Milk Oligosaccharides

  • T. Urashima
  • M. Kitaoka
  • S. Asakuma
  • M. Messer


Mammalian milk contains up to 10% carbohydrate, of which the disaccharide, lactose (Gal(β1-4)Glc), is usually a prominent component. Milk and colostrum also contain lesser amounts of other saccharides, referred to as milk oligosaccharides, nearly all of which have a lactose unit at their reducing end to which GlcNAc, Gal, Fuc and/or Neu5Ac or Neu5Gc residues can be attached (Jenness et al., 1964; Newburg and Neubauer, 1995; Boehm and Stahl, 2003; Urashima et al., 2001; Messer and Urashima, 2002). Pronounced heterogeneity as well as homology of milk oligosaccharide structures among different mammalian species has been documented (Urashima et al., 2001; Messer and Urashima, 2002).


Sialic Acid Human Milk Dextran Sodium Sulfate Giant Panda Goat Milk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was partially supported by a grant from Global COE Program, Ministry of Education, Culture, Sports, Science and Technology, Japan, and a grant-in-aid (Research and Development Program for New Bio-industry Initiatives) from the Bio-oriented Technology Research Advancement Institution of the National Agriculture and Food Research Organization, Japan.


  1. Andersson, B., Porras, O., Hanson, I.A., Lagergard, T., Svamberg-Edem, C. 1986. Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. J. Infect Dis. 153, 232–237.CrossRefGoogle Scholar
  2. Amano, J., Messer, M., Kobata, A. 1985. Structures of the oligosaccharides isolated from milk of the platypus. Glycoconj. J. 2, 121–135.CrossRefGoogle Scholar
  3. Asakuma, S., Akahori, M., Kimura, K., Watanabe, Y., Nakamura, T., Tsunemi, M. Arai, I., Sanai, Y., Urashima, T. 2007. Sialyl oligosaccharides of human colostrum: Changes in concentration during the first three days of lactation. Biosci. Biochem. Biotech. 71, 1447–1451.CrossRefGoogle Scholar
  4. Asakuma, S., Urashima, T., Akahori, M., Obayashi, M.., Nakamura, T., Kimura, K., Watanabe, Y., Arai, I., Sanai, Y. 2008. Variation in neutral oligosaccharide levels in human colostrum. Eur. J. Clin. Nutr. 62, 488–494.CrossRefGoogle Scholar
  5. Bao, Y., Zhu, L., Newburg, D.S. 2007. Simultaneous quantification of sialyloligosaccharides from human milk by capillary electrophoresis. Anal. Biochem. 370, 206–214.CrossRefGoogle Scholar
  6. Benno, Y., Sawada, K., Mitsuoka, T. 1984. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol. Immunol. 28, 975–986.Google Scholar
  7. Benno, Y., Mitsuoka, T. 1986. The development of gastrointestinal micro-flora in humans and animals. Bifidobact. Microflora 5, 13–25.Google Scholar
  8. Bezkorovainy, A. 1989. Ecology of bifidobacteria. In: Biochemistry and Physiology of Bifidobacteria (A. Bezkorovainy, R. Miller-Catchpole, eds.), pp. 29–72, CRC Press, Cleveland.Google Scholar
  9. Bigge, J.C., Patel, T.P., Bruce, J.A., Goulding, P.N., Charles, S.M., Parekh, R.B. 1995. Non–selective and efficient fluorescent labeling of glycans using 2-aminobenzamide and anthraminic acid. Anal. Biochem. 230, 229–238.CrossRefGoogle Scholar
  10. Blaser, M.J. 1996. The bacteria behind ulcers. Sci. Am. 274, 104–107.CrossRefGoogle Scholar
  11. Boehm, G., Stahl, B. 2003. Oligosaccharides. In: Functional Dairy Products (T. Mattila-Sandholm, M. Saarela, eds.), pp. 203–243, Woodhead Publishing Ltd, Cambridge.CrossRefGoogle Scholar
  12. Bode, L., Rudloff, S., Kunz, C., Strobel, S., Klein, N. 2004. Human milk oligosaccharides reduce platelet-neutrophil complex formation leading to a decrease in neutrophil β 2 integrin expression. J. Leukoc. Biol. 76, 820–826.CrossRefGoogle Scholar
  13. Bode, L. 2006. Recent advances on structure, metabolism and function of human milk oligosaccharides. J. Nutr. 136, 2127–2130.Google Scholar
  14. Bradbury, J.H., Collins, J.G., Jenkins, G.A., Trifinoff, E., Messer, M. 1983. 13C-NMR study of the structures of two branched oligosaccharides from marsupial milk. Carbohydr. Res. 122, 327–331.CrossRefGoogle Scholar
  15. Bruntz, R., Dabrowski, U., Dabrowski, J., Ebershold, A., Peter-Katalinic, J., Egge, K. 1988. Fucose containing oligosaccharides from human milk from a donor of blood group O Lea non secretor. Biol. Chem. Hoppe-Seyler, 369, 257–273.CrossRefGoogle Scholar
  16. Cervantes, L.E., Newburg, D.S., Ruiz-Palacios, G.M. 1995. α1-2 Fucosylated chains (H-2 and Lewis b) are main human receptor analogues for Campylobacter. Pediatr. Res. 37, 171A. (abstract).Google Scholar
  17. Chai, W., Piskarev, V.E., Zhang, Y., Lawson, A.M., Kogelberg, H. 2005. Structural determination of novel lacto-N-decaose and its monofucosylated analogue from human milk by electrospray tandem mass spectrometry and 1H NMR spectroscopy. Arch. Biochem. Biophys. 434, 116–127.CrossRefGoogle Scholar
