Milk Salts: Technological Significance

  • J.A. Lucey
  • D.S. Horne


Mammalian milk contains all the essential components to sustain the growth and development of the newborn suckling. Usually, this is taken to mean the protein, fat and carbohydrate, but it must also apply to the mineral components, the milk salts, including the citrates, phosphates and chlorides of H+, K+, Na+, Mg2+ and Ca2+, whether as ions in solution or as colloidal species complexed with the caseins. These minerals are essential for bone growth and development, for efficient cellular function or for maintaining osmolality in the wake of carbohydrate (lactose) synthesis. Like the other components, all these mineral species are there for a purpose and until weaning, milk may often be the only source of these essential elements.


Whey Protein Whey Protein Isolate Casein Micelle Whey Protein Concentrate Sodium Caseinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ali, A.E., Andrews, A.T., Cheeseman, G.C. 1980. Influence of storage of milk on casein distribution between the micellar and soluble phases and its relationship to cheesemaking parameters. J. Dairy Res. 47, 371–382.CrossRefGoogle Scholar
  2. Allen, L.A. 1931. The mineral constituents and citric acid content of milk. J. Dairy Res. 3, 1–52.CrossRefGoogle Scholar
  3. Ardeshirpour, L., Dann, P., Pollak, M., Wysolmerski, J., VanHouten, J. 2006. The calcium-sensing receptor regulates PTHrP production and calcium transport in the lactating mammary gland. Bone 38, 787–793.CrossRefGoogle Scholar
  4. Augustin, M.-A. 2000. Mineral salts and their effect on milk functionality. Aust. J. Dairy Technol. 55, 61–64.Google Scholar
  5. Augustin, M.-A., Clarke, P.T. 1990. Effects of added salts on the heat stability of recombined concentrated milk. J. Dairy Res. 57, 213–226.CrossRefGoogle Scholar
  6. Augustin, M.-A., Clarke, P.T. 1991. Calcium ion activities of cooled and aged reconstituted and recombined milks. J. Dairy Res. 58, 219–229.CrossRefGoogle Scholar
  7. Banks, W., Clapperton, J.L., Girdler, A.K., Steele, W. 1984. Effect of inclusion of different forms of dietary fatty acid on the yield and composition of cow’s milk. J. Dairy Res., 51, 387–395.CrossRefGoogle Scholar
  8. Barbut, S., Foegeding, E.A. 1993 Calcium-induced gelation of preheated whey protein isolate. J. Food Sci. 58, 867–871.CrossRefGoogle Scholar
  9. Bingham, E.W., McGranaghan, M.B., Wickham, E.D., Leung, C.T., Farrell, H.M. 1993. Properties of [Ca2+ + Mg2+]-adenosine triphosphatases in the Golgi apparatus and microsomes of the lactating mammary glands of cows. J. Dairy Sci. 76, 393–400.CrossRefGoogle Scholar
  10. Blackwood, J.H., Stirling, J.D. 1932. The absorption of milk precursors by the mammary gland. Physico-chemical aspects of milk secretion. Biochem J. 26, 1127–1137.Google Scholar
  11. Bolder, S.G., Hendrickx, H., Sagis, L.M.C., van der Linden, E. 2006. Ca2+-induced cold-set gelation of whey protein isolate fibrils. Appl. Rheol. 16, 258–264.Google Scholar
  12. Braunschweig, M., Puhan, Z. 1999. Correlation between κ-casein variants and citrate content in milk quantified by capillary electrophoresis. Int Dairy J. 9, 709–713.CrossRefGoogle Scholar
  13. Britten, M., Giroux, H.J. 2001 Acid-induced gelation of whey protein polymers: Effects of pH and calcium concentration during polymerization. Food Hydrocoll. 15, 609–617CrossRefGoogle Scholar
  14. Brule, G., Maubois, J.-L., Fauquant, J. 1974. Etude de la teneur en elements mineraux des produits obtenus lors de l'ultrafiltration du lait sur membrane. Lait 54, 600–615.CrossRefGoogle Scholar
  15. Canabady-Rochelle, L.S., Sanchez, C., Mellema, M., Bot, A., Desobry, S., Banon, S. 2007. Influence of calcium salt supplementation on calcium equilibrium in skim milk during pH cycle. J. Dairy Sci. 90, 2155–2162CrossRefGoogle Scholar
  16. Caussin, F., Famelart, M.H., Maubois. J.-L., Bouhallab, S. 2003. Mineral modulation of thermal aggregation and gelation of whey proteins: from β-lactoglobulin model system to whey protein isolate. Lait 83, 1–12.CrossRefGoogle Scholar
  17. Chavez, M.S., Negri, L.M., Taverna, M.A., Cuatrin, A. 2004. Bovine milk composition parameters affecting the ethanol stability. J. Dairy Res. 71, 201–206.CrossRefGoogle Scholar
  18. Choi, J., Horne, D.S., Lucey, J.A. 2007. Effect of insoluble calcium concentration on rennet coagulation properties of milk. J. Dairy Sci. 90, 2612–2623.CrossRefGoogle Scholar
  19. Creamer, L.K., Berry, G.P., Mills, O.E. 1977. A study of the dissociation of β-casein from bovine casein micelles at low temperatures. N. Z. J. Dairy Sci. Technol. 12, 58–66.Google Scholar
  20. Dalgleish, D.G. 1987. Caseins and casein micelles at interfaces. In: Proteins at Interfaces: Physicochemical and Biochemical Studies (J.L. Brash., T.A. Horbett, eds.), pp. 665–676, ACS Symposium Series No. 343, American Chemical Society, Washington, DC, USA.CrossRefGoogle Scholar
