Skip to main content

Introduction: Movement, Cognition, and the Vertically Organized Brain

  • Chapter
  • First Online:
Subcortical Structures and Cognition

Abstract

How does the mind work? This question has puzzled philosophers, physicians, and artists for centuries. This question has led to remarkable discoveries, and in turn, further questions. Currently, technological advances appear to be outpacing our abilities to keep up with applying them. Yet the same questions continue to arise. Why do we keep losing our keys? Why do we have the same argument over and over again? Why do we hit a hole-in-one on the golf course one day and are lucky to bogey the same hole a week later? These kinds of questions are no less significant than questions regarding why societies fail to learn from history or individuals allow envy or greed to turn them away from important opportunities. Science has long attempted to answer these and other questions. Sometimes what we know can get in the way of discoveries yet to be made, exemplified by earlier assumptions about the “unimportant” prefrontal lobes or the “silent” right hemisphere. Nevertheless, discoveries continue and the neurosciences in turn continue to adapt to these discoveries along with their associated intended and unintended consequences.

Nature does nothing uselessly

Aristotle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboitiz, F., Morales, D., & Montiel, J. (2003). The evolutionary origin of the mammalian isocortex: Towards an integrated developmental and functional approach. The Behavioral and Brain Sciences, 26, 535–552.

    PubMed  Google Scholar 

  • Afraimovich, V. S., Zhigulin, V. P., & Rabinovich, M. I. (2004). On the origin of reproducible sequential activity in neural circuits. Chaos, 14, 1123–1129.

    Article  PubMed  Google Scholar 

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.

    Article  PubMed  Google Scholar 

  • Andreasen, N. C., Nopoulos, P., O’Leary, D. S., Miller, D. D., Wassink, T., & Flaum, M. (1999). Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms. Biological Psychiatry, 46, 908–920.

    Article  PubMed  Google Scholar 

  • Andreasen, N. C., Paradiso, S., & O’Leary, D. S. (1998). “Cognitive dysmetria” as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24, 203–218.

    Article  PubMed  Google Scholar 

  • Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64, 81–88.

    Article  PubMed  Google Scholar 

  • Azizi, S. A. (2007). And the olive said to the cerebellum: Organization and functional significance of the olivo-cerebellar system. The Neuroscientist, 13, 616–625.

    Article  Google Scholar 

  • Banich, M. T. (2004). Cognitive neuroscience and neuropsychology (2nd ed.). Boston: Houghton Mifflin.

    Google Scholar 

  • Basar, E., & Guntekin, B. (2007). A breakthrough in neuroscience needs a “Nebulous Cartesian System” oscillations, quantum dynamics and chaos in the brain and vegetative system. International Journal of Psychophysiology, 64, 108–122.

    Article  PubMed  Google Scholar 

  • Bedard, M. A., Agid, Y., Chouinard, S., Fahn, S., & Korczyn, A. (2003). Mental and behavioral dysfunction in movement disorders. Totowa, NJ: Humana Press.

    Book  Google Scholar 

  • Blumenfeld, H. (2002). Neuroanatomy through clinical cases. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Brauth, S. E., & Kitt, C. A. (1980). The paleostriatal system of Caiman crocodilus. The Journal of Comparative Neurology, 189, 437–465.

    Article  PubMed  Google Scholar 

  • Crespo-Facorro, B., Paradiso, S., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Boles Ponto, L. L., et al. (1999). Recalling word lists reveals “cognitive dysmetria” in schizophrenia: A positron emission tomography study. American Journal of Psychiatry, 156, 386–392.

    PubMed  Google Scholar 

  • Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50, 873–880.

    Article  PubMed  Google Scholar 

  • Deshmukh, A., Rosenbloom, M. J., Pfefferbaum, A., & Sullivan, E. V. (2002). Clinical signs of cerebellar dysfunction in schizophrenia, alcoholism, and their comorbidity. Schizophrenia Research, 57, 281–291.

    Article  PubMed  Google Scholar 

  • Divac, I., & Oberg, R. (1992). Subcortical mechanisms in cognition. In G. Vallar, S. F. Cappa, & C. W. Wallesch (Eds.), Neuropsychological disorders associated with subcortical lesions (pp. 42–60). New York: Oxford University Press.

    Google Scholar 

  • Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12, 961–974.

