Introduction: Movement, Cognition, and the Vertically Organized Brain

  • Leonard F. Koziol
  • Deborah Ely Budding


How does the mind work? This question has puzzled philosophers, physicians, and artists for centuries. This question has led to remarkable discoveries, and in turn, further questions. Currently, technological advances appear to be outpacing our abilities to keep up with applying them. Yet the same questions continue to arise. Why do we keep losing our keys? Why do we have the same argument over and over again? Why do we hit a hole-in-one on the golf course one day and are lucky to bogey the same hole a week later? These kinds of questions are no less significant than questions regarding why societies fail to learn from history or individuals allow envy or greed to turn them away from important opportunities. Science has long attempted to answer these and other questions. Sometimes what we know can get in the way of discoveries yet to be made, exemplified by earlier assumptions about the “unimportant” prefrontal lobes or the “silent” right hemisphere. Nevertheless, discoveries continue and the neurosciences in turn continue to adapt to these discoveries along with their associated intended and unintended consequences.


Basal Ganglion Nucleus Accumbens Caudate Nucleus Behavioral Control Globus Pallidus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aboitiz, F., Morales, D., & Montiel, J. (2003). The evolutionary origin of the mammalian isocortex: Towards an integrated developmental and functional approach. The Behavioral and Brain Sciences, 26, 535–552.PubMedGoogle Scholar
  2. Afraimovich, V. S., Zhigulin, V. P., & Rabinovich, M. I. (2004). On the origin of reproducible sequential activity in neural circuits. Chaos, 14, 1123–1129.PubMedCrossRefGoogle Scholar
  3. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedCrossRefGoogle Scholar
  4. Andreasen, N. C., Nopoulos, P., O’Leary, D. S., Miller, D. D., Wassink, T., & Flaum, M. (1999). Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms. Biological Psychiatry, 46, 908–920.PubMedCrossRefGoogle Scholar
  5. Andreasen, N. C., Paradiso, S., & O’Leary, D. S. (1998). “Cognitive dysmetria” as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24, 203–218.PubMedCrossRefGoogle Scholar
  6. Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64, 81–88.PubMedCrossRefGoogle Scholar
  7. Azizi, S. A. (2007). And the olive said to the cerebellum: Organization and functional significance of the olivo-cerebellar system. The Neuroscientist, 13, 616–625.CrossRefGoogle Scholar
  8. Banich, M. T. (2004). Cognitive neuroscience and neuropsychology (2nd ed.). Boston: Houghton Mifflin.Google Scholar
  9. Basar, E., & Guntekin, B. (2007). A breakthrough in neuroscience needs a “Nebulous Cartesian System” oscillations, quantum dynamics and chaos in the brain and vegetative system. International Journal of Psychophysiology, 64, 108–122.PubMedCrossRefGoogle Scholar
  10. Bedard, M. A., Agid, Y., Chouinard, S., Fahn, S., & Korczyn, A. (2003). Mental and behavioral dysfunction in movement disorders. Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  11. Blumenfeld, H. (2002). Neuroanatomy through clinical cases. Sunderland, MA: Sinauer Associates.Google Scholar
  12. Brauth, S. E., & Kitt, C. A. (1980). The paleostriatal system of Caiman crocodilus. The Journal of Comparative Neurology, 189, 437–465.PubMedCrossRefGoogle Scholar
  13. Crespo-Facorro, B., Paradiso, S., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Boles Ponto, L. L., et al. (1999). Recalling word lists reveals “cognitive dysmetria” in schizophrenia: A positron emission tomography study. American Journal of Psychiatry, 156, 386–392.PubMedGoogle Scholar
  14. Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50, 873–880.PubMedCrossRefGoogle Scholar
  15. Deshmukh, A., Rosenbloom, M. J., Pfefferbaum, A., & Sullivan, E. V. (2002). Clinical signs of cerebellar dysfunction in schizophrenia, alcoholism, and their comorbidity. Schizophrenia Research, 57, 281–291.PubMedCrossRefGoogle Scholar
  16. Divac, I., & Oberg, R. (1992). Subcortical mechanisms in cognition. In G. Vallar, S. F. Cappa, & C. W. Wallesch (Eds.), Neuropsychological disorders associated with subcortical lesions (pp. 42–60). New York: Oxford University Press.Google Scholar
