedCrossRefGoogle Scholar
  105. Stuss, D. T. (2007). New approaches to prefrontal lobe testing. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 292–305). New York: Guilford Press.Google Scholar
  106. Toates, F. (2006). A model of the hierarchy of behaviour, cognition, and consciousness. Consciousness and Cognition, 15, 75–118.PubMedCrossRefGoogle Scholar
  107. Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754.PubMedCrossRefGoogle Scholar
  108. Ungerleider, L. G. (1995). Functional brain imaging studies of cortical mechanisms for memory. Science, 270, 769–775.PubMedCrossRefGoogle Scholar
  109. Ungerleider, L. G., & Haxby, J. V. (1994). ’What’ and ’where’ in the human brain. Current Opinion in Neurobiology, 4, 157–165.PubMedCrossRefGoogle Scholar
  110. Utter, A. A., & Basso, M. A. (2008). The basal ganglia: An overview of circuits and function. Neuroscience and Biobehavioral Reviews, 32, 333–342.PubMedCrossRefGoogle Scholar
  111. Valera, E. M., Faraone, S. V., Biederman, J., Poldrack, R. A., & Seidman, L. J. (2005). Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biological Psychiatry, 57, 439–447.PubMedCrossRefGoogle Scholar
  112. Veltman, D. J., Rombouts, S. A., & Dolan, R. J. (2003). Maintenance versus manipulation in verbal working memory revisited: An fMRI study. Neuroimage, 18, 247–256.PubMedCrossRefGoogle Scholar
  113. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751.PubMedCrossRefGoogle Scholar
  114. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503.PubMedCrossRefGoogle Scholar
  115. Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3, 255–274.CrossRefGoogle Scholar
  116. Winstanley, C. A., Baunez, C., Theobald, D. E., & Robbins, T. W. (2005). Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: The importance of the basal ganglia in Pavlovian conditioning and impulse control. European Journal of Neuroscience, 21, 3107–3116.PubMedCrossRefGoogle Scholar
  117. Wurtz, R. H., & Hikosaka, O. (1986). Role of the basal ganglia in the initiation of saccadic eye movements. Progress in Brain Research, 64, 175–190.PubMedCrossRefGoogle Scholar
  118. Yokochi, F., Okiyama, R., Taniguchi, M., Takahashi, H., Hasegawa, N., & Hamada, I. (2001). Relationship between lesion location and the outcome of pallidotomy for Parkinson’s disease. Journal of Neurology, 248(Suppl. 3), III32–III36.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Park RidgeUSA
  2. 2.Manhattan BeachUSA

Personalised recommendations