  18. Chaturdevi, P., Warrenm C.D., Altaye, M., Morrow, A.L., Ruiz-Palacios, G., Pickering, L.K., Newburg, D.S. 2001. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology 11, 365–370.CrossRefGoogle Scholar
  19. Clark, G.F., Krivan, H.C., Wilins, T.D., Smith, D.F. 1987. Toxin A from Clostridium difficile binds to rabbit erythrocyte glycolipids with terminal Galα1-3Galβ1-4GlcNAc sequences. Arch. Biochem. Biophys. 257, 217–229.CrossRefGoogle Scholar
  20. Collins, J.G., Bradbury, J.H., Trifinoff, E., Messer, M. 1981. Structures of four new oligosaccharides from marsupial milk, determined mainly by 13C-NMR spectroscopy. Carbohydr. Res. 92, 136–140.CrossRefGoogle Scholar
  21. Coppa, G.V., Pierani, P., Zampini, L., Carloni, I., Carlucci, A., Catacci, C., Gabrielli, O. 1999. Oligosaccharides in human milk during different phases of lactation. Acta Paediat. Suppl. 430, 89–94.CrossRefGoogle Scholar
  22. Coppa, G.V., Zampini, L., Galeazzi, T., Facinelli, B., Ferrante, L., Carpetti, R., Orazio, G. 2006. Human milk oligosaccharides inhibit the adhesion to caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr. Res. 59, 377–382.CrossRefGoogle Scholar
  23. Cravioto, A., Fello, A., Villanfan, H., Ruiz, J., del Vedovo, S., Neeser, J.R. 1991. Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. J. Infect. Dis. 163, 1247–1255.CrossRefGoogle Scholar
  24. Crespo, A., Suh, B. 2001. Helicobacter pylori infection: epidemiology, pathophysiology, and therapy. Arch. Pharm. Res. 24, 485–498.CrossRefGoogle Scholar
  25. Cumar, F.A., Ferchmin, P.A., Caputto, R 1965. Isolation and identification of a lactose phosphate ester from cow colostrum. Biochem. Biophys. Res. Comm. 20, 60–62.CrossRefGoogle Scholar
  26. Dabrowski, U., Egge, H., Dabrowski, J. 1983. Proton-nuclear magnetic resonance study of peracetylated derivatives of ten oligosaccharides isolated from human milk. Arch. Biochem. Biophys. 224, 254–260.CrossRefGoogle Scholar
  27. Daddaowa, A., Puerta, V., Requena, P., Martinez-Ferez, A., Guadix, E., Sanchez de Medina, Zarzuelo, A., Dolerez Svarez, M., Josa Boya, J., Martinez-Augustin, O. 2006. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J. Nutr. 136, 672–675.Google Scholar
  28. Derensy-Dron, D., Krzewinski, F., Brassart, C., Bouquelet, S. 1999. β-1,3-Galactosyl-N-acetylhexosamine phosphorylase from Bifidobacterium bifidum DSM 20082: characterization, partial purification and relation to mucin degradation. Biotechnol. Appl. Biochem. 29, 3–10.Google Scholar
  29. de Vos, W. M., Vaughan, E. E. 1994. Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol. Rev. 15, 212–237.CrossRefGoogle Scholar
  30. Dickson, J.J., Messer, M. 1978. Intestinal neuraminidase activity of suckling rats and other mammals. Relationship to the sialic acid content of milk. Biochem. J. 170, 407–413.Google Scholar
  31. Donald, A.S.R., Feeney, J. 1988. Separation of human milk oligosaccharides by recycling chromatography. First isolation of lacto-N-neo-difucohexaose II and 3'-galactosyllactose from this source. Carbohydr. Res. 178, 79–91.CrossRefGoogle Scholar
  32. Dua, V. K., Goso, K., Dube, V.E., Bush, C.A. 1985. Characterisation of lacto-N-hexaose and two fucosylated derivatives from human milk by high-performance liquid chromatography and proton NMR spectroscopy. J. Chromatogr. 328, 259–269.CrossRefGoogle Scholar
  33. Eiwegger, T., Stahl, B., Schmitt, J., Boehm, G., Gerstmayr, M., Pichler, J., Dehink, E., Loibichler, C., Urbanek, R., Szepfalnsi, I. 2004. Human milk-derived oligosaccharides and platelet-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr. Res. 56, 536–540.CrossRefGoogle Scholar
  34. Engfer, M.B., Stahl, B., Finke, B., Sawatzki, G., Daniel, H. 2000. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am. J. Clin. Nutr. 71, 1589–1596.Google Scholar
  35. Fan, J.Q., Huynh, L.H., Lee, Y.C. 1995. Purification of 2-aminopyridine derivatives of oligosaccharides and related compounds by cation-exchange chromatography. Anal. Biochem. 232, 65–68.CrossRefGoogle Scholar
  36. Fievre, S., Wieruszaski, M., Michalski, J.C., Lemoine, J., Montreuil, J., Strecker, G. 1991. Primary structure of a trisialylated oligosaccharide from human milk. Biochem. Biophys. Res. Commun. 177, 720–725.CrossRefGoogle Scholar
  37. Fu, D., Zopf, D. 1999. Analysis of sialyllactose in blood and urine by high-performance liquid chromatography. Anal. Biochem. 269, 113–123.CrossRefGoogle Scholar
  38. Fujita, K., Oura, F., Nagamine, N., Katayama, T., Hiratake, J., Sakata, K., Kumagai, H., Yamamoto, K. 2005. Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-α-N-acetylgalactosaminidase from Bifidobacterium longum. J. Biol. Chem, 280, 37415–37422.CrossRefGoogle Scholar
  39. Ginsberg, V., Zopf, D.A., Yamashita, K., Kobata, A. 1976. Oligosaccharides of human milk. Isolation of a new pentasaccharide, lacto-N-fucopentaose V. Arch. Biochem. Biophys. 175, 565–568.CrossRefGoogle Scholar
