The Cerebellum in Neuropsychological Testing



As we have seen, the cerebellum plays a role in a variety of cognitive processes. These domains include attention and executive functioning, speech and language, visuospatial functioning, and learning and memory, as discussed in Chapter 5 (Schmahmann, 2004). These functions are all routinely assessed in a standard neuropsychological assessment. The cerebro-cerebellar circuit is considered the neuroanatomic substrate subserving the cerebellum’s participation in these functions (Schmahmann & Pandya, 1997). The cerebellum also plays a central role in classical conditioning, temporal processing, and procedural learning, but these functions are very seldom, if ever, addressed during the course of a traditional neuropsychological evaluation.


Continuous Performance Test Behavior Relationship Verbal Comprehension Index Cerebellar Contribution Cerebellar Cognitive Affective Syndrome 


  1. Allin, M., Matsumoto, H., Santhouse, A. M., Nosarti, C., AlAsady, M. H., Stewart, A. L. et al. (2001). Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain, 124, 60–66.PubMedCrossRefGoogle Scholar
  2. Allin, M. P., Salaria, S., Nosarti, C., Wyatt, J., Rifkin, L., & Murray, R. M. (2005). Vermis and lateral lobes of the cerebellum in adolescents born very preterm. Neuroreport, 16, 1821–1824.PubMedCrossRefGoogle Scholar
  3. Andreasen, N. C., Nopoulos, P., O'Leary, D. S., Miller, D. D., Wassink, T., & Flaum, M. (1999). Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms. Biological Psychiatry, 46, 908–920.PubMedCrossRefGoogle Scholar
  4. Andreasen, N. C., Paradiso, S., & O'Leary, D. S. (1998). “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24, 203–218.PubMedCrossRefGoogle Scholar
  5. Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64(2), 81–88.Google Scholar
  6. Back, S. A., Riddle, A., & McClure, M. M. (2007). Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke, 38, 724–730.PubMedCrossRefGoogle Scholar
  7. Baldo, J. V., Delis, D., Kramer, J., & Shimamura, A. P. (2002). Memory performance on the California verbal learning test-II: Findings from patients with focal frontal lesions. Journal of the International Neuropsychological Society, 8, 539–546.PubMedCrossRefGoogle Scholar
  8. Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M., & Anand, K. J. (2002). Cognitive and behavioral outcomes of school-aged children who were born preterm: A meta-analysis. JAMA, 288, 728–737.PubMedCrossRefGoogle Scholar
  9. Catani, M., Jones, D. K., Daly, E., Embiricos, N., Deeley, Q., Pugliese, L. et al. (2008). Altered cerebellar feedback projections in Asperger syndrome. Neuroimage, 41(4), 1184–1191.Google Scholar
  10. Denckla, M. B.. (1994). Measurement of executive function. In G. R. Lyon (Ed.), Frames of reference for the assessment of learning disabilities : New views on measurement issues (pp. 117–142). Baltimore: Paul H. Brookes Pub. Co.Google Scholar
  11. Denckla, M. B. (1996). A theory and model of executive function: A neuropsychological perspective. In G. R. Lyon & N. A. Krasnegor (Eds.), Attention, memory, and executive function (pp. 263–278). Baltimore, MD: Paul H. Brookes Publishing.Google Scholar
  12. Denckla, M. B., & Reiss, A. L. (1997). Prefrontal-subcortical circuits in developmental disorders. In N. A. Krasnegor, G. R. Lyon, & P. S. Goldman-Rakic (Eds.), Development of the prefrontal cortex: Evolution, neurobiology, and behavior (pp. 283–294). Baltimore: P. H. Brookes.Google Scholar
  13. Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71, 44–56.PubMedCrossRefGoogle Scholar
  14. Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. Neuroimage, 26, 471–479.PubMedCrossRefGoogle Scholar
  15. Frey, K. A., & Albin, R. L. (2006). Neuroimaging of Tourette syndrome. Journal of Child Neurology, 21, 672–677.PubMedCrossRefGoogle Scholar
  16. Hatta, T., Masui, T., Ito, Y., Ito, E., Hasegawa, Y., & Matsuyama, Y. (2004). Relation between the prefrontal cortex and cerebro-cerebellar functions: evidence from the results of stabilometrical indexes. Applied Neuropsychology, 11, 153–160.PubMedCrossRefGoogle Scholar
  17. Herbert, J. S., Eckerman, C. O., Goldstein, R. F., & Stanton, M. E. (2004). Contrasts in infant classical eyeblink conditioning as a function of premature birth. Infancy, 5, 367–383.CrossRefGoogle Scholar
  18. Hirata, K., Tanaka, H., Zeng, X. H., Hozumi, A., & Arai, M. (2006). The role of the basal ganglia and cerebellum in cognitive impairment: A study using event-related potentials. Supplement of Clinical Neurophysiology, 59, 49–55.CrossRefGoogle Scholar
  19. Justus, T. C., & Ivry, R. B. (2001). The cognitive neuropsychology of the cerebellum. International Review of Psychiatry, 13, 276–282.CrossRefGoogle Scholar
  20. Kalashnikova, L. A., Zueva, Y. V., Pugacheva, O. V., & Korsakova, N. K. (2005). Cognitive impairments in cerebellar infarcts. Neuroscience and Behavioral Physiology, 35, 773–779.PubMedCrossRefGoogle Scholar
