Skip to main content

Solid and Liquid States of Lactose

  • Chapter
  • First Online:

Abstract

Lactose in dairy systems can exist in various crystalline and non-crystalline forms. These forms affect lactose behaviour, particularly in processing and storage of low-water dairy foods. Crystalline α-lactose monohydrate and anhydrous β-lactose are well-known solid forms of lactose, which are relatively poorly soluble in water. Its occurrence in two anomeric forms, α- and β-lactose, makes its solubility a complex function of temperature. α-Lactose has low solubility in water at room temperature, but mutarotation to equilibrium quantities of the α- and β-forms increases the overall solubility of lactose which increases rapidly with increasing temperature, with a more rapid increase in the solubility of α-lactose. Liquid dairy systems contain dissolved lactose in a complex chemical environment and lactose is likely to exist in a composition-, temperature- and process-dependent α/β-ratio. On rapid removal of solvent water from dairy liquids on dehydration or freezing, lactose molecules retain their solution structure and, therefore, amorphous, non-crystalline solid forms of lactose are typical of dairy powders and frozen dairy desserts (Roos, 1995; Hartel, 2001).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari, B., Howes, T., Shrestha, A., Bhandari, B.R. 2007. Effect of surface tension and viscosity on the surface stickiness of carbohydrate and protein solutions. J. Food Sci. 79, 1136–1143.

    CAS  Google Scholar 

  • Bellows, R.J., King, C.J. 1973. Product collapse during freeze drying of liquid foods. AIChE Symp. Ser. 69(132), 33–41.

    CAS  Google Scholar 

  • Berlin, E., Anderson, A.B., Pallansch, M.J. 1968a. Water vapor sorption properties of various dried milks and wheys. J. Dairy Sci. 51, 1339–1344.

    Article  CAS  Google Scholar 

  • Berlin, E., Anderson, B.A., Pallansch, M.J. 1968b. Comparison of water vapor sorption by milk powder components. J. Dairy Sci. 51, 1912–1915.

    Article  Google Scholar 

  • Berlin, E., Anderson, B.A., Pallansch, M.J. 1970. Effect of temperature on water vapor sorption by dried milk powders. J. Dairy Sci. 53, 146–149.

    Article  CAS  Google Scholar 

  • Brennan, J.G., Herrera, J., Jowitt, R. 1971. A study of some of the factors affecting the spray drying of concentrated orange juice on a laboratory scale. J. Food Technol. 6, 295–307.

    Article  Google Scholar 

  • Chuy, L.E., Labuza, T.P. 1994. Caking and stickiness of dairy-based food powders as related to glass transition. J. Food Sci. 59, 43–46.

    Article  CAS  Google Scholar 

  • Downton, G.E., Flores-Luna, J.L., King, C.J. 1982. Mechanism of stickiness in hygroscopic, amorphous powders. Ind. Eng. Chem. Fund. 21, 447–451.

    Article  CAS  Google Scholar 

  • Fitzpatrick, J.J., Barry, K., Cerqueira, P.S.M, Iqbal, T., O’Neill, J., Roos, Y.H. 2007. Effect of composition and storage conditions on the flowability of dairy powders. Int. Dairy J. 17, 383–392.

    Article  CAS  Google Scholar 

  • Goff H.D. 2002. Formation and stabilization of structure in ice-cream and related products. Curr. Opin. Colloid Interf. Sci. 7, 432–437.

    Article  CAS  Google Scholar 

  • Goff, H.D., Caldwell, K.B., Stanley, D.W., Maurice, T.J. 1993. The influence of polysaccharides on the glass transition in frozen sucrose solutions and ice cream. J. Dairy Sci. 76, 1268–1277.

    Article  CAS  Google Scholar 

  • Gordon, M., Taylor, J.S. 1952. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem. 2, 493–500.