  40. Gnoth, M.J., Rudloff, S., Kunz, C., Kinne, R.K.H. 2001. Investigations of the in vitro transport of human milk oligosaccharides by a Caco-2 monolayer using a novel high performance liquid chromatography-mass spectrometry technique. J. Biol. Chem. 276, 34363–34370.CrossRefGoogle Scholar
  41. Gopal, P.K., Gill, H.S. 2000. Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br. J. Nutr. 84, Suppl. S69–S74.CrossRefGoogle Scholar
  42. Grimmonorez, L., Montreuil, J. 1968. Etude physico-chemique de sex nouveaux oligosaccharides isolées du lait de femme. Bull Soc. Chim. Biol. 50, 843–855.Google Scholar
  43. Gronberg, G., Lipniunas, P., Lundgren, T., Erlansson, K., Lindh, F., Nilsson, B. 1989. Isolation of monosialylated oligosaccharides from human milk and structural analysis of three new compounds. Carbohydr. Res. 191, 261–278.CrossRefGoogle Scholar
  44. Gronberg, G., Lipniunas, P., Lundgren, T., Lindh, F., Nilsson, B. 1990. Isolation and structural analysis of three new disialylated oligosaccharides from human milk. Arch. Biochem. Biophys. 278, 297–311.CrossRefGoogle Scholar
  45. Gronberg, G., Lipniunas, P., Lundgren, T., Lindh, F., Nilsson, B. 1992. Structural analysis of five new monosialylated oligosaccharides from human milk. Arch. Biochem. Biophys. 296, 597–610.CrossRefGoogle Scholar
  46. Guerardel, Y., Morelle, W., Plancke, Y., Lemoine, J., Strecker, J. 1999. Structural analysis of three sulfated oligosaccharides isolated from human milk. Carbohydr. Res. 320, 230–238.CrossRefGoogle Scholar
  47. Gusteffsson, A., Hultberg, A., Sjostrom, R., Kaczkovica, I., Breiner, M.E., Boren, T., Hammarstrom, L., Holgersson, J. 2006. Carbohydrate-dependent inhibition of Helicobacter pylori colonization using porcine milk. Glycobiology 16, 1–10.CrossRefGoogle Scholar
  48. Gyorgy, P., Rose, C.S., Springer, G.F. 1954. Enzymatic inactivation of bifidus factor and blood group substances. J. Lab. Clin. Med. 43, 543–552.Google Scholar
  49. Haeuw-Fievre, S., Wieruszeski, J.H., Panche, Y., Michalski, J.C., Montreuil, J., Strecker, G. 1993. Primary structure of human milk octa-, dodeca- and tridecasaccharides determined by a combination of 1H-NMR spectroscopy and fast-atom-bombardment mass spectrometry. Evidence for a new core structure, the para-lacto-N-octaose. Eur. J. Biochem. 215, 361–191.Google Scholar
  50. Hakkarainen, J., Toivanen, M., Leinonen, A., Frangsmyr, L., Stronberg, N., Lapinjoki, S., Nassif, X., Tikkanen-Kaukanen, C. 2005. Human and bovine milk oligosaccharides inhibit Neisseria meningitidis pili attachment in vitro. J. Nutr. 135, 2445–2448.Google Scholar
  51. Hase, S., Ikenaka, T., Matsushima, Y. 1978. Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem. Biophys. Res. Commun. 85, 257–263.CrossRefGoogle Scholar
  52. Honda, S., Akao, E., Suzuki, S., Okuda, M., Kakehi, K., Nakamura, J. 1989. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet–absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. Anal. Biochem. 180, 351–357.CrossRefGoogle Scholar
  53. Jenness, R., Regehr, E.A., Sloan, R.E. 1964. Comparative biochemical studies of milks II. Comp. Biochem. Physiol. 13, 339–352.CrossRefGoogle Scholar
  54. Johansson, P., Nilsson, J., Angstrom, J., Miller-Pandraza, H. 2005. Interaction of Helicobacter pylori with sialylated carbohydrates: the dependence on different parts of the binding trisaccharide Neu5Acα3Galβ4GlcNAc. Glycobiology 15, 625–636.CrossRefGoogle Scholar
  55. Kamerling, J.P., Dorland, L., van Halbeek, H., Vliegenthart, J.F.G., Messer, M., Schauer, R. 1982. Structural studies of 4-O-acetyl-α-N-acetylneuraminyl-(2-3)-lactose, the main oligosaccharide in echidna milk. Carbohydr. Res. 100, 331–340.CrossRefGoogle Scholar
  56. Karlsson, K.A. 1998. Meaning and therapeutic potential of microbial recognition of host glycoconjugates. Mol. Microbiol. 28, 1–11.CrossRefGoogle Scholar
  57. Katayama, T., Sakuma, A., Kimura, T., Nishimura, Y., Hiratake, J., Sakata, K., Yamanoi, H., Kumagai, H., Yamamoto, K. 2004. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-α-l-fucosidase (AjcA), a novel inverting glycosidase (glycosidase hydrolase family 95). J. Bacteriol. 186, 4885–4893.CrossRefGoogle Scholar
  58. Kimura, K., Watanabe, Y., Matsumoto, K., Miyagi, A. 1997. Studies on the neutral galacto-oligosaccharide in commercial cow’s milk. Yakult Reports, 17, 1–7.Google Scholar
  59. Kitagawa, H., Nakada, H., Numata, Y., Kurosaka, Fukui, S., Funakoshi, I., Kawasaki, T., Shimada, K., Inagaki, F., Yamashina, I. 1988. Immunoaffinity isolation of a sialyl-Lea oligosaccharide from human milk. J. Biochem. 104, 591–594.Google Scholar
