Advertisement

The Integrated Brain: Implications for Neuropsychological Evaluation

  • Leonard F. Koziol
  • Deborah Ely Budding
Chapter

Abstract

If you have come this far, dear reader, you have come a long way in modifying your knowledge about brain–behavior relationships. You have learned information about brain structures that have traditionally been considered mainly as co-processors of movement. You have learned about the vertical organization of brain–behavior relationships. You have learned how movement is organized within the brain, and you have learned how to apply these concepts of movement to cognition and emotion, because you have learned that cognition and emotion are organized in a way that is parallel to movement.

Keywords

Basal Ganglion Procedural Learning Implicit Learning Specific Language Impairment Attention Deficit Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ardila, A. (2008). On the evolutionary origins of executive functions. Brain and Cognition, 68(1), 92–99.Google Scholar
  2. Ashtari, M., Kumra, S., Bhaskar, S. L., Clarke, T., Thaden, E., Cervellione, K. L. et al. (2005). Attention-deficit/hyperactivity disorder: A preliminary diffusion tensor imaging study. Biological Psychiatry, 57, 448–455.PubMedCrossRefGoogle Scholar
  3. Bigelow, N. O., Turner, B. M., Andreasen, N. C., Paulsen, J. S., O'Leary, D. S., & Ho, B. C. (2006). Prism adaptation in schizophrenia. Brain and Cognition, 61, 235–242.PubMedCrossRefGoogle Scholar
  4. Bradshaw, J. L. (2001). Developmental disorders of the frontostriatal system. Philadelphia, PA: Psychology Press.Google Scholar
  5. Chen, C. C., Kiebel, S. J., & Friston, K. J. (2008). Dynamic causal modelling of induced responses. Neuroimage, 41, 1293–1312.PubMedCrossRefGoogle Scholar
  6. Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12, 961–974.PubMedCrossRefGoogle Scholar
  7. Eitam, B., Hassin, R. R., & Schul, Y. (2008). Nonconscious goal pursuit in novel environments: The case of implicit learning. Psychological Science, 19, 261–267.PubMedCrossRefGoogle Scholar
  8. Foerde, K., Poldrack, R. A., Khan, B. J., Sabb, F. W., Bookheimer, S. Y., Bilder, R. M., et al. (2008). Selective corticostriatal dysfunction in schizophrenia: Examination of motor and cognitive skill learning. Neuropsychology, 22, 100–109PubMedCrossRefGoogle Scholar
  9. Fontenelle, L. F., Mendlowicz, M. V., Mattos, P., & Versiani, M. (2006). Neuropsychological findings in obsessive-compulsive disorder and its potential implications for treatment. Current Psychiatry Reviews, 2, 11–26.CrossRefGoogle Scholar
  10. Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17, 51–72.PubMedCrossRefGoogle Scholar
  11. Frank, M. J. (2006). Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 19, 1120–1136.PubMedCrossRefGoogle Scholar
  12. Goldsamt, L. (1994). Neuropsychological findings in schizophrenia. In L. Koziol & C. Stout (Eds.), The neuropsychology of mental disorders: A practical guide (pp. 80–93). Springfield, IL: Charles C. Thomas.Google Scholar
  13. Heinke, D., & Mavritsaki, E. (2009). Computational modelling in behavioural neuroscience : Closing the gap between neurophysiology and behaviour. Hove, East Sussex; New York, NY: Psychology Press.Google Scholar
  14. Houk, J. C., Bastianen, C., Fansler, D., Fishbach, A., Fraser, D., Reber, P. J. et al. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 362, 1573–1583.PubMedCrossRefGoogle Scholar
  15. Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9, 304–313.PubMedCrossRefGoogle Scholar