  21. Dalgleish, D.G. 1989. The behaviour of minerals in heated milks. Bulletin 238, International Dairy Federation, Brussels, pp. 31–34.Google Scholar
  22. Dalgleish, D.G. 1998. Casein micelles as colloids: Surface structures and stabilities. J. Dairy Sci. 81, 3013–3018.CrossRefGoogle Scholar
  23. Dalgleish, D.G., Law, A.J.R. 1989. pH induced dissociation of bovine casein micelles. II. Mineral solubilization and its relation to casein release. J. Dairy Res. 56, 727–735.CrossRefGoogle Scholar
  24. Davies, D.T., White, J.C.D. 1958. The relation between the chemical composition of milk and the stability of the casein complex. II. Coagulation by ethanol. J. Dairy Res. 25, 256–266.CrossRefGoogle Scholar
  25. Davies, D.T., White, J.C.D. 1960. The use of ultrafiltration and dialysis in isolating the aqueous phase of milk and in determining the partition of milk constituents between the aqueous and dispersed phases. J. Dairy Res. 27, 171–196.CrossRefGoogle Scholar
  26. De Kruif, C.G., Holt, C. 2003. Casein micelle structure, functions and interactions. In: Advanced Dairy Chemistry. 1- Proteins, 3rd edn (P.F. Fox, P.L.H. McSweeney, eds.), pp. 213–276, Kluwer Academic/Plenum Publishers, New York, USA.Google Scholar
  27. de la Fuente, M.A. 1998. Changes in the mineral balance of milk submitted to technological treatments. Trends Food Sci. Technol. 9, 281–288.CrossRefGoogle Scholar
  28. de la Fuente, M.A., Fontecha, J., Juarez, M. 1996. Partition of main and trace minerals in milk: effect of ultracentrifugation, rennet coagulation, and dialysis on soluble phase separation. J. Agric. Food Chem. 44, 1988–1992.CrossRefGoogle Scholar
  29. de la Fuente, M.A., Requena, T., Juarez, M. 1997. Salt balance in ewe’s and goat’s milk during storage at chilling and freezing temperatures. J. Agric. Food Chem. 45, 82–88.CrossRefGoogle Scholar
  30. Dickinson, E. 1997. Properties of emulsions stabilized with milk proteins: overview of some recent developments. J. Dairy Sci. 80, 2607–2619.CrossRefGoogle Scholar
  31. Downey, W.K., Murphy, R.F. 1970. The temperature-dependent dissociation of β-casein from bovine casein micelles and complexes. J.Dairy Res. 37, 361–372.CrossRefGoogle Scholar
  32. Fahmi, A.H., Shahara, H.A. 1950. Studies on Egyptian Domiati cheese. J. Dairy Res. 17, 312–328.CrossRefGoogle Scholar
  33. Farrell, H.M. 1973. Models for casein micelle formation. J. Dairy Sci. 56, 1195–1206.CrossRefGoogle Scholar
  34. Farrell, H.M., Cooke, P.H., King, G., Hoagland, P.D., Groves, M.L., Kumosinski, T.F., Chu, B., 1996. Particle sizes and casein submicelles and purified κ-casein. Comparisons of dynamic light scattering and electron microscopy with predictive three-dimensional molecular models. In: Macromolecular Interactions in Food Technology (N. Parris, A. Kato, L.K. Creamer, J. Pearce, Eds.), pp. 61–79, American Chemical Society, Washington, DC, USA.CrossRefGoogle Scholar
  35. Farrell, H.M., Malin, E.L, Brown, E.M., Qi, P.X. 2006. Casein micelle structure: what can be learned from milk synthesis and structural biology? Curr. Opinion Colloid Interface Sci. 11, 135–147.CrossRefGoogle Scholar
  36. Faulkner, A., Peaker, M. 1982. Reviews of the Progress of Dairy Science: Secretion of citrate into milk. J. Dairy Res. 49, 159–169.CrossRefGoogle Scholar
  37. Fox, K.K., Harper, M.K., Holsinger, V.H., Pallansch, M.J. 1965. Gelation of milk solids by orthophosphate. J. Dairy Sci. 48, 179–185.CrossRefGoogle Scholar
  38. Fox, P.F. 1981. Heat-induced changes in milk preceding coagulation. J. Dairy Sci., 64, 2127–2137.CrossRefGoogle Scholar
  39. Fox, P.F., McSweeney, P.L.H. 1998. Dairy Chemistry and Biochemistry, Blackie Academic & Professional, London.Google Scholar
  40. Fox, P.F., Morrissey, P.A. 1977. Reviews of the progress of dairy science: The heat stability of milk. J. Dairy Res. 44, 627–646.CrossRefGoogle Scholar
  41. Furia, T. E. 1972. Sequestrants in food. In: CRC Handbook of Food Additives, 2nd edn (T.E. Furia, ed.), pp. 271– 294, CRC Press, Boca Raton, FL, USA.Google Scholar
  42. Garcıa-Risco, M.R., Recio, I., Molina, E., López-Fandiño, R. 2003. Plasmin activity in pressurized milk. J. Dairy Sci. 86, 728–734.CrossRefGoogle Scholar
  43. Garnsworthy, P.C., Masson, L.L., Lock, A.L., Mottram, T.T. 2006. Variation of milk citrate with stage of lactation and de novo fatty acid synthesis in dairy cows. J Dairy Sci . 89, 1604–1612.CrossRefGoogle Scholar
  44. Gaucheron, F. 2005. The minerals of milk. Reprod. Nutr. Dev. 45, 473–483.CrossRefGoogle Scholar
  45. Gaucheron, F., Famelart, M.H., Mariette, F., Raulot, K., Michel, F., Le Graet, Y. 1997. Combined effects of temperature and high-pressure treatments on physicochemical characteristics of skim milk. Food Chem. 59, 439–447.CrossRefGoogle Scholar