  60. Kitagawa, H., Nakada, H., Kurosaka, A., Hiraiwa, N., Numata, Y., Fuki, S., Funakoshi, I., Kawasaki, T., Yamashina, I., Shimada, I., Inagaki, F. 1989. Three novel oligosaccharides with the sialyl-Lea structure in human milk: Isolation by immunoaffinity chromatography. Biochemistry 28, 8891–8897.CrossRefGoogle Scholar
  61. Kitagawa, H., Nakada, H., Numata, T., Kurosaka, A., Fukui, S., Funakoshi, I., Kawasaki, T., Shimada, I., Inagaki, F., Yamashina, I. 1990. Occurrence of tetra- and penta-saccharides with the sialyl-Lea structure in human milk. J. Biol. Chem. 265, 4859–4862.Google Scholar
  62. Kitagawa, H., Nakada, H., Fukui, S., Funakoshi, I., Kawasaki, T., Yamashina, I. (1991a). Novel oligosaccharides with the sialyl-Lea structure in human milk. Biochemistry 30, 2869–2876.Google Scholar
  63. Kitagawa, H., Takaoka, M., Nakada, H., Fukui, S., Funakoshi, I., Kawasaki, T., Tate, S., Inagaki, F., Yamashina, I. 1991b. Isolation and structural studies of human milk oligosaccharides that are reactive with a monoclonal antibody MSW 113. J. Biochem. 110, 598–604.Google Scholar
  64. Kitagawa, H., Nakada, H., Fukui, S., Funakoshi, I., Kawasaki, T., Yamashina, I., Tate, S., Inagaki, F. 1993. Novel oligosaccharides with the sialyl-Lea structure in human milk. J. Biochem. 114, 504–508.Google Scholar
  65. Kitaoka, M., Tian, J., Nishimoto, M. 2005. Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Appl. Environ. Microbiol. 71, 3158–3162.CrossRefGoogle Scholar
  66. Klein, A., Schwertman, A., Peters, M., Kunz, C., Strobel, S. 2000. Immuomodulatory effects of breast milk oligosaccharides. In: Short and Long Term Effects of Breast Feeding on Child Health (B. Koletzki, ed.), pp. 251–259, Kluwer Academic/Plenum Publishers, New York.Google Scholar
  67. Kobata, A., Ginsburg, V. 1969. Oligosaccharides of human milk. Isolation and characterization of a new pentasaccharide, lacto-N-fucopentaose III. J. Biol. Chem. 244, 5496–5502.Google Scholar
  68. Kobata, A., Ginsburg, V. 1972a. Oligosaccharides of human milk. Isolation and characterization of a new hexasaccharide, lacto-N-hexaose. J. Biol. Chem. 247, 1525–1529.Google Scholar
  69. Kobata, A., Ginsburg, V. 1972b. Oligosaccharides of human milk. Isolation and characterization of a new hexasaccharide, lacto-N-neohexaose. Arch. Biochem. Physiol. 150, 273–281.Google Scholar
  70. Kogelberg, H., Piskarev, V.E., Zhang, V., Lawson, A.M., Chai, W. 2004. Determination by electrospray mass spectrometry and 1H-NMR spectroscopy of primary structures of variously fucosylated neutral oligosaccharides based on the iso-lacto-N-octaose core. Eur. J. Biochem. 271, 1172–1186.CrossRefGoogle Scholar
  71. Kuhn, R., Baer, H.H. 1956a. Die Konstitution der Lacto-N-tetraose. Chem. Ber. 89, 504–511.Google Scholar
  72. Kuhn, R., Baer, H.H., Gauhe, A. 1956b. Kristallisierte fucoside-lactose. Chem. Ber. 89, 2513.Google Scholar
  73. Kuhn, R., Baer, H.H., Gauhe, A. 1956c. Kristallisation und Konstitutionsermittlung der Lacto-N-Fucopentaose I. Chem. Ber. 89, 2514–2523.Google Scholar
  74. Kuhn, R., Baer, H.H., Gauhe, A. 1958a. Die Konstitution der Lacto-N-fucopentaose II. Chem. Ber. 91, 364.Google Scholar
  75. Kuhn, R., Gauhe, A. 1958b. Uber die Lacto-difuco-tetraose der Frauenmilch. Justus Liebigs Ann. Chem. 611, 249–253.Google Scholar
  76. Kuhn, R., Brossmer, R. 1959. Uber das durch Viren der Influenza-Gruppe spalt-bare Trisaccharid der Milch. Chem. Ber. 92, 1667–1671.CrossRefGoogle Scholar
  77. Kuhn, R., Gauhe, A. 1960. Uber eiin kristallisiertes, Lea-aktives Hexasaccharid aus Frauenmilch. Chem. Ber. 93, 647–651.CrossRefGoogle Scholar
  78. Kuhn, R., Gauhe, A. 1962. Die Konstitution der Lacto-N-neotetraose. Chem. Ber. 95, 518–522.CrossRefGoogle Scholar
  79. Kuhn, R., Gauhe, A. 1965. Bestimmung der Bindungsstelle von sialinsaureresten in Oligosaccharides mit Hilfe von Perjodat . Chem. Ber. 98, 395–413.CrossRefGoogle Scholar
  80. Kuhn, N.J. 1972. The lactose and neuraminyllactose content of rat milk and mammary tissue. Biochem. J. 130, 177–180.Google Scholar
  81. Kyogashima, M., Ginsburg, V., Krivan, M.C. 1989. Escherichia coli K99 binds to N-glycolylsialoparagloboside and N-glycolyl-GM3 found in piglet small intestine. Arch. Biochem. Biophys. 270, 391–397.CrossRefGoogle Scholar
  82. Lara-Villoslada, F., Debras, E., Nieto, A., Concha, A., Galvez, J., Lopez-Huertas, E., Boza, J., Obled, C., Xaus, J. 2006. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis. Clin. Nutr. 25, 477–488.CrossRefGoogle Scholar
  83. Lindberg, A.A., Brown, J.E., Stromberg, N., Westling-Reyd, M., Schulz, J.E., Karlsson, K.A. 1987. Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae, type I. J. Biol. Chem. 262, 1779–1785.Google Scholar
  84. LoCascio, R.G., Ninonuevo, M.R., Freeman, S.L., Sela, D.A., Grimm, R., Lebrilla, C.B., Mills, D.A., German, J.B. 2007. Glycoprofiling of Bifodobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J. Agric. Food Chem. 55, 8914–8919.CrossRefGoogle Scholar