  16. Ito, M. (2007). On How Working Memory and the Cerebellum Collaborate to Produce Creativity and Innovation by L. R. Vandervert, P. H. Schimpf, & H. Liu. Creativity Research Journal, 19, 35–38.Google Scholar
  17. Kawakubo, Y., Rogers, M. A., & Kasai, K. (2006). Procedural memory predicts social skills in persons with schizophrenia. Journal of Nervous and Mental Disease, 194, 625–627.PubMedCrossRefGoogle Scholar
  18. Kumari, V., Gray, J. A., Honey, G. D., Soni, W., Bullmore, E. T., Williams, S. C. et al. (2002). Procedural learning in schizophrenia: a functional magnetic resonance imaging investigation. Schizophrenia Research, 57, 97–107.PubMedCrossRefGoogle Scholar
  19. Lawrence, N. S., Wooderson, S., Mataix-Cols, D., David, R., Speckens, A., & Phillips, M. L. (2006). Decision making and set shifting impairments are associated with distinct symptom dimensions in obsessive-compulsive disorder. Neuropsychology, 20, 409–419.PubMedCrossRefGoogle Scholar
  20. Leggio, M. G., Tedesco, A. M., Chiricozzi, F. R., Clausi, S., Orsini, A., & Molinari, M. (2008). Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain, 131(5), 1332–1343.Google Scholar
  21. Mackie, S., Shaw, P., Lenroot, R., Pierson, R., Greenstein, D. K., Nugent, T. F., III et al. (2007). Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. American Journal of Psychiatry, 164, 647–655.PubMedCrossRefGoogle Scholar
  22. Maddox, W. T., & Filoteo, J. V. (2001). Striatal contributions to category learning: quantitative modeling of simple linear and complex nonlinear rule learning in patients with Parkinson's disease. Journal of the International Neuropsychological Society, 7, 710–727.PubMedCrossRefGoogle Scholar
  23. Mainzer, K. (2008). The emergence of mind and brain: an evolutionary, computational, and philosophical approach. Progres in Brain Research, 168, 115–132.CrossRefGoogle Scholar
  24. Marreiros, A. C., Kiebel, S. J., & Friston, K. J. (2008). Dynamic causal modelling for fMRI: A two-state model. Neuroimage, 39, 269–278.PubMedCrossRefGoogle Scholar
  25. Mayberg, H. (2001a). Depression and frontal-subcortical circuits: Focus on prefrontal-limbic interactions. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 177–206). New York: The Guilford Press.Google Scholar
  26. Mayberg, H. (2001b). Frontal lobe dysfunction in secondary depression. In S. P. Salloway, P. F. Malloy, & J. D. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 167–186). Washington, D.C.: American Psychiatric Publishing.Google Scholar
  27. Nicolson, R. (2000). Dyslexia and dyspraxia: Commentary. Dyslexia, 6, 203–204.PubMedCrossRefGoogle Scholar
  28. Nicolson, R.I, & Fawcett, A. (2005). Developmental dyslexia, learning and the cerebellum. In W. W. Fleischhacker & D.J. Brooks (Eds.) Neurodevelopmental disorders (pp. 19–36). Vienna: Springer.Google Scholar
  29. Nicolson, R. I., & Fawcett, A. J. (2006). Do cerebellar deficits underlie phonological problems in dyslexia? Developmental Science, 9, 259–262.PubMedCrossRefGoogle Scholar
  30. Nicolson, R. I., & Fawcett, A. J. (2007). Procedural learning difficulties: reuniting the developmental disorders? Trends Neuroscience, 30, 135–141.CrossRefGoogle Scholar
  31. Noppeney, U., Josephs, O., Hocking, J., Price, C. J., & Friston, K. J. (2008). The effect of prior visual information on recognition of speech and sounds. Cerebral Cortex, 18, 598–609.PubMedCrossRefGoogle Scholar
  32. Picard, H., Amado, I., Mouchet-Mages, S., Olie, J. P., & Krebs, M. O. (2008). The role of the cerebellum in schizophrenia: An update of clinical, cognitive, and functional evidences. Schizophrenia Bulletin, 34, 155–172.PubMedCrossRefGoogle Scholar
