Water in Dairy Products

  • D. Simatos
  • D. Champion
  • D. Lorient
  • C. Loupiac
  • G. Roudaut


During the last 50 years, our knowledge of the properties and roles of water in foods has progressed very significantly; at the beginning of this period, the emphasis was on the binding of water to other constituents, which was supposed to impart to it special properties, different from those of bulk water. These concepts of free and bound water were used widely, although most often poorly defined. They can now be supplemented by much more precise descriptions of the properties of water present in food products, in terms of thermodynamics and molecular mobility. The concept of bound water in foods (as well as in biological systems) originated in various observations, such as increasing difficulty to dehydrate the materials and increasing irreversibility of the dehydration. The concept was backed up by the knowledge of the unique properties of the water molecule. The dipolar structure of the molecule and its ability to interact with various chemical groups of the other constituents actually are at the basis of the most important role of water in some sensory properties of foods and in many of the changes that occur during processing and storage.


Glass Transition Glass Transition Temperature Apparent Activation Energy Whey Protein Molecular Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Brunauer, Emmett, Teller, 1938


dynamic thermal analysis


dielectric spectroscopy




differential scanning calorimetry


equilibrium relative humidity


electron spin resonance


Guggenheim, 1966, Anderson, 1946, De Boer, 1953


glass liquid transition


non-enzymatic browning


nuclear magnetic resonance


positron annihilation lifetime spectroscopy


relative humidity


sorption isotherm


skim milk powder


whole milk powder


whey protein isolate


  1. Ablett, S., Darke, A.H., Izzard, M.J., Lillford, P.J. 1993. Studies of the glass transition in malto-oligomers. In: The Glassy State in Foods (J.M.V. Blanshard, P.J. Lillford, eds.), pp. 189–206, Nottingham Press, Nottingham.Google Scholar
  2. Abrams, D.S., Prausnitz, J.M. 1975. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128.CrossRefGoogle Scholar
  3. Aguilera, M., del Valle, J.M. 1995. Structural changes in low moisture food powders. In: Food Preservation by Moisture Control. ISOPOW Practicum II (V. Barbosa-Canovas, J. Welti-Chanes, eds.), pp. 675–691, Technomic, Lancaster, PA, USA.Google Scholar
  4. Aldous, B.J. Franks, F., Greer, A.L. 1997. Diffusion of water within an amorphous carbohydrate. J. Mat. Sci. 32, 301–308.CrossRefGoogle Scholar
  5. Angell, C.A. 1985. Strong and fragile liquids. In: Relaxation in Complex Systems (K. Ngai and G.B. Wright, eds.), National Technical Information Service, US Dept Commerce, Springfield, VA, USA.Google Scholar
  6. Angell, C.A. 1993. Water is a “strong” liquid. J. Phys. Chem. 97, 6339–6341.CrossRefGoogle Scholar
  7. Angell, C.A. 1995. Formation of glasses from liquids and biopolymers. Science 267, 1924–1934.CrossRefGoogle Scholar
  8. Angell, C.A. 2001. Water: what we know and what we don’t. In: Water Science for Food, Health, Agriculture and Environment (ISOPOW 8) (Z. Berk, R.B. Leslie, P.J. Lillford, S. Mizrahi, eds.), pp. 1–30, Technomic, Lancaster, PA, USA.Google Scholar
  9. Angell, C.A. 2002. Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev. 102, 2627–2650.CrossRefGoogle Scholar