    Article  CAS  Google Scholar 

  • Haque, M.K., Roos, Y.H. 2004. Water sorption and plasticization behavior of spray-dried lactose/protein mixtures. J. Food Sci. 69, E384–391.

    Article  CAS  Google Scholar 

  • Haque, M.K., Roos, Y.H. 2005. Crystallization and X-ray diffraction of spray-dried and freeze-dried amorphous lactose. Carbohydr. Res. 340, 293–301.

    Article  CAS  Google Scholar 

  • Haque, M.K., Roos, Y.H. 2006. Differences in the physical state and thermal behavior of spray-dried and freeze-dried lactose and lactose/protein mixtures. Innov. Food Sci. Emerg. Technol. 7, 62–73.

    Article  CAS  Google Scholar 

  • Hartel, R.W. 2001. Crystallization in Foods, Aspen, Gaithersburg, Maryland.

    Google Scholar 

  • Herrington, B.L. 1934. Some physico-chemical properties of lactose. I. The spontaneous crystallization of supersaturated solutions of lactose. J. Dairy Sci. 17, 501–518.

    Article  CAS  Google Scholar 

  • Jouppila, K., Roos, Y.H. 1994a. Water sorption and time-dependent phenomena of milk powders. J. Dairy Sci. 77, 1798–1808.

    Article  Google Scholar 

  • Jouppila, K., Roos, Y.H. 1994b. Glass transitions and crystallization in milk powders. J. Dairy Sci. 77, 2907–2915.

    Article  CAS  Google Scholar 

  • Jouppila, K., Kansikas, J., Roos, Y.H. 1997. Glass transition, water plasticization, and lactose crystallization in skim milk powder. J. Dairy Sci. 80: 3152–3160.

    Article  CAS  Google Scholar 

  • Kalichevsky, M.T., Blanshard, J.M.V., Tokarczuk, P.F. 1993a. Effect of water content and sugars on the glass transition of casein and sodium caseinate. Int. J. Food Sci. Technol. 28, 139–151.

    Article  CAS  Google Scholar 

  • Kalichevsky, M.T., Blanshard, J.M.V., Marsh, R.D.L. 1993b. Applications of mechanical spectroscopy to the study of glassy biopolymers and related systems. In The Glassy State in Foods (J.M.V. Blanshard, P.J. Lillford, eds.), pp. 133–156, Nottingham University Press, Loughborough.

    Google Scholar 

  • Kim, M.N., Saltmarch, M., Labuza, T.P. 1981. Non-enzymatic browning of hygroscopic whey powders in open versus sealed pouches. J. Food Process. Preserv. 5, 49–57.

    Article  Google Scholar 

  • King, N. 1965. The physical structure of dried milk. Dairy Sci. Abstr. 27, 91–104.

    Google Scholar 

  • Labuza, T.P., Saltmarch, M. 1981. The nonenzymatic browning reaction as affected by water in foods. In Water Activity: Influences on Food Quality (L.B. Rockland, G.F. Stewart, eds.), pp. 605–650, Academic Press, Inc., New York.

    Google Scholar 

  • Lai, H.-M., Schmidt, S.J. 1990. Lactose crystallization in skim milk powder observed by hydrodynamic equilibria, scanning electron microscopy and 2H nuclear magnetic resonance. J. Food Sci. 55, 994–999.

    Article  CAS  Google Scholar 

  • Lazar, M., Brown, A.H., Smith, G.S., Wong, F.F., Lindquist, F.E. 1956. Experimental production of tomato powder by spray drying. Food Technol. 10, 129–134.

    Google Scholar 

  • Lea, C.H., White, J.C.D. 1948. Effect of storage on skim-milk powder. Part III. Physical, chemical and palatability changes in the stored powders. J. Dairy Res. 15, 298–340.

    Google Scholar 

  • Levine, H., Slade, L. 1988a. Principles of “cryostabilization” technology from structure/property relationships of carbohydrate/water systems – a review. Cryo-Lett. 9, 21–63.