  46. Geerts, J.P., Bekhof, J.J., Scherjon, J.W. 1983. Determination of calcium ion activities in milk with an ion selective electrode. A linear relationship between the logarithm of time and the recovery of the calcium ion activity after heat treatment. Neth. Milk Dairy J. 37, 197–211.Google Scholar
  47. Gevaudan, S., Lagaude, A., Tarodo de la Fuente, B., Cuq, J.L. 1996. Effect of treatment by gaseous carbon dioxide on the colloidal phase of skim milk. J. Dairy Sci. 79, 1713–1721.CrossRefGoogle Scholar
  48. Goddard, S.J., Augustin, M.A. 1995. Formation of acid-heat induced skim milk gels in the pH range 5.0–5.7: effect of the addition of salts and calcium chelating agents. J. Dairy Res. 62, 491–500.CrossRefGoogle Scholar
  49. Griffin, M.C.A., Lyster, R.L., Price, J.C. 1988. The disaggregation of calcium-depleted micelles. Eur. J. Biochem. 174, 339–343.CrossRefGoogle Scholar
  50. Guinee, T.P., Feeney, E.P., Auty, M.A.E., Fox, P.F. 2002. Effect of pH and calcium concentration on some textural and functional properties of Mozzarella cheese. J. Dairy Sci. 85, 1655–1669.CrossRefGoogle Scholar
  51. Guo, M.R., Kindstedt, P.S. 1995. Age-related changes in the water phase of Mozzarella cheese. J. Dairy Sci. 78, 2099–2107.CrossRefGoogle Scholar
  52. Hammarsten, O. 1879. Bied. Centr. 147. (cited by Pyne, G.T. 1934. The colloidal phosphate of milk. Biochem. J. 28, 940–948.).Google Scholar
  53. Harte, F.M., Montes, C., Adams, M., San Martin-Gonzalez, M.F. 2007. Solubilized micellar calcium induced low methoxyl-pectin aggregation during milk acidification. J. Dairy Sci. 90, 2705–2709.CrossRefGoogle Scholar
  54. Hassan, A., Johnson, M.E., Lucey, J.A. 2004. Changes in the proportion of soluble and insoluble calcium during ripening of Cheddar cheese. J. Dairy Sci. 87, 845–862.CrossRefGoogle Scholar
  55. Havea, P., Singh, H., Creamer, L.K. 2001. Characterization of heat-induced aggregates of β-lactoglobulin, α-lactalbumin and bovine serum albumin in a whey protein concentrate environment. J. Dairy Res. 68, 483–497.CrossRefGoogle Scholar
  56. Hofland, G.W., van Es, M., van der Wielen, L.A.M.,, Witkamp, G.-J. 1999. Isoelectric precipitation of casein using high-pressure CO2. Ind. Eng. Chem. Res. 38, 4919–4927CrossRefGoogle Scholar
  57. Holt, C. 1981. Some principles determining salt composition and partitioning of ions in milk. J. Dairy Sci. 64, 1958–1964.CrossRefGoogle Scholar
  58. Holt, C. 1985. The milk salts: their secretion, concentrations and physical chemistry. In: Developments in Dairy Chemistry, Volume 3: Lactose and Minor Constituents (P.F. Fox, ed.), pp. 143–181, Applied Science, London.CrossRefGoogle Scholar
  59. Holt, C. 1992. Structure and stability of casein micelles. Adv. Prot. Chem. 43, 63–151.CrossRefGoogle Scholar
  60. Holt, C. 1995 Effect of heat and cooling on the milk salts and their interaction with casein. In: Heat-induced Changes in Milk, 2nd edn, Special Issue 9501 (P.F. Fox, ed.), pp. 105–133, International Dairy Federation, Brussels.Google Scholar
  61. Holt, C. 1997. The milk salts and their interaction with casein. In: Advanced Dairy Chemistry, Vol. 3: Lactose, Water, Salts and Vitamins, 2nd edn (P.F. Fox, ed.), pp. 233–256, Chapman & Hall, London.Google Scholar
  62. Holt, C., Muir, D.D. 1979. Inorganic constituents of milk: I. Correlation of soluble calcium with citrate in bovine milk. J. Dairy Res. 46, 433–439.CrossRefGoogle Scholar
  63. Holt, C., Hasnain, S.S., Hukins, D.W.L. 1982. Structure of bovine milk calcium phosphate determined by X-ray absorption spectroscopy. Biochim. Biophy. Acta 719, 299–303.CrossRefGoogle Scholar
  64. Horne, D.S. 1979. The kinetics of precipitation of chemically-modified αs1-casein by calcium. J. Dairy Res. 46, 256–259.CrossRefGoogle Scholar
  65. Horne, D.S. 1983. The calcium-induced precipitation of αs1-casein: effect of modification of lysine residues. Int. J. Biol. Macromol. 5, 296–300.CrossRefGoogle Scholar
  66. Horne, D.S. 1987. Ethanol stability of casein micelles – a hypothesis concerning the role of calcium phosphate. J. Dairy Res. 54, 389–395.CrossRefGoogle Scholar
  67. Horne, D.S. 1998. Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J. 8, 171–177.CrossRefGoogle Scholar
  68. Horne, D.S. 2002. Caseins–molecular properties, casein micelle formation and structure. In: Encyclopaedia of Dairy Science (H. Roginski, J.W. Fuquay, P.F. Fox, eds.), pp. 1902–1909, Academic Press, London.Google Scholar
  69. Horne, D.S. 2003. Ethanol stability. In: Advanced Dairy Chemistry, 1. Proteins. 3rd edn (P.F. Fox, P.L.H. McSweeney, eds.), pp. 975–999, Kluwer Academic-Plenum Publishers, New York, USA.CrossRefGoogle Scholar
  70. Horne, D.S. 2006. Casein micelle structure: Models and muddles. Curr. Opinion Colloid Interface Sci. 11, 148–153.CrossRefGoogle Scholar
  71. Horne, D.S. 2008. Casein micelle structure and stability. In: Milk Proteins: From Expression to Food (A. Thompson, M. Boland, H. Singh, eds.), pp. 133–162, Elsevier, New York, USA.Google Scholar