    Article  PubMed  Google Scholar 

  • Doyon, J., & Ungerleider, L. G. (2002). Functional anatomy of motor skill learning. In L. R. Squire & D. L. Schacter (Eds.), The neuropsychology of memory (3rd ed., pp. 225–238). New York: Guilford Press.

    Google Scholar 

  • Fitzpatrick, L. E., Jackson, M., & Crowe, S. F. (2008). The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning. Neuroscience and Biobehavioral Reviews, 32, 466–485.

    Article  PubMed  Google Scholar 

  • Freeman, W. J. (2008). A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics. Neural Networks, 21, 257–265.

    Article  PubMed  Google Scholar 

  • Fuster, J. M. (1997). The prefrontal cortex—anatomy, physiology and neuropsychology of the frontal lobe (3rd ed.). Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Graff-Radford, N. R., Tranel, D., & Brandt, J. P. (1992). Diencephalic amnesia. In G. Vallar, S. F. Cappa, & C. W. Wallesch (Eds.), Neuropsychological disorders associated with subcortical lesions (pp. 143–168). New York: Oxford University Press.

    Google Scholar 

  • Guzzetta, F., Mercuri, E., & Spano, M. (2000). Congenital lesions of cerebellum. In D. Riva & A. Benton (Eds.), Localization of brain lesions and development functions (pp. 145–150). London: John Libbey.

    Google Scholar 

  • Hallett, M., & Grafman, J. (1997). Executive function and motor skill learning. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 297–323). San Diego, CA: Academic Press.

    Google Scholar 

  • Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtis, G. (1993). Wisconsin Card Sorting Test (WCST) manual, revised and expanded. Odessa, FL: Psychological Assessment Resources.

    Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior; a neuropsychological theory. New York: Wiley.

    Google Scholar 

  • Heimer, L., Van Hoesen, G. W., Trimble, M., & Zahm, D. S. (2008). Anatomy of neuropsychiatry: The new anatomy of the basal forebrain and its implications for neuropsychiatric illness. San Diego, CA: Academic Press.

    Google Scholar 

  • Houk, J. C. (2005). Agents of the mind. Biological Cybernetics, 92, 427–437.

    Article  PubMed  Google Scholar 

  • Houk, J. C., Bastianen, C., Fansler, D., Fishbach, A., Fraser, D., Reber, P. J., et al. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1573–1583.

    Article  PubMed  Google Scholar 

  • Houk, J. C., & Mugnaini, E. (2003). Cerebellum. In L. Squire, F. E. Bloom, S. K. McConnell, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (pp. 841–872). San Diego, CA: Academic Press.

    Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge, MA: MIT Press.

    Google Scholar 

  • Joel, D., & Weiner, I. (2000). The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, 96, 451–474.

    Article  PubMed  Google Scholar 

  • Kinsbourne, M. (1993). Development of attention and metacognition. In I. Rapin & S. Segalowitz (Eds.), Handbook of neuropsychology (Vol. 7, pp. 261–278). Amsterdam: Elsevier Biomedical.

    Google Scholar 

  • Kolb, B., & Whishaw, I. Q. (2008). Fundamentals of human neuropsychology. New York: Worth.

    Google Scholar 

  • Lezak, M., Howieson, D., & Loring, D. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.

    Google Scholar 

  • Lichter, D. G. (1991). Movement disorders and frontal-subcortical circuits. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 260–316). New York: The Guilford Press.

    Google Scholar 

  • Marin, O., Smeets, W. J., & Gonzalez, A. (1998). Evolution of the basal ganglia in tetrapods: A new perspective based on recent studies in amphibians. Trends in Neurosciences, 21, 487–494.

    Article  PubMed  Google Scholar 

  • Medina, L., & Reiner, A. (1995). Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: Implications for the evolution of basal ganglia. Brain, Behavior and Evolution, 46, 235–258.

    Article  PubMed  Google Scholar 

  • Middleton, F. A. (2003). Fundamental and clinical evidence for basal ganglia influences on cognition. In M. Bedard, Y. Agid, S. Chouinard, S. Fahn, & A. Korczyn (Eds.), Mental and behavioral dysfunction in movement disorders (pp. 13–33). Totowa, NJ: Humana Press, Inc.

    Chapter  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266, 458–461.

    Article  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research. Brain Research Reviews, 31, 236–250.

    Article  PubMed  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2001). Revised neuroanatomy of frontal-subcortical circuits. In D. G. Lichter & J. L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorders (pp. 44–58). New York: The Guilford Press.