  85. Lucas, A., Cole, T.J. 1990. Breast milk and neonatal necrotising enterocolitis. Lancet, 336, 1519–1523.CrossRefGoogle Scholar
  86. Martin, M.J., Martin-Sosa, S., Hueso, P. 2002. Binding of milk oligosaccharides by several enterotoxigenic Escherichia coli strains isolated from calves. Glycoconj. J. 19, 5–11.CrossRefGoogle Scholar
  87. Martinez-Ferez, A., Rudloff, S., Guadix, A., Henkel, C.A., Pohlentz, G., Boza, J.J., Guadix, E.M., Kunz, C. 2006. Goat’s milk as a natural source of lactose-derived oligosaccharides: isolation by membrane technology. Int. Dairy J. 16, 173–181.CrossRefGoogle Scholar
  88. McJarrow, P., van Amelsfort-Schoonbeek, J. 2004. Bovine sialyl oligosaccharides: seasonal variations in their concentrations in milk, and a comparison of the colostrums of Jersey and Friesian cows. Int. Dairy J., 14, 571–579.CrossRefGoogle Scholar
  89. Mehra, R., Kelly, P. 2006. Milk oligosaccharides: Structural and technological aspects. Int. Dairy J. 16, 1334–1340.CrossRefGoogle Scholar
  90. Messer, M., Trifonoff, E., Stern, W., Collins, J.G., Bradbury, J.H. 1980. Structure of a marsupial milk trisaccharide. Carbohydr. Res. 83, 327–334.CrossRefGoogle Scholar
  91. Messer, M., Trifonoff, E., Collins, J.G., Bradbury, J.H. 1982. Structure of a branched tetrasaccharide from marsupial milk. Carbohydr. Res. 102, 316–320.CrossRefGoogle Scholar
  92. Messer, M., Nicholas, K.R. 1991. Biosynthesis of marsupial milk oligosaccharides: characterization and developmental changes of two galactosyltransferases in lactating mammary glands of the tammar wallaby, Macropus eugenii. Biochim. Biophys. Acta 1077, 79–85.CrossRefGoogle Scholar
  93. Messer, M., Urashima, T. 2002. Evolution of milk oligosaccharides and lactose. Trends Glycosci. Glycotech. 14, 153–176.CrossRefGoogle Scholar
  94. Montreuil, J. 1956. Structure de deux triholosides isolées du lait de femme. C. R. Hebd. Seances Acad. Sci. 242, 192–193.Google Scholar
  95. Morrow, A.L., Ruiz-Palacios, G.M., Altaye, M., Jiang, X., Guerrero, M.L., Meinzen-Derr, J.K., Farkas, T., Chaturvedi, P., Pickerring, L.K., Newburg, D.S. 2004. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr. 145, 297–303.CrossRefGoogle Scholar
  96. Musumeci, M., Simpore, J., D’Agata, A., Sotgiu, S., Musumeci, S. 2006. Oligosaccharides in colostrum of Italian and Burkinabe women. J. Pediatr. Gastroenterol. Nutr. 43, 372–378.CrossRefGoogle Scholar
  97. Murata, T., Inukai, T., Suzuki, M., Yamagishi, M., Usui, T. 1999a. Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose. Glycoconj. J. 16, 189–195.Google Scholar
  98. Murata, T., Morimoto, S., Zeng, X., Watanabe, S., Usui, T. 1999b. Enzymatic synthesis of alpha-l-fucosyl-N-acetyllactosamines and 3′-O-alpha-l-fucosyllactose utilizing alpha-l-fucosidases. Carbohydr. Res. 320, 192–197.Google Scholar
  99. Mysore, J.V., Wigginton, T., Simon, P.M., Zopf, D., Heman-Ackah, L.M., Dubois, A. 1999. Treatment of Helicobacter pylori infection in rhesus monkeys using a novel antiadhesion compound. Gastroenterology 117, 1316–1325.CrossRefGoogle Scholar
  100. Naaling, M.A., Ludwig, I.S., Groot, F., berkhout, B., Geijtenbeck, T.B., Pollakis, G., Paxton, M.A. 2005. Lewis x component in human milks binds DC-SIGN and inhibits HIV-1 transfer to CD+ T lymphocytes. J. Clin. Invest. 115, 3256–3264.CrossRefGoogle Scholar
  101. Nakamura, T., Urashima, T., Nakagawa, M., Saito, T. 1998. Sialyllactose occurs as free lactones in ovine colostrum. Biochim. Biophys. Acta 1381, 286–292.CrossRefGoogle Scholar
  102. Nakamura, T., Kawase, H., Kimura, K., Watanabe, Y., Ohtani, M., Arai, I., Urashima, T. 2003. Concentrations of sialyloligosaccharides in bovine colostrum and milk during the prepartum and early lactation. J. Dairy Sci. 86, 1315–1320.CrossRefGoogle Scholar
  103. Nakamura, T., Urashima, T. 2004. The milk oligosaccharides of domestic farm animals. Trends Glycosci. Glycotech. 16, 135–142.CrossRefGoogle Scholar
  104. Newburg, D.S., Pickering, L.K., McCluer, R.M., Cleary, T.G. 1990. Fucosylated oligosaccharides of human milk protect sucking mice from heat-stable enterotoxin of Escherichia coli. J. Infect. Dis. 162, 1075–1080.CrossRefGoogle Scholar
  105. Newburg, D.S., Neubauer, S.H. 1995. Carbohydrates in milks: Analysis, quantities and significance. In: Handbook of Milk Composition (R.G. Jensen, ed.), pp. 273–249, Academic Press, San Diego, USA.Google Scholar
  106. Newburg, D.S. 2000. Oligosaccharides in human milk and bacterial colonization. J. Pediatr. Gastroenterol. Nutr. 30, S8–S17.CrossRefGoogle Scholar
  107. Ninonuevo, M.R., Park, Y., Yin, H., Zhang, J., Ward, R.E., Clowers, B.H., German, J.B., Freeman, S.L., Killeen, K., Grimm, R., Lebrilla, C.B. 2006. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471–7480.CrossRefGoogle Scholar