  72. Horne, D.S., Dalgleish, D.G. 1980. Electrostatic interactions and the kinetics of protein aggregation: αs1-casein. Int. J. Biol. Macromol. 2, 154–160.CrossRefGoogle Scholar
  73. Horne, D.S., Lucey, J.A., Choi, J.-W. 2007. Casein interactions: does the chemistry really matter? In: Food Colloids: Self-Assembly and Material Science (E. Dickinson, M. Leser, eds.), pp. 155–166, Royal Society of Chemistry, London.CrossRefGoogle Scholar
  74. Horne, D.S., Moir, P.D. 1984. The iodination of αS1-casein and its effect on the calcium-induced aggregation reaction of the modified protein. Int. J. Biol. Macromol. 6, 316—320.CrossRefGoogle Scholar
  75. Horne, D.S., Muir, D.D. 1990. Alcohol and heat stability of milk protein. J. Dairy Sci., 73, 3613–3626.CrossRefGoogle Scholar
  76. Horne, D.S., Parker, T.G. 1981. Factors affecting the ethanol stability of bovine milk. I. Effect of serum phase components. II. The origin of the pH transition. J. Dairy Res. 48, 273–291.CrossRefGoogle Scholar
  77. Horne, D.S., Parker, T.G. 1983. Factors affecting the ethanol stability of bovine skim-milk. VI. Effect of concentration. J. Dairy Res. 50, 425–432.CrossRefGoogle Scholar
  78. Huppertz, T. 2007. Reversibility of NaCl-induced changes in physicochemical properties of bovine milk. Milchwissenschaft 62, 135–139.Google Scholar
  79. Huppertz, T., de Kruif, C.G. 2006. Disruption and reassociation of casein micelles under high pressure: influence of milk serum composition and casein micelle concentration. J. Agric. Food Chem. 54, 5903–5909.CrossRefGoogle Scholar
  80. Huppertz, T., Kelly, A.L., Fox, P.F. 2002. Effects of high-pressure on constituents and properties of milk. Int. Dairy J. 12, 561–572.CrossRefGoogle Scholar
  81. Huppertz, T., Fox, P.F., Kelly, A.L. 2004. High pressure treatment of bovine milk: Effects on casein micelles and whey proteins. J. Dairy Res. 71, 97–106.CrossRefGoogle Scholar
  82. Huppertz, T., Fox, P.F., Kelly, A.L. 2006. High pressure-induced changes in ovine milk. 1. Effects on the mineral balance and pH. Milchwissenschaft 61, 285–288.Google Scholar
  83. Jenness, R. 1973 Caseins and caseinate micelles of various species. Neth. Milk Dairy J. 27, 251–257.Google Scholar
  84. Jenness, R., Patton, S. 1976. Principles of Dairy Chemistry, Kreiger Publishing Company, New York, USA.Google Scholar
  85. Johnson, M.E., Lucey, J.A. 2006. Calcium: A key factor in controlling cheese functionality. Aust. J. Dairy Technol. 61, 147–153.Google Scholar
  86. Johnston, D.E., Murphy, R.J. 1992. Effects of some calcium chelating agents on the physical properties of acid-set milk gels. J. Dairy Res. 59, 197–208.CrossRefGoogle Scholar
  87. Joshi, N.S., Muthukumarappan, K., Dave, R.I. 2002. Role of soluble and colloidal calcium contents on functionality of salted and unsalted part-skim Mozzarella cheese. Aust. J. Dairy Technol. 57, 203–210.Google Scholar
  88. Kawasaki, K., Weiss, K.M. 2003. Mineralized tissue and vertebrate evolution: The secretory calcium-binding phosphoprotein gene cluster. Proc. Nat. Acad. Sci. USA 100, 4060–4065.CrossRefGoogle Scholar
  89. Kelly, P.M., O'Keeffe, A.M., Keogh, M.K., Phelan, J.A. 1982. Studies of milk composition and its relationship to some processing criteria. III. Seasonal variation in heat stability of milk. Irish J. Food Sci. Technol. 6, 29–38.Google Scholar
  90. Kitts, D.D. 2006. Calcium binding peptides. Nutraceutical Sci. Technol. 4, 11–27.Google Scholar
  91. Knoop, A.-M., Knoop, E., Wiechen, A. 1979. Sub-structure of synthetic casein micelles. J. Dairy Res. 46, 347–350.CrossRefGoogle Scholar
  92. Koestler, G. 1920. The detection of milk altered by secretion disturbances. Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene 11, 154–169.Google Scholar
  93. Kuhn, P.R., Foegeding, E.A. 1991. Mineral salt effects on whey protein gelation. J. Agric. Food Chem. 39, 1013–1016.CrossRefGoogle Scholar
  94. Kuhn, N.J., White, A. 1977. The role of nucleoside diphosphatase in a uridine nucleotide cycle associated with lactose synthesis in rat mammary-gland Golgi apparatus. Biochemical J. 168, 423–433.Google Scholar
  95. Larson, B. L. 1985. Lactation, Iowa State University Press, Ames.Google Scholar
  96. Law, A.J.R. 1996. Effects of heat treatment and acidification on the dissociation of bovine casein micelles. J. Dairy Res. 63, 35–48.CrossRefGoogle Scholar
  97. Law, A.J.R., Leaver, J., Felipe, X., Ferragut, V., Pla, R., Guamis, B. 1998. Comparison of the effects of high pressure and thermal treatments on the casein micelles in goat’s milk. J. Agric. Food Chem. 46, 2523–2530.CrossRefGoogle Scholar
  98. Lawrence, R.C., Gilles, J., Creamer, L.K. 1983. The relationship between cheese texture and flavour. N. Z. J. Dairy Sci. Technol. 18, 175–190.Google Scholar
  99. Lelievre, J., Lawrence, R.C. 1988. Manufacture of cheese from milk concentrated by ultrafiltration. J. Dairy Res. 55, 465–478.CrossRefGoogle Scholar