  17. Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12, 961–974.PubMedCrossRefGoogle Scholar
  18. Doyon, J., & Ungerleider, L. G. (2002). Functional anatomy of motor skill learning. In L. R. Squire & D. L. Schacter (Eds.), The neuropsychology of memory (3rd ed., pp. 225–238). New York: Guilford Press.Google Scholar
  19. Fitzpatrick, L. E., Jackson, M., & Crowe, S. F. (2008). The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning. Neuroscience and Biobehavioral Reviews, 32, 466–485.PubMedCrossRefGoogle Scholar
  20. Freeman, W. J. (2008). A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics. Neural Networks, 21, 257–265.PubMedCrossRefGoogle Scholar
  21. Fuster, J. M. (1997). The prefrontal cortex—anatomy, physiology and neuropsychology of the frontal lobe (3rd ed.). Philadelphia: Lippincott-Raven.Google Scholar
  22. Graff-Radford, N. R., Tranel, D., & Brandt, J. P. (1992). Diencephalic amnesia. In G. Vallar, S. F. Cappa, & C. W. Wallesch (Eds.), Neuropsychological disorders associated with subcortical lesions (pp. 143–168). New York: Oxford University Press.Google Scholar
  23. Guzzetta, F., Mercuri, E., & Spano, M. (2000). Congenital lesions of cerebellum. In D. Riva & A. Benton (Eds.), Localization of brain lesions and development functions (pp. 145–150). London: John Libbey.Google Scholar
  24. Hallett, M., & Grafman, J. (1997). Executive function and motor skill learning. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 297–323). San Diego, CA: Academic Press.Google Scholar
  25. Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtis, G. (1993). Wisconsin Card Sorting Test (WCST) manual, revised and expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
  26. Hebb, D. O. (1949). The organization of behavior; a neuropsychological theory. New York: Wiley.Google Scholar
  27. Heimer, L., Van Hoesen, G. W., Trimble, M., & Zahm, D. S. (2008). Anatomy of neuropsychiatry: The new anatomy of the basal forebrain and its implications for neuropsychiatric illness. San Diego, CA: Academic Press.Google Scholar
  28. Houk, J. C. (2005). Agents of the mind. Biological Cybernetics, 92, 427–437.PubMedCrossRefGoogle Scholar
  29. Houk, J. C., Bastianen, C., Fansler, D., Fishbach, A., Fraser, D., Reber, P. J., et al. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1573–1583.PubMedCrossRefGoogle Scholar
  30. Houk, J. C., & Mugnaini, E. (2003). Cerebellum. In L. Squire, F. E. Bloom, S. K. McConnell, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (pp. 841–872). San Diego, CA: Academic Press.Google Scholar
  31. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge, MA: MIT Press.Google Scholar
  32. Joel, D., & Weiner, I. (2000). The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, 96, 451–474.PubMedCrossRefGoogle Scholar
  33. Kinsbourne, M. (1993). Development of attention and metacognition. In I. Rapin & S. Segalowitz (Eds.), Handbook of neuropsychology (Vol. 7, pp. 261–278). Amsterdam: Elsevier Biomedical.Google Scholar
  34. Kolb, B., & Whishaw, I. Q. (2008). Fundamentals of human neuropsychology. New York: Worth.Google Scholar
  35. Lezak, M., Howieson, D., & Loring, D. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.Google Scholar
  36. Lichter, D. G. (1991). Movement disorders and frontal-subcortical circuits. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 260–316). New York: The Guilford Press.Google Scholar
  37. Marin, O., Smeets, W. J., & Gonzalez, A. (1998). Evolution of the basal ganglia in tetrapods: A new perspective based on recent studies in amphibians. Trends in Neurosciences, 21, 487–494.PubMedCrossRefGoogle Scholar
  38. Medina, L., & Reiner, A. (1995). Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: Implications for the evolution of basal ganglia. Brain, Behavior and Evolution, 46, 235–258.PubMedCrossRefGoogle Scholar
  39. Middleton, F. A. (2003). Fundamental and clinical evidence for basal ganglia influences on cognition. In M. Bedard, Y. Agid, S. Chouinard, S. Fahn, & A. Korczyn (Eds.), Mental and behavioral dysfunction in movement disorders (pp. 13–33). Totowa, NJ: Humana Press, Inc.CrossRefGoogle Scholar
  40. Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266, 458–461.PubMedCrossRefGoogle Scholar
  41. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research. Brain Research Reviews, 31, 236–250.PubMedCrossRefGoogle Scholar