  108. Ninonuevo, M.R., Ward, R.E., LoCascio, R.G., German, J.B., Freeman, S.L., Barboza, M., Mills, D.A., Lebrilla, C.B. 2007. Methods for the quantitation of human milk oligosaccharides in bacterial fermentation by mass spectroscopy. Anal. Biochem. 361, 15–23.CrossRefGoogle Scholar
  109. Nishimoto, M., Kitaoka, M. 2007a. Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 73, 6444–6449.Google Scholar
  110. Nishimoto, M., Kitaoka, M. 2007b. Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk. Biosci. Biotechnol. Biochem. 71, 2101–2104.Google Scholar
  111. Obermeier, S., Rudloff, S., Pohlentz, G., Lentze, M.J., Kunz, C. 1999. Secretion of 13C–labelled oligosaccharides into human milk and infants urine after an oral [13C]galactose load. Isotopes Environ. Health Stud. 35, 119–125.CrossRefGoogle Scholar
  112. Parkkinen, J., Finne, J. 1985. Occurrence of N-acetylglucosamine 6-phosphate in complex carbohydrates. Characterization of a phosphorylated sialyl oligosaccharide from bovine colostrum. J. Biol. Chem. 260, 10971–10975.Google Scholar
  113. Parkkinen, J., Finne, J. 1987. Isolation of sialyl oligosaccharides and sialyl oligosaccharide phosphates from bovine colostrum and human urine. Methods Enzymol. 138, 289–300.CrossRefGoogle Scholar
  114. Petuely, F. 1957. Bifidusflora bei Flaschenkindern durch bifidogene Substanzen (Bifidusfaktor). Z. Kinderheilkd. 79, 174–179.CrossRefGoogle Scholar
  115. Rajput, B., Shaper, N.L., Shaper, J.H. 1996. Transcriptional regulation of murine beta1,4-galactosyltransferase in somatic cells. Analysis of a gene that serves both a housekeeping and a mammary gland-specific function. J. Biol. Chem. 271, 5131–5142.CrossRefGoogle Scholar
  116. Rotimi, V.O., Duerden, B. I. 1981. The development of the bacterial flora in normal neonates. J. Med. Microbiol., 14, 51–58.CrossRefGoogle Scholar
  117. Rudloff, S., Pohlentz, G., Diekmann, L., Egge, H., Kunz, C. 1996. Urinary excretion of lactose and oligosaccharides in preterm infants fed human milk or infant formula. Acta Paediatr. 85, 598–603.CrossRefGoogle Scholar
  118. Rudloff, S., Obermeier, S., Borsch, C., Pohlenz, G., Hartmenn, R., Brosicke, H., Lentze, M.J., Kunz, C. 2006. Incorporation of orally applied 13C-galactose into milk lactose and oligosaccharides. Glycobiology 16, 477–487.CrossRefGoogle Scholar
  119. Ruiz-Palacios, G.M. 1997. Campylobacter jejuni. In: Principles and Practice of Pediatric Infections Disease (S. Long, L.K. Pickering, C.C. Prober, eds.), pp. 987–996, Churchill Livingstone, Inc., New York.Google Scholar
  120. Ruiz-Palacios, G.M., Cervantes, L.E., Ramos, P., Chavez-Meenguia, B., Newburg, D.S. 2003. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1,2Galβ1,4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278, 14112–14120.CrossRefGoogle Scholar
  121. Sabharwal, H., Nilsson, B., Chester, M.A., Lindh, F., Gronberg, G., Sjoblad, S., Lundblad, A. (1988a). Oligosaccharides from feces of a blood-group B, breast-fed infants. Carbohydr. Res. 178, 145–154.Google Scholar
  122. Sabharwal, H., Nilsson, B. Gronberg, G., Chester, M.A., Dakour, J., Sjoblad, D., Lundblad A. (1988b). Oligosaccharides from faeces of preterm infants fed on breast milk. Arch. Biochem. Biophys. 265, 390–406.Google Scholar
  123. Saito, T., Itoh, T., Adachi, S. 1984. Presence of two neutral disaccharides containing N-acetylhexosamine in bovine colostrum as free forms. Biochim. Biophys. Acta 801, 147–150.CrossRefGoogle Scholar
  124. Saito, T., Itoh, T., Adachi, S. 1987. Chemical structures of three neutral trisaccharides isolated in free forms from bovine colostrum. Carbohydr. Res. 165, 43–51.CrossRefGoogle Scholar
  125. Sakai, F., Ikeuchi, F., Urashima, T., Fujiwara, M., Ohtsuki, K., Yanahira, S. 2006. Effects of feeding sialyllactose and galactosylated N-acetylneuraminic acid on swimming learning ability and brain lipid composition in adult rats. J. Appl. Glycosci. 53, 249–254.CrossRefGoogle Scholar
  126. Samael, J.E., Perera, L.P., Wardn, S., O’Brien, A.D., Ginsburg, V., Krivan, H.C. 1990. Comparison of glycolipid receptor specificities of Shiga-like toxin type II and Shiga-like toxin type II variants. Infect. Immun. 58, 611–618.Google Scholar
  127. Schell, M.A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M.C., Desiere, F., Bork, P., Delley, M., Pridmore, R.D., Arigoni, F. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA 99, 14422–14427.CrossRefGoogle Scholar
  128. Schneir, M.L., Rafelson, M.E. 1966. Isolation of two structural isomers of N-acetylneuraminyllactose from bovine colostrum. Biochim. Biophys. Acta 130, 1–11.CrossRefGoogle Scholar
  129. Schumacher, G., Bendas, G., Stahl, B., Beermann, C. 2006. Human milk oligosaccharides affect P-selectin binding capacities: In vitro investigation. Nutrition 22, 620–627.CrossRefGoogle Scholar