  100. Lin, S.H.C., Leong, S.L., Dewan, R.K., Bloomfield, V.A., Morr, C.V. 1972. Effect of calcium ion on the structure of native bovine casein micelles. Biochemistry 11, 1818–1821.CrossRefGoogle Scholar
  101. Lin, M-J., Grandison, A., Chryssanthou, X., Goodwin, C., Tsioulpas, A., Koliandris, A., Lewis, M. 2006. Calcium removal from milk by ion exchange. Milchwissenschaft 61, 370–374.Google Scholar
  102. Linzell, J.L., Peaker, M. 1971. Mechanism of milk secretion. Physiol.Rev. 51, 564–597.Google Scholar
  103. Linzell, J.L., Mepham, T.B., Peaker, M. 1976. The secretion of citrate into milk. J. Physiol. (London), 260, 739–750.Google Scholar
  104. Lönnerdal, B. 2004. Human milk proteins. Key components for the biological activity of human milk. In: Protecting Infants through Human Milk. Advancing the Scientific Evidence (L.K. Pickering, A.L. Morrow, G.M. Ruiz-Palacios, R.J. Schanler, eds.), pp. 11–25, Advances in Experimental Medicine and Biology, Volume 554, Kluwer Academic-Plenum Publishers, New York, USA.Google Scholar
  105. López-Fandiño, R. 2006. High pressure-induced changes in milk proteins and possible applications in dairy technology. Int. Dairy J. 16, 1119–1131.CrossRefGoogle Scholar
  106. López-Fandiño, R., De la Fuente, M.A., Ramos, M., Olano, A. 1998. Distribution of minerals and proteins between the soluble and colloidal phases of pressurized milks from different species. J. Dairy Res. 65, 69–78.CrossRefGoogle Scholar
  107. Lucey, J.A., Fox, P.F. 1993. Importance of calcium and phosphate in cheese manufacture: a review. J. Dairy Sci. 76, 1714–1724.CrossRefGoogle Scholar
  108. Lucey, J.A., Gorry, C., Fox, P.F. (1993a). Acid base buffering properties of heated milk. Milchwissenschaft 48, 438–441.Google Scholar
  109. Lucey, J.A., Gorry, C., O'Kennedy, B., Kalab, M., Tan-Kinita, R., Fox, P.F. 1996. Effect of acidification and neutralization of milk on some properties of casein micelles. Int. Dairy J. 6, 257–272.CrossRefGoogle Scholar
  110. Lucey, J.A., Hauth, B., Gorry, C., Fox, P.F. (1993b). Acid base buffering of milk. Milchwissenschaft, 48, 268–272.Google Scholar
  111. Lucey, J.A., Johnson, M.E., Horne, D.S 2003. Perspectives on the basis of the rheology and texture properties of cheese. J. Dairy Sci. 86, 2725–2743.CrossRefGoogle Scholar
  112. Lucey, J.A, Mishra, R., Hassan, A., Johnson, M.E. 2005. Rheological and calcium equilibrium changes during ripening of Cheddar cheese. Int. Dairy J. 15, 645–653.CrossRefGoogle Scholar
  113. Lucey, J.A., van Vliet, T., Grolle, K., Geurts, T., Walstra, P. 1997. Properties of acid gels made by acidification with glucono-δ-lactone. 1. Rheological properties. Int. Dairy J. 7, 381–388.CrossRefGoogle Scholar
  114. Lyster, R.L.J. 1979. The equilibria of calcium and phosphate ions with the micellar calcium phosphate in cow's milk. J. Dairy Res. 46, 343–346.CrossRefGoogle Scholar
  115. Lyster, R.L.J., Mann, S., Parker, S.B., Williams, R.J.P. 1984. Nature of micellar calcium phosphate in cows’ milk as studied by high-resolution electron microscopy. Biochim. Biophys. Acta 801, 315–317.CrossRefGoogle Scholar
  116. Mariette, F., Tellier, C., Brule, G., Marchal, P. 1993. Multinuclear NMR study of the pH dependent water state in skim milk and caseinate solutions. J. Dairy Res. 60, 175–188.CrossRefGoogle Scholar
  117. Mangino, M.E. 1992. Gelation of whey-protein concentrates. Food Technol. 46, 114–117.Google Scholar
  118. Matia-Merino, L., Lau, K., Dickinson, E. 2004. Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels. Food Hydrocoll. 18, 271–281.CrossRefGoogle Scholar
  119. McGann, T.C.A., Pyne, G.T. 1960. The colloidal phosphate of milk. III. Nature of its association with casein. J. Dairy Res. 27, 403–417.CrossRefGoogle Scholar
  120. McGann, T.C.A., Buchheim, W., Kearney, R.D., Richardson, T. 1983a. Composition and ultrastructure of calcium phosphate citrate complex in bovine milk systems. Biochim. Biophy. Acta 760, 415–420.Google Scholar
  121. McGann, T.C.A., Kearney, R.D., Buchheim, W., Posner, A.S., Betts, F., Blumental, N.C. 1983b. Amorphous calcium phosphate in casein micelles of bovine milk. Cacified Tissue Int. 35, 821–823.Google Scholar
  122. McMahon, D. J., Oberg, C. J. 1998. Role of calcium and sodium in functionality of Mozzarella cheese. Proc. 35th Ann. Marschall Italian & Specialty Cheese Sem., pp. 1–9.Google Scholar
  123. McManaman, J.L., Neville, M.C. 2003. Mammary physiology and milk secretion. Adv. Drug Delivery Rev. 55, 629–641.CrossRefGoogle Scholar
  124. McPhail, D., Holt, C. 1999. Effect of anions on the denaturation and aggregation of β-lactoglobulin as measured by differential scanning microcalorimetry. Int. J. Food Science Tech. 34, 477–481.CrossRefGoogle Scholar