    CAS  Google Scholar 

  • Levine, H., Slade, L. 1988b. “Collapse” phenomena – a unifying concept for interpreting the behaviour of low moisture foods. In Food Structure – Its Creation and Evaluation (J.M.V. Blanshard, J.R. Mitchell, eds.), pp. 149–180, Butterworths, London.

    Google Scholar 

  • Levine, H., Slade, L. 1989. A food polymer science approach to the practice of cryostabilization technology. Comm. Agric. Food Chem. 1, 315–396.

    CAS  Google Scholar 

  • Lloyd, R.J., Chen X.D., Hargreaves, J.B. 1996. Glass transition and caking of spray-dried lactose. Int. J. Food Sci. Technol. 31, 305–311.

    Article  CAS  Google Scholar 

  • Miao, S., Roos, Y.H. 2004. Comparison of nonenzymatic browning kinetics in spray-dried and freeze-dried carbohydrate-based food model systems. J. Food Sci. 69, E322–E331.

    Article  CAS  Google Scholar 

  • Nasirpour, A., Scher, J., Linder, M., and Desobry, S. 2006. Modeling of lactose crystallization and color changes in model infant foods. J. Dairy. Sci. 89, 2365–2373.

    Article  CAS  Google Scholar 

  • Nickerson, T.A. 1974. Lactose. In Fundamentals of Dairy Chemistry, 2nd ed. (B.H. Webb, A.H. Johnson, J.A. Alford, eds.), pp. 273–324, AVI Publishing Co., Inc., Westport, Conn.

    Google Scholar 

  • Nickerson, T.A., Moore, E.E. 1972. Solubility interrelations of lactose and sucrose. J. Food Sci. 37, 60–61.

    Article  Google Scholar 

  • Omar, A.M., Roos, Y.H. 2006a. Water sorption and time-dependent crystallization behaviour of freeze-dried lactose-salt mixtures. Lebensm.-Wiss. u. Technol. 40, 520–528.

    Google Scholar 

  • Omar, A.M., Roos, Y.H. 2006b. Glass transition and crystallization behaviour of freeze-dried lactose-salt mixtures. Lebensm.-Wiss. u. Technol. 40, 536–543.

    Google Scholar 

  • Paterson, A.H.J., Brooks, G.F., Bronlund, J.E., Foster, K.D. 2005. Development of stickiness in amorphous lactose at constant T–Tg levels. Int. Dairy J. 15, 513–519.

    Article  CAS  Google Scholar 

  • Peleg, M. 1977. Flowability of food powders and methods for its evaluation. J. Food Process Eng. 1, 303–328.

    Article  Google Scholar 

  • Peleg, M. 1983. Physical characteristics of food powders. In Physical Properties of Foods (M. Peleg, E.B. Bagley, eds.), pp. 293–323, AVI Publ. Co., Inc. Westport, CT, USA.

    Google Scholar 

  • Peleg, M. and Mannheim, C.H. 1977. The mechanism of caking of powdered onion. J. Food Process. Preserv. 1, 3–11.

    Article  Google Scholar 

  • Roos, Y. 1993. Melting and glass transitions of low molecular weight carbohydrates. Carbohydr. Res. 238, 39–48.

    Article  CAS  Google Scholar 

  • Roos, Y.H. 1995. Phase Transitions in Foods, Academic Press, San Diego.

    Google Scholar 

  • Roos, Y.H. 2002. Importance of glass transition and water activity to spray drying and stability of dairy powders. Lait 82, 475–484.

    Article  CAS  Google Scholar 

  • Roos, Y., Karel, M. 1990. Differential scanning calorimetry study of phase transitions affecting the quality of dehydrated materials. Biotechnol. Prog. 6, 159–163.

    Article  CAS  Google Scholar 

  • Roos, Y., Karel, M. 1991a. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J. Food Sci. 56, 38–43.