  130. Sharon, N., Ofek, I. 2000. Safe as mother’s milk: Carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconj. J. 17, 659–664.CrossRefGoogle Scholar
  131. Shen, Z., Warren, C.D., Newburg, D.S. 2000. High-performance capillary electrophoresis of sialylated oligosaccharides of human milk. Anal. Biochem. 279, 37–45.CrossRefGoogle Scholar
  132. Smith, D.F., Prieto, P.A., Mccrumb, D.K., Wang, W.C. 1987. A novel sialylfucopentaose in human milk. J. Biol. Chem. 262, 12040–12047.Google Scholar
  133. Strecker, G., Wieruszeski, J.M., Michalski, J.C., Montreuil, J. 1988. Structure of a new nonasaccharide isolated from human milk; IV2Fuc, V4Fuc, III3Fuc-p-Lacto-N-hexaose. Glycoconj. J. 5, 385–396.CrossRefGoogle Scholar
  134. Strecker, G., Wieruszeski, J.M., Michalski, J.C., Montreuil, J. 1989. Primary structure of human milk nona- and deca-saccharides determined by a combination of fast atom bombardment mass spectrometry and 1H-/13C-nuclear magnetic resonance spectroscopy. Evidence for a new core structure, iso-lacto-N-octaose. Glycoconj. J. 6, 169–182.CrossRefGoogle Scholar
  135. Strecker, G., Fievre, S., Wieruszeski, J.M., Michalski, J.C., Montreuil, J. 1992. Primary structure of four human milk octa-, nona- and undeca-saccharides established by 1H and 13C-nuclear magnetic resonance spectroscopy. Carbohydr. Res. 226, 1–14.CrossRefGoogle Scholar
  136. Sugawara, M., Idota, T. 1995. A new oligosaccharide; 4 ' -galactosyl-lactose in human milk. Proceedings of the Annual Meeting of Japan Society for Bioscience, Biotechnology, and Agrochemistry. Sapporo, Japan, p. 132.Google Scholar
  137. Sumiyoshi, W., Urashima, T., Nakamura, T., Arai, I., Saito, T., Tsumura, N., Wang, B., Brand-Miller, J., Watanabe, Y., Kimura, K. 2003a. Determination of each neutral oligosaccharide in the milk of Japanese women during the course of lactation. Br. J. Nutr. 89, 61–69.Google Scholar
  138. Sumiyoshi, W., Urashima. T., Nakamura, T., Arai, I., Nagasawa, T., Saito, T., Tsumura, N., Wang, B., Brand-Miller, J., Watanabe, Y., Kimura, K. 2003b. Sialyl oligosaccharides in the milk of Japanese women: Changes in concentration during the course of lactation. J. Appl. Glycosci. 50, 461–467.Google Scholar
  139. Tao, N., DePeters, E.J., Freeman, S., German, J.B., Grimm, R., Lebrilla, C.B. 2008. Bovine milk glycome. J. Dairy Sci. 91, 3768–3778.CrossRefGoogle Scholar
  140. Tarrago, M.T., Tucker, K.H., van Halbeek, H., Smith, D.F. 1988. A novel sialylhexasaccharide from human milk: Purification by affinity chromatography on immobilized wheat germ agglutinin. Arch. Biochem. Biophys. 267, 353–362.CrossRefGoogle Scholar
  141. Tachibana, Y., Yamashita, K., Kobata, A. 1978. Oligosaccharides of human milk: structural studies of di- and trifucosyl derivatives of lacto-N-octaose and lacto-N-neooctaose. Arch. Biochem. Biophys. 188, 83–89.CrossRefGoogle Scholar
  142. Thurl, S., Muller-Wermer, B., Sawatzki, G. 1996. Quantification of individual oligosaccharide compounds from human milk using high-pH anion-exchange chromatography. Anal. Biochem. 235, 202–206.CrossRefGoogle Scholar
  143. Tokugawa, K., Oguri, S., Takeuchi, M. 1996. Large scale preparation of PA-oligosaccharides from glycoproteins using an improved extraction method. Glycoconj. J. 13, 53–56.CrossRefGoogle Scholar
  144. Uemura, Y., Asakuma, S., Nakamura, T., Arai, I., Taki, M., Urashima, T. 2005. Occurrence of a unique sialyl tetrasaccharide in colostrum of a bottle-nose dolphin (Tursiops truncatus). Biochim. Biophys. Acta 1725, 290–297.CrossRefGoogle Scholar
  145. Urashima, T., Saito, T., Ohmisya, K., Shimazaki, K. 1991. Structural determination of three neutral oligosaccharides in bovine (Holstein-Friesian) colostrum, including the novel trisaccharide: GalNAcα1-3Galβ1-4Glc. Biochim. Biophys. Acta, 1073, 225–229.CrossRefGoogle Scholar
  146. Urashima, T., Messer, M., Bubb, W.A. 1992. Biosynthesis of marsupial milk oligosaccharides II: characterization of a β-6-N-acetylglucosaminyltransferase in lactating mammary glands of the Tammar wallaby, Macrpus eugenii. Biochim. Biophys. Acta 1117, 223–231.CrossRefGoogle Scholar
  147. Urashima, T., Bubb, W.A., Messer, M., Tsuji, Y., Taneda, Y. 1994. Studies of the neutral trisaccharides of goat (Capra hircus) colostrum and of the one- and two-dimensional 1H and 13C NMR spectra of 6'-N-acetylglucosaminyllactose. Carbohydr. Res. 262, 173–184.CrossRefGoogle Scholar
  148. Urashima, T., Murata, S., Nakamura, T. 1997. Structural determination of monosialyl trisaccharide obtained from caprine colostrum. Comp. Biochem. Physiol. 116B, 431–435.Google Scholar
  149. Urashima, T., Yamamoto, M., Nakamura, T., Arai, I., Saito, T., Namiki, M., Yamaoka, K., Kawahara, K. 1999. Chemical characterisation of the oligosaccharides in a sample of milk of a white-nosed coati, Nasua narica (Procyonidae: carnivora). Comp. Biochem. Physiol. 123A, 187–193.Google Scholar