    Google Scholar 

  • Miller, R. (2008). A theory of the basal ganglia and their disorders. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Miller, E. K., & Wallis, J. D. (2003). The prefrontal cortex and executive brain functions. In L. Squire, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (2nd ed., pp. 1353–1376). San Diego, CA: Academic Press.

    Google Scholar 

  • Mink, J. W. (2003). The Basal Ganglia and involuntary movements: Impaired inhibition of competing motor patterns. Archives of Neurology, 60, 1365–1368.

    Article  PubMed  Google Scholar 

  • Parent, A. (1997). The brain in evolution and involution. Biochemistry and Cell Biology, 75, 651–667.

    Article  PubMed  Google Scholar 

  • Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.

    Article  PubMed  Google Scholar 

  • Richer, F., & Chouinard, S. (2003). Cognitive control in fronto-striatal disorders. In M. A. Bedard, S. Fahn, Y. Agid, S. Chouinard, S. Fahn & A. Korczyn (Eds.), Mental and behavioral dysfunction in movement disorders (pp. 113–124). New York: Humana Press.

    Google Scholar 

  • Rolls, E. T., & Johnstone, S. (1992). Neurophysiological analysis of striatal function. In G. Vallar, S. F. Cappa, & C. W. Wallesch (Eds.), Neuropsychological disorders associated with subcortical lesions (pp. 61–97). New York: Oxford University Press.

    Google Scholar 

  • Schmahmann, J. D. (1997). The cerebellum and cognition. San Diego, CA: Academic Press.

    Google Scholar 

  • Schmahmann, J. D. (2000). The role of the cerebellum in affect and psychosis. Journal of Neurolinguistics, 13, 189–214.

    Article  Google Scholar 

  • Schmahmann, J. D. (2004). Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. Journal of Neuropsychiatry Clinical Neurosciences, 16, 367–378.

    Article  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (1997). The cerebrocerebellar system. International Review of Neurobiology, 41, 31–60.

    Article  PubMed  Google Scholar 

  • Schmahmann, J. D., Weilburg, J. B., & Sherman, J. C. (2007). The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum, 6, 254–267.

    Article  PubMed  Google Scholar 

  • Smeets, W. J., Marin, O., & Gonzalez, A. (2000). Evolution of the basal ganglia: New perspectives through a comparative approach. Journal of Anatomy, 196 (Pt 4), 501–517.

    Article  PubMed  Google Scholar 

  • Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.

    Article  PubMed  Google Scholar 

  • Striedter, G. F. (2005). Principles of brain evolution. Sunderland, MA: Sinnauer Associates.

    Google Scholar 

  • Toates, F. (2005). Evolutionary psychology: Towards a more integrative model. Biology and Philosophy, 20, 305–328.

    Article  Google Scholar 

  • Toates, F. (2006). A model of the hierarchy of behaviour, cognition, and consciousness. Consciousness and Cognition, 15, 75–118.

    Article  PubMed  Google Scholar 

  • Trimmer, P. C., Houston, A. I., Marshall, J. A. R., Bogacz, R., Paul, E. S., Mendl, M. T., McNamara, J. M. (2008). Mammalian choices: combining fast-but-inaccurate and slow-but-accurate decision-making systems. Proceedings of the Royal Society B, 275: 2353–2361.

    Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). ’What’ and ’where’ in the human brain. Current Opinion in Neurobiology, 4, 157–165.

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. Ingle, M. A. Goodale, & R. J. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  • Utter, A. A., & Basso, M. A. (2008). The basal ganglia: An overview of circuits and function. Neuroscience and Biobehavioral Reviews, 32, 333–342.

    Article  PubMed  Google Scholar 

  • Volz, H., Gaser, C., & Sauer, H. (2000). Supporting evidence for the model of cognitive dysmetria in schizophrenia—a structural magnetic resonance imaging study using deformation-based morphometry. Schizophrenia Research, 46, 45–56.

    Article  PubMed  Google Scholar 

  • Wennekers, T., Garagnani, M., & Pulvermuller, F. (2006). Language models based on Hebbian cell assemblies. Journal of Physiology, Paris, 100, 16–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard F. Koziol .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koziol, L.F., Budding, D.E. (2009). Introduction: Movement, Cognition, and the Vertically Organized Brain. In: Subcortical Structures and Cognition. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84868-6_1

Download citation

Publish with us

Policies and ethics