  125. Metzger, L.E., Barbano, D.M., Kindstedt, P.S. 2001. Effect of milk preacidification on low fat Mozzarella cheese: III. Post-melt chewiness and whiteness. J. Dairy Sci. 84, 1357–1366.CrossRefGoogle Scholar
  126. Miller, P.G., Sommer, H.H. 1940. The coagulation temperature of milk as affected by pH, salts, evaporation and previous heat treatment. J. Dairy Sci., 23, 405–421.CrossRefGoogle Scholar
  127. Mizuno, R., Lucey, J.A. 2005. Effects of emulsifying salts on the turbidity and calcium-phosphate protein interactions in casein micelles. J. Dairy Sci. 88, 3070–3078.CrossRefGoogle Scholar
  128. Mizuno, R., Lucey, J.A. 2007. Properties of milk protein gels formed by phosphates. J. Dairy Sci. 90, 4524–4531.CrossRefGoogle Scholar
  129. Monib, A.M.M.F. 1962. The calcium-paracaseinate-phosphate-complex under conditions similar to those in cheese. Med. Landbouwhogeseschool, PhD Thesis, Wageningen.Google Scholar
  130. Morr, C.V. 1967. Some effects of pyrophosphate and citrate ions upon the colloidal caseinate-phosphate micelles and ultrafiltrate of raw and heated skim milk. J. Dairy Sci. 50, 1038–1044.CrossRefGoogle Scholar
  131. Morris, H.A., Holt, C., Brooker, B.E., Banks, J.M., Manson, W. 1988. Inorganic constituents of cheese: analysis of juice from one-month old Cheddar cheese and the use of light and electron microscopy to characterize the crystalline phases. J. Dairy Res. 55, 255–268.CrossRefGoogle Scholar
  132. Mulvihill, D.M., Murphy, P.C. 1991. Surface active and emulsifying properties of caseins/caseinates as influenced by state of aggregation. Int. Dairy J. 1, 13–37.CrossRefGoogle Scholar
  133. Munyua, J.K., Larsson-Raznikiewicz, M. 1980. The influence of Ca2+ on the size and light scattering properties of casein micelles. 1. Ca2+ removal. Milchwissenschaft 35, 604–606.Google Scholar
  134. Needs, E.C., Stenning, R.A., Gill, A.L., Ferragut, V., Rich, G.T. 2000. High-pressure treatment of milk: Effects on casein micelle structure and on enzymic coagulation. J. Dairy Res. 67, 31–42.CrossRefGoogle Scholar
  135. Neville, M.C. 2005. Calcium secretion into milk. J. Mamm. Gland Biol. Neoplasia, 10, 119–128.CrossRefGoogle Scholar
  136. O’Connell, J.E., Fox, P.F. 2001. Effect of β-lactoglobulin and precipitation of calcium phosphate on the thermal coagulation of milk. J. Dairy Res. 68, 81–94.CrossRefGoogle Scholar
  137. O’Connell, J.E., Fox, P.F. 2003. Heat-induced coagulation of milk. In: Advanced Dairy Chemistry, 1. Proteins. 3rd edn (P.F. Fox, P.L.H. McSweeney, eds.), pp. 879–945, Kluwer Academic- Plenum Publishers, New York, USA.CrossRefGoogle Scholar
  138. O’Kennedy, B.T., Cribbin, M., Kelly, P.M. 2001. Stability of sodium caseinate to ethanol. Milchwissenschaft 56, 680–684.Google Scholar
  139. O’Mahony, J.A., Lucey, J.A., McSweeney, P.L.H. 2005. Chymosin-mediated proteolysis, calcium solubilization, and texture development during the ripening of Cheddar cheese. J. Dairy Sci. 88, 3101–3114.CrossRefGoogle Scholar
  140. Ozcan-Yilsay, T., Lee, W-J., Horne, D.S., Lucey, J.A. 2007. Effect of trisodium citrate on rheological, physical properties and microstructure of yogurt. J. Dairy Sci. 90, 1644–1652.CrossRefGoogle Scholar
  141. Panouillé, M., Nicolai, T., Durand, D. 2003. Heat induced aggregation and gelation of casein submicelles. Int. Dairy J. 14, 297–303.CrossRefGoogle Scholar
  142. Petersen, W.E. 1944. Lactation. Physiol. Rev. 24, 340–371.Google Scholar
  143. Philippe, M., Gaucheron, F., Le Graet, Y. 2004. Physicochemical characteristics of calcium supplemented skim milk: comparison of three soluble calcium salts. Milchwissenschaft 59, 498–502.Google Scholar
  144. Piazza, R. 2004. Protein interactions and association: an open challenge for colloid science. Curr. Opinion Colloid Interface Sci. 8, 515–522.CrossRefGoogle Scholar
  145. Pierre, A. 1985. Milk coagulation by ethanol. Studies on the solubility of the milk calcium and phosphate in alcoholic solutions. Lait 65, 201–212.CrossRefGoogle Scholar
  146. Pierre, A., Brule, G., Fauquant, J. 1983. Study of calcium exchangeability in milk with 45Ca. Lait 63, 473–489.CrossRefGoogle Scholar
  147. Politis, I., Lachance, E., Block, E., Turner, J.D. 1989. Plasmin and plasminogen in bovine milk: a relationship with involution? J. Dairy Sci. 72, 900–906.CrossRefGoogle Scholar
  148. Pyne, G.T. 1934. The colloidal phosphate of milk. Biochem. J. 28, 940–948.Google Scholar
  149. Pyne, G.T. 1962. Some aspects of the physical chemistry of the salts in milk. J. Dairy Res. 29, 101–130.CrossRefGoogle Scholar
  150. Pyne, G.T., McGann, T.C.A. 1960. The colloidal calcium phosphate of milk. 2. Influence of citrate. J. Dairy Res. 27, 9–17.CrossRefGoogle Scholar
  151. Pyne, G.T., Ryan, J.J. 1950. The colloidal phosphate of milk. 1. Composition and titrimetric estimation. J. Dairy Res. 17, 200–205.CrossRefGoogle Scholar
  152. Qi, P.X. 2007. Studies of casein micelle structure: the past and the present. Lait 87, 363–383.CrossRefGoogle Scholar