  10. Angell, C.A., Tucker, J.C. 1980. Heat capacity changes in glass-forming aqueous solutions and the glass transition in vitreous water. J. Phys. Chem. 84, 268–272.CrossRefGoogle Scholar
  11. Angell, C.A., Monnerie, L., Torell, L.M. 1991. Strong and fragile behavior in liquid polymers. Symp. Mat. Res. Soc. 215, 3–9.CrossRefGoogle Scholar
  12. Angell, C.A., Bressel, R.D., Hemmati, M., Sare, E.J., Tucker, J.C. 2000. Water and its anomalies in perspective: tetrahedral liquids with and without liquid-liquid phase transition. Phys. Chem. Chem. Phys. 2, 1559–1566.CrossRefGoogle Scholar
  13. Angell, C.A., Bressel, R.D., Green, J.L., Kanno, H., Oguni, M., Sare, E.J. 1994. Liquid fragility and the glass transition in water and aqueous solutions. In: Water in Foods: Fundamental Aspects and their Significance in Relation to Processing of Foods, ISOPOW V (P. Fito, A. Mulet, B. McKenna, eds.), pp. 75–88, Elsevier Applied Science, London.Google Scholar
  14. Atkins, P.W. 1998. Physical Chemistry, 6th edn., Oxford University Press, Oxford.Google Scholar
  15. Attenburrow, G.E., Davies, A.P., Goodband, R.M., Ingman, S.J. 1992. The fracture behavior of starch and gluten in the glassy state. J. Cereal Sci. 16, 1–12.CrossRefGoogle Scholar
  16. Badii, F., MacNaughtan, W., Farhat, I.A. 2005. Enthalpy relaxation of gelatin in the glassy state. Int. J. Biol. Macromol. 36, 263–269.CrossRefGoogle Scholar
  17. Badii, F., Martinet, C. Mitchell, J.R., Farhat, I.A. 2006. Enthalpy and mechanical relaxation of glassy gelatin films. Food Hydrocoll. 20, 879–884.CrossRefGoogle Scholar
  18. Banon, S., Hardy, J. 2002. L’Eau dans les produits laitiers. In: L’Eau dans les Aliments (M. LeMeste, D. Lorient, D. Simatos, eds.), pp. 235– 238, Lavoisier, Paris.Google Scholar
  19. Belton, P.S. 1990. Can nuclear magnetic resonance give useful information about the state of water in foodstuffs? Comments Agric. Food Chem. 2, 179–209.Google Scholar
  20. Benczedi, D. 1999. Estimation of the free volume of starch-water barriers. Trends Food Sci. Technol. 10, 21–24.Google Scholar
  21. Benczedi, D., Tomka, I., Escher, F. 1998a. Thermodynamics of amorphous starch-water systems 1. Volume fluctuations. Macromoecules 31, 3055–3061.Google Scholar
  22. Benczedi, D., Tomka, I., Escher, F. 1998b. Thermodynamics of amorphous starch-water systems 2.Concentration fluctations. Macromoecules 31, 3062–3074.Google Scholar
  23. Berlin, E., Anderson, B.A., Pallansch, M.J. 1968. Comparison of water vapor sorption by milk powder components. J. Dairy Sci. 51, 1912–1915.CrossRefGoogle Scholar
  24. Bhatnagar, B.S., Cardona, S., Pikal, M.J., Bogner, R.H. 2005. Reliable determination of freeze-concentration using DSC. Thermochim. Acta 425, 149–163.CrossRefGoogle Scholar
  25. Bidault, O., Assifaoui, A., Champion, D., LeMeste, M. 2005. Dielectric spectroscopy measurements of the sub-Tg relaxations in amorphous ethyl cellulose: A relaxation magnitude study. J. Non-Cryst. Solids 351, 1167–1178.CrossRefGoogle Scholar
  26. Biliaderis, C.G., Lazaridou, A., Arvanitoyannis, I. 1999. Glass transition and physical properties of polyol-plasticized pullulan-starch blends at low moisture. Carbohydr. Polym. 40, 29–47.CrossRefGoogle Scholar
  27. Blackburn, R.F., Wang, C.Y., Ediger, M.D. 1996. Translational and rotational motion of probes in supercooled 1.3.5-Tris(naphthyl)benzene. J. Phys. Chem. 100, 18249–18257.CrossRefGoogle Scholar