  150. Urashima, T., Saito, T., Nakamura, T., Messer, M. 2001. Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj. J. 18, 357–371.CrossRefGoogle Scholar
  151. Urashima, T., Nakamura, T., Ikeda, A., Asakuma, S., Arai, I., Saito, T., Oftedal, O.T. 2005. Characterization of oligosaccharides in milk of a mink, Mustela vison. Comp. Biochem. Physiol. 142A, 461–471.Google Scholar
  152. Veerkamp, J.H. 1969. Uptake and metabolism of derivatives of 2-deoxy-2-amino-D-glucose in Bifidobacterium bifidum var. pennsylvanicus. Arch. Biochem. Biophys. 129, 248–256.CrossRefGoogle Scholar
  153. Veh, R.W., Nmichalski, J.C., Corfield, A.P., Sander-Wewer, M., Gies, D., Schauer, R. 1981. New chromatographic system and the rapid analysis and preparation of colostrum sialyloligosaccharides. J. Chromatogr. 212, 313–322.CrossRefGoogle Scholar
  154. Wada, J. Suzuki, R. Fushinobu, S., Kitaoka, M., Wakagi, T., Shoun H., Ashida H., Kumagai, H., Katayama, T., Yamamoto, K. 2007. Purification, crystallization and preliminary X-ray analysis of the galacto-N-biose-/lacto-N-biose I-binding protein (GL-BP) of the ABC transporter from Bifidobacterium longum JCM1217. Acta Cryst. F63, 751–753.Google Scholar
  155. Wada, J., Ando, T., Kiyohara, M., Ashida, H., Kitaoka, M., Yamaguchi, M., Kumagai, H., Katayama, T., Yamamoto, K. 2008. Lacto-N-biosidase from Bifidobacterium bifidum, a critical enzyme for the degradation of human milk oligosaccharides with a type-I structure. Appl. Environ. Microbiol. 74, 3996–4004.CrossRefGoogle Scholar
  156. Wang, B., McVeagh, P., Petocz, P., Brand-Miller, J. 2003. Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am. J. Clin. Nutr. 78, 1024–1029.Google Scholar
  157. Wang, B., Yu, B., Karim, M., Hu, H., Sun, Y., McGreevy, P., Petocz, P., Held, S., Brand-Miller, J. 2007. Dietary sialic acid supplementation improves learning and memory in piglets. Am. J. Clin. Nutr. 85, 561–569.Google Scholar
  158. Ward, R.E., Ninonuevo, M., Mills, D.A., Lebrilla, C.B., German, J.B. 2006. In vitro fermentation of breast milk oligosaccharides by Bifodobacterium infantis and Lactobacillus gasseri. Appl. Environ. Microbiol. 72, 4497–4499.CrossRefGoogle Scholar
  159. Ward, R.E., Ninonuevo, M., Mills, D.A., Lebrilla, C.B., German, J.B. 2007. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol. Nutr. Food. Res. 51, 1398–1405.CrossRefGoogle Scholar
  160. Watanabe, Y., Kimura, K., Nakamura, T., Kume, S., Urashima, T. 2006. Concentrations and compositions of the bovine milk oligosaccharides. Proceedings of the 23rd International Carbohydrate Symposium. Whistler, Canada, p. 78.Google Scholar
  161. Wieruszeski, J.M., Chekkor, A., Bouquelot, S., Montreuil, J., Strecker, G., Peter-Katalinic, J., Egge, H. 1985. Structure of two new oligosaccharides isolated from human milk: Sialylated lacto-N-fucopentaose I and II. Carbohydr. Res. 137, 127–133.CrossRefGoogle Scholar
  162. Yamashita, K., Kobata, A. 1974. Oligosaccharides of human milk. Isolation and characterization of a new trisaccharide, 6'-galactosyllactose. Arch. Biochem. Biophys. 161, 164–170.CrossRefGoogle Scholar
  163. Yamashita, K., Tachibana, Y., Kobata, A. 1976a. Oligosaccharides of human milk. Isolation and characterization of three new disialylfucosylhexasaccharides. Arch. Biochem. Biophys. 174, 582–591.Google Scholar
  164. Yamashita, K., Tachibana, Y., Kobata, A. 1976b. Oligosaccharides of human milk. Isolation and characterization of two new nonasaccharides, monofucosyllacto-N-octaose and monofucosyllacto-N-neooctaose. Biochemistry, 15, 3950–3955.Google Scholar
  165. Yamashita, K., Tachibana, Y., Kobata, A. 1977a. Oligosaccharides of human milk: Structures of three lacto-N-hexaose derivatives with H-haptenic structure. Arch. Biochem. Biophys. 182, 546–555.Google Scholar
  166. Yamashita, K. Tachibana, Y., Kobata A. 1977b. Structural studies of two new octasaccharides, difucosyl derivatives of para-lacto-N-hexaose and para-lacto-N-neohexaose. J. Biol. Chem. 252, 5408–5411.Google Scholar
  167. Zopf, D., Roth, S. 1996. Oligosaccharide anti-infective agents. Lancet, 347, 1017–1021.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • T. Urashima
    • 1
  • M. Kitaoka
    • 2
  • S. Asakuma
    • 3
  • M. Messer
    • 4
  1. 1.Graduate School of Food Hygiene, Obihiro University of Agriculture and Veterinary MedicineObihiroJapan
  2. 2.Biological Junction DivisionNational Food Research InstituteTsukubaJapan
  3. 3.Intensive Grazing Research Team, National Agricultural Research Center for Hokkaido RegionSapporoJapan
  4. 4.School of Molecular and Microbial Biosciences, University of SydneySydneyAustralia

Personalised recommendations