    Article  CAS  Google Scholar 

  • Roos, Y., Karel, M. 1991b. Amorphous state and delayed ice formation in sucrose solutions. Int. J. Food Sci. Technol. 26: 553–566.

    Article  Google Scholar 

  • Roos, Y., Karel, M. 1991c. Nonequilibrium ice formation in carbohydrate solutions. Cryo-Lett. 12, 367–376.

    CAS  Google Scholar 

  • Roos, Y., Karel, M. 1991d. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J. Food Sci. 56, 1676–1681.

    Article  CAS  Google Scholar 

  • Roos, Y., Karel, M. 1992. Crystallization of amorphous lactose. J. Food Sci. 57: 775–777.

    Article  CAS  Google Scholar 

  • Saltmarch, M., Labuza, T.P. 1980. Influence of relative humidity on the physicochemical state of lactose in spray-dried sweet whey powders. J. Food Sci. 45, 1231–1236, 1242.

    Article  CAS  Google Scholar 

  • Saltmarch, M., Vagnini-Ferrari, M., Labuza, T.P. 1981. Theoretical basis and application of kinetics to browning in spray-dried whey food systems. Prog. Food Nutr. Sci. 5, 331–344.

    Google Scholar 

  • San Jose, C., Asp, N.-G., Burvall, A., Dahlquist, A. 1977. Water sorption in hydrolyzed dry milk. J. Dairy Sci. 60, 1539–1543.

    Article  CAS  Google Scholar 

  • Shimada, Y., Roos, Y., Karel, M. 1991. Oxidation of methyl linoleate encapsulated in amorphous lactose-based food model. J. Agric. Food Chem. 39, 637–641.

    Article  CAS  Google Scholar 

  • Singh, K.J., Roos, Y.H. 2005. Frozen state transitions of sucrose-protein-cornstarch mixtures. J. Food Sci. 70, E198–E204.

    Article  CAS  Google Scholar 

  • Slade, L., Levine, H. 1991. Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30, 115–360.

    Article  CAS  Google Scholar 

  • Sugisaki, M., Suga, H., Seki, S. 1968. Calorimetric study of the glassy state. IV. Heat capacities of glassy water and cubic ice. Bull. Chem. Soc., Jpn. 41, 2591–2599.

    Article  CAS  Google Scholar 

  • Supplee, G.C. 1926. Humidity equilibria of milk powders. J. Dairy Sci. 9, 50–61.

    Article  CAS  Google Scholar 

  • Troy, H.C., Sharp, P.F. 1930. α and β lactose in some milk products. J. Dairy Sci. 13, 140–157.

    Article  CAS  Google Scholar 

  • Vega, C., Goff, H.D., Roos, Y.H. 2005. Spray drying of high-sucrose dairy emulsions: Feasibility and physicochemical properties. J. Food Sci. 70, E244–E251.

    Article  CAS  Google Scholar 

  • Vuataz, G. 1988. Preservation of skim-milk powders: Role of water activity and temperature in lactose crystallization and lysine loss. In Food Preservation by Water Activity Control (C.C. Seow, ed.), pp. 73–101, Elsevier, Amsterdam.

    Google Scholar 

  • Wallack, D.A., King, C.J. 1988. Sticking and agglomeration of hygroscopic, amorphous carbohydrate and food powders. Biotechnol. Prog. 4, 31–35.

    Article  CAS  Google Scholar 

  • Warburton, S., Pixton, S.W. 1978. The moisture relations of spray dried skimmed milk. J. Stored Prod. Res. 14, 143–158.

    Article  CAS  Google Scholar 

  • White, G.W., Cakebread, S.H. 1966. The glassy state in certain sugar-containing food products. J. Food Technol. 1, 73–82.

    Article  CAS  Google Scholar 

  • Williams, M.L., Landel, R.F., Ferry, J.D. 1955. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roos, Y.H. (2009). Solid and Liquid States of Lactose. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84865-5_2

Download citation

Publish with us

Policies and ethics