  28. Blond, G. 1988. Velocity of linear crystallization of ice in macromolecular systems. Cryobiology 25, 61–66.CrossRefGoogle Scholar
  29. Blond, G. 1994. Mechanical properties of frozen model solutions. In: Water in Foods: Fundamental Aspects and their Significance in relation to Processing of Foods, ISOPOW V (P. Fito, A. Mulet, B. McKenna, eds.), pp. 253–269, Elsevier Applied Science, London.Google Scholar
  30. Blond, G., Simatos, D. 1991. Glass transition of the amorphous phase in frozen aqueous systems. Thermochim. Acta 175, 239–247.CrossRefGoogle Scholar
  31. Blond, G., Simatos, D., Catté, M., Dussap, C.G., Gros, J.B. 1997. Modeling of the water-sucrose state diagram below 0°C. Carbohydr. Res. 298, 139–145.CrossRefGoogle Scholar
  32. Borde, B. 1999. Mobilité Moléculaire et Processus de Relaxation dans des Polysaccharides Amorphes Partiellement Hydratés, Thèse de doctorat, INSA, Lyon.Google Scholar
  33. Borde, B., Bizot, H., Vigier, G., Buleon, A. 2002. Calorimetric analysis of the structural relaxation in partially hydrated amorphous polysaccharides. I. Glass transition and fragility. Carbohydr. Polym. 48, 83–96.CrossRefGoogle Scholar
  34. Boulet, M., Britten, M, Lamarche, F. 1998. Voluminosity of some food proteins in aqueous dispersions at various pH and ionic strengths. Food Hydrocoll. 12, 433–441.CrossRefGoogle Scholar
  35. Brake, N.C., Fennema, O.R. 1999. Glass transition values of muscle tissue. J. Food Sci. 64, 10–15.CrossRefGoogle Scholar
  36. Bronlund, J., Paterson, T. 2004. Moisture sorption isotherms for crystalline, amorphous and predominantly crystalline lactose powders. Int. Dairy J. 14, 247–254.CrossRefGoogle Scholar
  37. Burin, L., Buera M.P. 2002. β-Galactosidase activity as affected by apparent pH and physical properties of reduced moisture systems. Enz. Microb. Technol. 30, 367–373.CrossRefGoogle Scholar
  38. Burin, L., Buera, M., Hough, G., Chirife, J. 2002. Thermal resistance of β-galactosidase in dehydrated dairy model systems as affected by physical and chemical changes. Food Chem. 76, 423–430.CrossRefGoogle Scholar
  39. Buera, M.P., Schebor, C., Elizalde, B. 2005. Effects of carbohydrate crystallisation on dehydrated food and ingredient formulations. J. Food Eng. 67, 157–165.CrossRefGoogle Scholar
  40. Caldwell, K.B., Goff, H.D., Stanley, D.W. 1992. A low temperature scanning electron microscopy study of ice cream. II. Influence of selected ingredients and processes. Food Struct. 11, 11–23.Google Scholar
  41. Cameron, N.R., Cowie, J.M.G., Ferguson, R., McEwan, I. 2001. Enthalpy relaxation of styrene-maleic anhydride (SMA) copolymers, 2. Blends with poly(methylmethacrylate) (PMMA). Polymer 42, 6091–6097.CrossRefGoogle Scholar
  42. Cerveny, S, Schwartz, G.A. Bergman, R., Swenson, J. 2004. Glass transition and relaxation processes in supercooled water. Phys. Rev. Lett. 93, 245702.CrossRefGoogle Scholar
  43. Champion, D., Blond, G., Simatos, D. 1997a. Reaction rates at sub-zero temperatures in frozen sucrose solutions: a diffusion-controlled reaction. Cryo-Lett. 18, 251–260.Google Scholar
  44. Champion, D., Hervet, H., Blond, G., LeMeste, M., Simatos, D. 1997b. Translational diffusion in sucrose solutions in the vicinity of their glass transition temperature. J. Phys. Chem. B 101, 10674–10679.Google Scholar
  45. Champion, D., Blond, G., LeMeste, M., Simatos, D. 2000a. Reaction rate modeling in cryoconcentrated solutions: alkaline phosphatase-catalyzed DNPP hydrolysis. J. Agric. Food Chem. 48, 4942–4947.Google Scholar