  42. Middleton, F. A., & Strick, P. L. (2001). Revised neuroanatomy of frontal-subcortical circuits. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 44–58). New York: The Guilford Press.Google Scholar
  43. Miller, R. (2008). A theory of the basal ganglia and their disorders. Boca Raton, FL: CRC Press.Google Scholar
  44. Miller, E. K., & Wallis, J. D. (2003). The prefrontal cortex and executive brain functions. In L. Squire, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (2nd ed., pp. 1353–1376). San Diego, CA: Academic Press.Google Scholar
  45. Mink, J. W. (2003). The Basal Ganglia and involuntary movements: Impaired inhibition of competing motor patterns. Archives of Neurology, 60, 1365–1368.PubMedCrossRefGoogle Scholar
  46. Parent, A. (1997). The brain in evolution and involution. Biochemistry and Cell Biology, 75, 651–667.PubMedCrossRefGoogle Scholar
  47. Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.PubMedCrossRefGoogle Scholar
  48. Richer, F., & Chouinard, S. (2003). Cognitive control in fronto-striatal disorders. In M. A. Bedard, S. Fahn, Y. Agid, S. Chouinard, S. Fahn & A. Korczyn (Eds.), Mental and behavioral dysfunction in movement disorders (pp. 113–124). New York: Humana Press.Google Scholar
  49. Rolls, E. T., & Johnstone, S. (1992). Neurophysiological analysis of striatal function. In G. Vallar, S. F. Cappa, & C. W. Wallesch (Eds.), Neuropsychological disorders associated with subcortical lesions (pp. 61–97). New York: Oxford University Press.Google Scholar
  50. Schmahmann, J. D. (1997). The cerebellum and cognition. San Diego, CA: Academic Press.Google Scholar
  51. Schmahmann, J. D. (2000). The role of the cerebellum in affect and psychosis. Journal of Neurolinguistics, 13, 189–214.CrossRefGoogle Scholar
  52. Schmahmann, J. D. (2004). Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. Journal of Neuropsychiatry Clinical Neurosciences, 16, 367–378.CrossRefGoogle Scholar
  53. Schmahmann, J. D., & Pandya, D. N. (1997). The cerebrocerebellar system. International Review of Neurobiology, 41, 31–60.PubMedCrossRefGoogle Scholar
  54. Schmahmann, J. D., Weilburg, J. B., & Sherman, J. C. (2007). The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum, 6, 254–267.PubMedCrossRefGoogle Scholar
  55. Smeets, W. J., Marin, O., & Gonzalez, A. (2000). Evolution of the basal ganglia: New perspectives through a comparative approach. Journal of Anatomy, 196 (Pt 4), 501–517.PubMedCrossRefGoogle Scholar
  56. Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.PubMedCrossRefGoogle Scholar
  57. Striedter, G. F. (2005). Principles of brain evolution. Sunderland, MA: Sinnauer Associates.Google Scholar
  58. Toates, F. (2005). Evolutionary psychology: Towards a more integrative model. Biology and Philosophy, 20, 305–328.CrossRefGoogle Scholar
  59. Toates, F. (2006). A model of the hierarchy of behaviour, cognition, and consciousness. Consciousness and Cognition, 15, 75–118.PubMedCrossRefGoogle Scholar
  60. Trimmer, P. C., Houston, A. I., Marshall, J. A. R., Bogacz, R., Paul, E. S., Mendl, M. T., McNamara, J. M. (2008). Mammalian choices: combining fast-but-inaccurate and slow-but-accurate decision-making systems. Proceedings of the Royal Society B, 275: 2353–2361.Google Scholar
  61. Ungerleider, L. G., & Haxby, J. V. (1994). ’What’ and ’where’ in the human brain. Current Opinion in Neurobiology, 4, 157–165.PubMedCrossRefGoogle Scholar
  62. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. Ingle, M. A. Goodale, & R. J. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  63. Utter, A. A., & Basso, M. A. (2008). The basal ganglia: An overview of circuits and function. Neuroscience and Biobehavioral Reviews, 32, 333–342.PubMedCrossRefGoogle Scholar
  64. Volz, H., Gaser, C., & Sauer, H. (2000). Supporting evidence for the model of cognitive dysmetria in schizophrenia—a structural magnetic resonance imaging study using deformation-based morphometry. Schizophrenia Research, 46, 45–56.PubMedCrossRefGoogle Scholar
  65. Wennekers, T., Garagnani, M., & Pulvermuller, F. (2006). Language models based on Hebbian cell assemblies. Journal of Physiology, Paris, 100, 16–30.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Park RidgeUSA
  2. 2.Manhattan BeachUSA

Personalised recommendations