  21. Kessenich, M. (2003). Developmental outcomes of premature, low birth weight, and medically fragile infants. Newborn and Infant Nursing Reviews, 3, 80–87.CrossRefGoogle Scholar
  22. Knowlton, B. J. (2002). The role of the basal ganglia in learning and memory. In L. R. Squire & D. L. Schacter (Eds.), The neuropsychology of memory (3rd ed., pp. 143–153). New York: Guilford Press.Google Scholar
  23. Lezak, M., Howieson, D., & Loring, D. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.Google Scholar
  24. Limperopoulos, C., Soul, J. S., Gauvreau, K., Huppi, P. S., Warfield, S. K., Bassan, H. et al. (2005a). Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics, 115, 688–695.Google Scholar
  25. Limperopoulos, C., Soul, J. S., Haidar, H., Huppi, P. S., Bassan, H., Warfield, S. K. et al. (2005b). Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics, 116, 844–850.Google Scholar
  26. Melrose, R. J., Poulin, R. M., & Stern, C. E. (2007). An fMRI investigation of the role of the basal ganglia in reasoning. Brain Research, 1142, 146–158.PubMedCrossRefGoogle Scholar
  27. Messerschmidt, A., Brugger, P. C., Boltshauser, E., Zoder, G., Sterniste, W., Birnbacher, R. et al. (2005). Disruption of cerebellar development: potential complication of extreme prematurity. AJNR American Journal of Neuroradiology, 26, 1659–1667.PubMedGoogle Scholar
  28. Milberg, W. P., Hebben, N., & Kaplan, E. (1996). The Boston process approach to neuropsychological assessment. In I. Grant & K. M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric disorders (pp. 58–80). New York: Oxford University Press.Google Scholar
  29. Mirsky, A. F. (1996). Disorders of attention. In G. R. Lyon & N. A. Krasnegor (Eds.), Attention, memory, and executive function (pp. 71–98). Baltimore: Paul H. Brookes.Google Scholar
  30. Neggers, S. F., Raemaekers, M. A., Lampmann, E. E., Postma, A., & Ramsey, N. F. (2005). Cortical and subcortical contributions to saccade latency in the human brain. European Journal of Neuroscience, 21, 2853–2863.PubMedCrossRefGoogle Scholar
  31. Nicolson, R. I., & Fawcett, A. J. (2006). Do cerebellar deficits underlie phonological problems in dyslexia? Developmental Science, 9, 259–262.PubMedCrossRefGoogle Scholar
  32. Nicolson, R. I., & Fawcett, A. J. (2007). Procedural learning difficulties: Reuniting the developmental disorders? Trends Neuroscience, 30, 135–141.CrossRefGoogle Scholar
  33. Podell, K., Lovell, M., & Goldberg, E. (2001). Lateralization of frontal lobe functions. In S. P. Salloway, P. F. Malloy, & J. D. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 83–100). Washington, D.C.: American Psychiatric Publishing.Google Scholar
  34. Rubia, K., Smith, A. B., Woolley, J., Nosarti, C., Heyman, I., Taylor, E. et al. (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping, 27, 973–993.PubMedCrossRefGoogle Scholar
  35. Salthouse, T. A. (2005). Relations between cognitive abilities and measures of executive functioning. Neuropsychology, 19, 532–545.PubMedCrossRefGoogle Scholar
  36. Schmahmann, J. D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. Journal of Neuropsychiatry Clinical Neuroscience, 16, 367–378.CrossRefGoogle Scholar
  37. Schmahmann, J. D., & Pandya, D. N. (1997). The cerebrocerebellar system. International Review of Neurobiology, 41, 31–60.PubMedCrossRefGoogle Scholar
  38. Schmahmann, J. D., & Sherman, J. (1998). The cerebellar cognitive affective syndrome. Brain, 121(Pt 4), 561–579.PubMedCrossRefGoogle Scholar
  39. Schmahmann, J. D., Weilburg, J. B., Sherman, J. C. (2007). The neuropsychiatry of the cerebellum–insights from the clinic Cerebellum, 6(3), 254–267.Google Scholar
  40. Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience Biobehavioral Reviews, 32, 265–278.CrossRefGoogle Scholar
  41. Silk, T., Vance, A., Rinehart, N., Bradshaw, J., & Cunnington, R. (2008). Dysfunction in the fronto-parietal network in Attention Deficit Hyperactivity Disorder. (ADHD): An fMRI Study. Brain Imaging and Behavior, 2, 123–131.CrossRefGoogle Scholar
  42. Tanaka, H., Harada, M., Arai, M., & Hirata, (2003). Cognitive dysfunction in cortical cerebellar atrophy correlates with impairment of the inhibitory system. Neuropsychobiology, 47, 206–211.Google Scholar
  43. Wechsler, D. (2003a). Simulated items similar to those in the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). NCS Pearson, Inc. Reproduced with permission. All rights reserved.Google Scholar
  44. Wechsler, D. (2003b). Wechsler intelligence scale for children—fourth edition (WISC-IV). San Antonio: The Psychological Corporation.Google Scholar
  45. Yaryura-Tobias, J. A., Rabinowitz, D. C., & Neziroglu, F. (2003). Possible basal ganglia pathology in children with complex symptoms. Journal of Clinical Psychiatry, 64, 1495–1501.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Park RidgeUSA
  2. 2.Manhattan BeachUSA

Personalised recommendations