  46. Champion, D., LeMeste, M., Simatos, D. 2000b. Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range. Trends Food Sci. Technol. 11, 41–55.Google Scholar
  47. Champion, D., Maglione, M., Niquet, G., Simatos, D., LeMeste, M. 2003. Study of α- and β-relaxation processes in supercooled sucrose liquids. J. Thermal Anal. Cal. 71, 249–261.CrossRefGoogle Scholar
  48. Champion, D., Simatos, D., LeMeste, M. 2004. Diffusion-controlled reactions in frozen products: how state diagrams may be used for the prediction of storage stability. In: Ice Cream II (B.W. Tharp, ed.), pp. 264–275, International Dairy Federation Brussels.Google Scholar
  49. Chang, B.S., Randall, C.S. 1992. Use of subambient thermal analysis to optimize protein lyophilization. Cryobiology 29, 632–656.CrossRefGoogle Scholar
  50. Chang, Y.P., Cheah, P.B., Seow, C.C. 2000. Plasticizing-antiplasticizing effect of water on tapioca starch films in the glassy state. J. Food Sci. 3, 445–451.CrossRefGoogle Scholar
  51. Chang, L., Milton, N., Rigsbee, D., Mishra, D.S., Tang, X., Thomas, L.C., Pikal, M.J. 2006. Using modulated DSC to investigate the origin of multiple thermal transitions in frozen 10% sucrose solutions. Thermochim. Acta 442, 25–31.CrossRefGoogle Scholar
  52. Chen, X.D. 2007. Conformability of the kinetics of cohesion/stickiness development in amorphous sugar particles to the classical Arrhenius law. J. Food Eng. 79, 675–680.CrossRefGoogle Scholar
  53. Chirife, J., Buera, M.P. 1996. Water activity, water glass dynamics and the control of microbiological growth in foods. Crit. Rev. Food Sci. Nutr. 36, 465–513.CrossRefGoogle Scholar
  54. Chirife, J., Favetto, G., Ferro Fontan, C. 1982. The water activity of fructose solutions in the intermediate moisture range. Lebensm. Wiss. Technol. 15, 159–160.Google Scholar
  55. Chirife, J., Ferro Fontan, C. 1980. Prediction of water activity of aqueous solutions in connection with intermediate moisture foods: experimental investigation of the a w lowering behavior of sodium lactate and some related compounds. J. Food Sci. 45, 802–804.CrossRefGoogle Scholar
  56. Chirife, J., Ferro Fontan, C., Bennmergui, E.A. 1980. The prediction of water activity in aqueous solutions in connection with intermediate moisture foods: 4, a w prediction in non-electrolyte solutions. J. Food Technol. 15, 59–70.CrossRefGoogle Scholar
  57. Chung, H-J., Yoo, B., Lim, S-T. 2005. Effects of physical aging on thermal and mechanical properties of glassy normal corn starch. Starch/Stärke 57, 354–362.CrossRefGoogle Scholar
  58. Claude, J., Ubbink, J. 2006. Thermal degradation of carbohydrate polymers in amorphous states: A physical study including colorimetry. Food Chem. 96, 402–410.CrossRefGoogle Scholar
  59. Cohen, M.H., Turnbull, D. 1959. Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169.CrossRefGoogle Scholar
  60. Colas, B., Courthaudon, J.-L., LeMeste, M., Simatos, D. 1988a. Functional properties of caseinates: the role of flexibility of the protein and of its hydration level on surface properties. In: Functional Properties of Food Proteins (R. Lasztity, M. Ember-Karpati, eds.), pp. 186–194, Federation of Technical and Scientific Societies (MTESZ), Budapest.Google Scholar
  61. Colas, B., Gobin, C., Lorient, D. 1988b. Viscosity and voluminosity of caseins chemically modified by reductive alkylation with reducing sugars. J. Dairy Res. 55, 539–546.Google Scholar