  33. Podell, K., Lovell, M., & Goldberg, E. (2001). Lateralization of frontal lobe functions. In S. Salloway, P. Malloy, & J. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 83–100). Washington, D.C.: American Psychiatric.Google Scholar
  34. Porrill, J., & Dean, P. (2007). Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Computation, 19, 170–193.PubMedCrossRefGoogle Scholar
  35. Rubia, K. (2007). Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proceedings of the National Academy of Sciences of the United States of America, 104, 19663–19664.Google Scholar
  36. Sagvolden, T., Johansen, E. B., Aase, H., & Russell, V. A. (2005). A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral and Brain Sciences, 28, 397–419.PubMedCrossRefGoogle Scholar
  37. Scheres, A., Milham, M. P., Knutson, B., & Castellanos, F. X. (2007). Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61, 720–724.PubMedCrossRefGoogle Scholar
  38. Schmahmann, J. D., Weilburg, J. B., & Sherman, J. C. (2007). The neuropsychiatry of the cerebellum – insights from the clinic. Cerebellum, 6, 254–267.PubMedCrossRefGoogle Scholar
  39. Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D. et al. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences of the United States of America, 104, 19649–19654.Google Scholar
  40. Squire, L. R., Clark, R.E., & Bayley, P. J. (2004). Medial temporal lobe functions and memory. In M. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed., pp. 691–708). Cambridge, MA: MIT.Google Scholar
  41. Strangman, G., Heindel, W. C., Anderson, J. A., & Sutton, J. P. (2005). Learning motor sequences with and without knowledge of governing rules. Neurorehabilitation and Neural Repair, 19, 93–114.PubMedCrossRefGoogle Scholar
  42. Takano, K., Ito, M., Kobayashi, K., Sonobe, N., Kurosu, S., Mori, Y. et al. (2002). Procedural memory in schizophrenia assessed using a mirror reading task. Psychiatry Research, 109, 303–307.PubMedCrossRefGoogle Scholar
  43. Ullman, M. T. (2001). The declarative/procedural model of lexicon and grammar. Journal of Psycholinguistic Research, 30, 37–69.PubMedCrossRefGoogle Scholar
  44. Ullman, M. T. (2004). Contributions of memory circuits to language: the declarative/procedural model. Cognition, 92, 231–270.PubMedCrossRefGoogle Scholar
  45. Ullman, M. T., Pancheva, R., Love, T., Yee, E., Swinney, D., & Hickok, G. (2005). Neural correlates of lexicon and grammar: evidence from the production, reading, and judgment of inflection in aphasia. Brain Lang, 93, 185–238.PubMedCrossRefGoogle Scholar
  46. Ullman, M. T. & Pierpont, E. I. (2005). Specific language impairment is not specific to language: the procedural deficit hypothesis. Cortex, 41, 399–433.PubMedCrossRefGoogle Scholar
  47. Vandervert, L. R., Schimpf, P. H., & Liu, H. (2007). How working memory and the cerebellum collaborate to produce creativity and innovation. Creativity Research Journal, 19, 1–18.CrossRefGoogle Scholar
  48. Walenski, M., Mostofsky, S. H., Gidley-Larson, J. C., & Ullman, M. T. (2007). Brief report: Enhanced picture naming in Autism. Journal of Autism and Developmental Disorders 45(11), 2447–2460.Google Scholar
  49. Yamazaki, T., & Tanaka, S. (2007). The cerebellum as a liquid state machine. Neural Network, 20, 290–297.CrossRefGoogle Scholar
  50. Zedkova, L., Woodward, N. D., Harding, I., Tibbo, P. G., & Purdon, S. E. (2006). Procedural learning in schizophrenia investigated with functional magnetic resonance imaging. Schizophrenia Research, 88, 198–207.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Park RidgeUSA
  2. 2.Manhattan BeachUSA

Personalised recommendations