  153. Qvist, K.B. 1979. Reestablishment of the original rennetability of milk after cooling. 1. The effect of cooling and LTST pasteurization of milk and renneting. Milchwissenschaft 34, 467–470.Google Scholar
  154. Raouche, S., Dobenesque, M., Bot, A., Lagaude, A., Cuq, J.-L., Marchesseau, S. 2007. Stability of casein micelles subjected to reversible CO2 acidification: Impact of holding time and chilled storage. Int. Dairy J. 17, 873–880CrossRefGoogle Scholar
  155. Reynolds, E.C. 1999. Anticariogenic casein phosphopeptides. Protein Pept Lett. 6, 295–303.Google Scholar
  156. Roefs, S.P.F.M., van Vliet, T. 1990. Structure of acid casein gels. 2. Dynamic measurements and type of interaction forces. Colloids Surfaces 50, 161–175.CrossRefGoogle Scholar
  157. Rollema, H.S 1992. Casein association and micelle formation. In: Advanced Dairy Chemistry 1. Proteins, 2nd. edn. (P.F. Fox, ed.), pp. 111–140, Elsevier Applied Science, London.Google Scholar
  158. Salaün, F., Mietton, B., Gaucheron, F. 2005. Buffering capacity of dairy products. Int. Dairy J. 15, 95–109.CrossRefGoogle Scholar
  159. Schmidt, D.G. 1980. Colloidal aspects of casein. Neth. MiIk Dairy J. 34, 42–64.Google Scholar
  160. Schmidt, D.G. 1982. Association of casein and casein micelle structure. In: Developments in Dairy Chemistry (P. F. Fox, ed.), pp. 61–86, Elsevier Applied Science, London.Google Scholar
  161. Schmidt, D.G., Buchheim, W. 1970. Elektronenmikroskopische undersuchung der feinstruktur von caseinmicellen in kuhmilch. Milchwissenschaft 25, 596–600.Google Scholar
  162. Schmidt, R.H., Illingworth, B.L., Deng, J.C., Cornell, J.A. 1979. Multiple regression and response surface analysis of the effects of calcium chloride and cysteine on heat-induced whey protein gelation. J. Agric. Food Chem. 27, 529–532.CrossRefGoogle Scholar
  163. Schrader, K., Buchheim, W., Morr, C.V. 1997. High pressure effects on the colloidal calcium phosphate and the structural integrity of micellar casein in milk. Part 1. High pressure dissolution of colloidal calcium phosphate in heated milk systems. Nahrung 41, 133–138.CrossRefGoogle Scholar
  164. Schuck, P., Davenel, A., Mariette, F., Briard, V., Mejean, S., Piot, M. 2002. Rehydration of casein powders: effects of added mineral salts and salt addition methods on water transfer. Int. Dairy J. 12, 51–57.CrossRefGoogle Scholar
  165. Schulz, M.E. 1952, Klassifizierung von Kase. Milchwissenschaft 9, 292–299.Google Scholar
  166. Shalabi, S.I., Fox, P.F. 1982. Influence of pH on the rennet coagulation of milk. J. Dairy Res. 49, 153–157.CrossRefGoogle Scholar
  167. Shamay, A., Shapiro, F., Mabjeesh, S.J., Silanikove, N. 2002. Casein-derived phosphopeptides disrupt tight junction integrity, and precipitously dry up milk secretion in goats. Life Sciences 70, 2707–2719.CrossRefGoogle Scholar
  168. Shekar, P.C., Goel, S., Rani, S.D.S., Sarathi, D.P., Alex, J.L., Singh, S., Kumar, S. 2006. κ-Casein-deficient mice fail to lactate. Proc. Nat. Acad. Sci. USA 103, 8000–8005.CrossRefGoogle Scholar
  169. Shennan, D.B., Peaker, M. 2000. Transport of milk constituents by the mammary gland. Physiological Rev. 80, 925–951.Google Scholar
  170. Singh, H. 2004. Heat stability of milk. Int. J. Dairy Technol. 57, 111–119CrossRefGoogle Scholar
  171. Singh, H., Creamer, L.K. 1992. Heat stability of milk. In: Advanced Dairy Chemistry Vol. 1: Proteins (P.F. Fox, ed.), pp. 624–656, Elsevier, London.Google Scholar
  172. Singh, H., McCarthy, O.J., Lucey, J.A. 1997. Physico-chemical properties of milk. In: Advanced Dairy Chemistry – 3 Lactose, Water, Salts and Vitamins, 2nd edn (P.F. Fox, ed.), pp. 469–518, Chapman & Hall, London.Google Scholar
  173. Singh, H., Roberts, M.S., Munro, P.A., Teo, C.T. 1996. Acid-induced dissociation of casein micelles in milk: Effects of heat treatment. J. Dairy Sci. 79, 1340–1346.CrossRefGoogle Scholar
  174. Slattery, C.W. 1976. Casein micelle structure: an examination of models. J. Dairy Sci. 59, 1547–1556.CrossRefGoogle Scholar
  175. Sommer, H.H., Binney, T.H. 1923. A study of the factors that influence the coagulation of milk in the alcohol test. J. Dairy Sci. 6, 176–197.CrossRefGoogle Scholar
  176. Sommer, H.H., Hart, E.B. 1919. The heat coagulation of milk. J. Biol. Chem. 40, 137–151.Google Scholar
  177. Solanki, G., Rizvi, S.S.H. 2001. Physico-chemical properties of skim milk retentates from microfiltration. J. Dairy Sci. 84, 2381–2391.CrossRefGoogle Scholar
  178. Srilaorkul, S., Ozimek, L., Wolfe, F., Dziuba, J. 1989. The effect of ultrafiltration on physicochemical properties of retentate. Can. Inst. Food Sci. Technol. 5, 56–62.Google Scholar
  179. Srinivasan, M., Lucey, J.A. 2002. Effects of added plasmin on the formation and rheological properties of rennet-induced skim milk gels. J. Dairy Sci. 85, 1070–1078.CrossRefGoogle Scholar
  180. Taylor, W., Husband, A.D. 1922. The effect on the percentage composition of the milk of (a) variations in the daily volume and (b) variations in the nature of the diet. J. Agric. Soc. Univ. College Wales 12, 111–124.Google Scholar
  181. Tsioulpas, A., Lewis, M.J., Grandison, A.S. 2007. Effect of minerals on casein micelle stability of cows’ milk. J. Dairy Res. 74, 167–173.CrossRefGoogle Scholar
  182. Tsuchita, H., Suzuki, T., Kuwata, T. 2001. The effect of casein phosphopeptides on calcium absorption from calcium-fortified milk in growing rats. Br. J. Nutr. 85, 5–10.CrossRefGoogle Scholar
  183. Udabage, U., McKinnon, I.R., Augustin, M.A. 2000. Mineral and casein equilibria in milk: effect of added salts and calcium-chelating agents. J. Dairy Res. 67, 361–370.CrossRefGoogle Scholar
  184. Udabage, U., McKinnon, I.R., Augustin, M.A. 2001. Effects of mineral salts and calcium chelating agents on the gelation of renneted skim milk. J. Dairy Sci. 84, 1569–1575.CrossRefGoogle Scholar
  185. Umeda, T. 2005. Micellar calcium phosphate-cross-linkage in porcine casein micelles. Miruku Saiensu 54, 23–28.Google Scholar
  186. Umeda, T., Aoki, T. 2005. Formation of micelles and micellar calcium phosphate-cross-linkage in artificial porcine casein micelles. Milchwissenschaft 60, 372–375.Google Scholar
  187. Umeda, T., Li, C-P., Aoki, T. 2005. Micellar calcium phosphate-cross-linkage in ovine casein micelles. Miruku Saiensu 54, 63–68.Google Scholar
  188. van der Laan, F.H. 1915. Osmotic equilibrium between blood, milk and bile. Biochemische Zeitschrift 71, 289–305.Google Scholar
  189. van Dijk, H.J.M. 1990. The properties of casein micelles. 1. The nature of the micellar calcium phosphate. Neth. Milk Dairy J. 44, 65–81.Google Scholar
  190. van Hooydonk, A.C.M., Hagedoorn, H.G., Boerrigter, I.J. 1986. pH-induced physico-chemical changes of casein micelles in milk and their effect on renneting. 1. Effects of acidification on physico-chemical properties. Neth. Milk Dairy J. 40, 281–96.Google Scholar
  191. VanHouten, J.N. 2005. Calcium-sensing by the mammary gland. J. Mamm. Gland Biol. Neoplasia, 10, 129–139.CrossRefGoogle Scholar
  192. VanHouten, J., Dann, P., McGeoch, G., Brown, E.M., Krapcho, K., Neville, M., Wysolmerski, J.J. 2004. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J. Clin Invest. 113, 598–608.Google Scholar
  193. Van Slyke, D.D. 1922. On the measurement of buffer values and the relationship of buffer value to the dissociation constant and the concentration and reaction of the buffer solution. J. Biol. Chem. 52, 525 571.Google Scholar
  194. Van Wazer, J.R., Callis, C.F. 1958. Metal complexing by phosphates. Chem. Rev. 58, 1011–1046.CrossRefGoogle Scholar
  195. Veith, P.D, Reynolds, E.C. 2004. Production of a high gel strength whey protein concentrate from cheese whey. J. Dairy Sci. 87, 831–840CrossRefGoogle Scholar
  196. Vessely, C.R., Carpenter, J.F., Schwartz, D.K. 2005. Calcium-induced changes to the molecular conformation and aggregate structure of β-casein at the air-water interface. Biomacromolecules 6, 3334–3344.CrossRefGoogle Scholar
  197. Visser, S.A. 1962. Occurrence of calcium phosphates in the presence of organic substances, especially proteins. J. Dairy Sci. 45, 710–716.CrossRefGoogle Scholar
  198. Visser, J., Minihan, A., Smits, P., Tyan, S.B., Heertje, I. 1986. Effect of pH and temperature on the milk salt system. Neth. Milk Dairy J. 40, 351–368.Google Scholar
  199. Walstra, P., Jenness, R. 1984. Dairy Chemistry and Physics, Wiley, New York.Google Scholar
  200. Ward, B.R., Goddard, S.J., Augustin, M.A., McKinnon, I.R. 1997. EDTA-induced dissociation of casein micelles and its effects on foaming properties of milk. J. Dairy Res. 64, 495–504.CrossRefGoogle Scholar
  201. Wendorff, W.L. 2001. Freezing qualities of raw ovine milk for further processing. J. Dairy Sci. 84 (E. Suppl.), E74–E78.CrossRefGoogle Scholar
  202. Williams, R.P.W., D’Ath, L., Augustin, M.A. 2005. Production of calcium-fortified milk powders using soluble calcium salts. Lait 85, 369–381.CrossRefGoogle Scholar
  203. Wright, N.C. 1928. The mechanism of secretion of calcium and phosphorus in milk. J. Agric. Soc. Univ. College Wales 18, 478–485.CrossRefGoogle Scholar
  204. Ye, A., Singh, H. 2001. Interfacial composition and stability of sodium caseinate emulsions as influenced by calcium ions. Food Hydrocoll. 15, 195–207.CrossRefGoogle Scholar
  205. Yun, J.J., Kiely, L.J., Barbano, D.M., Kindstedt, P.S. 1993. Mozzarella cheese: Impact of milling pH on functional properties. J. Dairy Sci. 76, 3639–3647.CrossRefGoogle Scholar
  206. Zhang, Z., Dalgleish, D.G., Goff, H.D. 2004. Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. Coll. Surfaces, B: Biointerfaces 34, 113–121.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department Food ScienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.2 Boghall Farm SteadingsBathgateUK

Personalised recommendations