  62. Contreras-Lopez, E., Champion, D., Hervet, H., Blond, G., LeMeste, M. 2000. Rotational and translational mobility of small molecules in sucrose-polysaccharide solutions. J. Agric. Food Chem. 48, 1009–1015.CrossRefGoogle Scholar
  63. Couchman, P. R. 1978. Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends. Macromolecules 11, 1156–1161.CrossRefGoogle Scholar
  64. Craig, I.D., Parker, R., Rigby, N.M., Cairns, P., Ring, S.G. 2001. Maillard reaction kinetics in model preservation systems in the vicinity of the glass transition. J. Agric. Food Chem. 49, 4706–4712.CrossRefGoogle Scholar
  65. Debenedetti, P.G. 2003. Supercooled and glassy water. J. Phys.: Condens. Matter 15, R1669–R1726.CrossRefGoogle Scholar
  66. De Graaf, E.M., Madeka, H., Cocero, A.M., Kokini, J. L. 1993. Determination of the effect of moisture on gliadin glass transition using mechanical spectrometry and differential scanning calorimetry. Biotechnol. Prog. 9, 210–213.CrossRefGoogle Scholar
  67. Denisov, V.P., Halle, B. 1995. Protein hydration dynamics in aqueous solution: a comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion. J. Mol. Biol. 245, 682–697.CrossRefGoogle Scholar
  68. Desobry, S. and Hardy, J. 1994. Camembert cheese water loss through absorbent packaging. J. Food Sci. 59, 986–989.CrossRefGoogle Scholar
  69. Doster, W., Settles, M. 2005. Protein–water displacement distributions. Biochim. Biophys. Acta 1749, 173–186.CrossRefGoogle Scholar
  70. Duckworth, R.B., Allison, J.Y., Clapperton, H.A.A. 1976. The aqueous environment for chemical change in intermediate moisture foods. In: Intermediate Moisture Foods (R. Davies, G.C. Birch, K.J. Parker, eds.), pp. 89–99, Applied Science Publications, London.Google Scholar
  71. Ediger, M.D., Angell, C.A., Nagel, S.R. 1996. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212.CrossRefGoogle Scholar
  72. Einfeldt, J., Meissner, D., Kwasniewski, A. 2004. Molecular interpretation of the main relaxations found in dielectric spectra of cellulose-experimental arguments. Cellulose 11, 137–150.CrossRefGoogle Scholar
  73. Emschwiller, G. 1951. Chimie Physique, Presses Universitaires de France, Paris.Google Scholar
  74. Ennis, M. P., O’Sullivan, M.M., Mulvihill, D.M. 1998. The hydration behaviour of rennet caseins in calcium chelating salt solution as determined using a rheological approach. Food Hydrocoll. 12, 451–457.CrossRefGoogle Scholar
  75. Esteban, M.A., Marcos, A. 1990. Equations for calculation of water activity in cheese from its chemical composition: a review. Food Chem. 36, 179–186.CrossRefGoogle Scholar
  76. Faldt, P. and Bergenstahl, B. 1996. Spray-dried whey protein/lactose/soybean oil emulsions. 2. Redispersibility, wettability and particle structure. Food Hydrocoll. 10, 431–439.CrossRefGoogle Scholar
  77. Farahnaky, A., Badii, F., Farhat, I.A., Mitchell, J.R., Hill, S.E. 2005. Enthalpy relaxation of bovine serum albumin and implications for its storage in the glassy state. Biopolymers 78, 69–77.CrossRefGoogle Scholar
  78. Farhat, I.A., Blanshard, J.M.V., Mitchell, J.R. 2000. The retrogradation of waxy maize starch extrudates: effects of storage temperature and water content. Biopolymers 53, 411–422.CrossRefGoogle Scholar
  79. Fernandez, E., Schebor, C., Chirife, J. 2003. Glass transition temperature of regular and lactose hydrolysed milk powders. Lebensm.-Wiss. Techn. 36, 547–551.CrossRefGoogle Scholar
  80. Ferro Fontan, C., Benmergui, E.A., Chirife, J. 1980. The prediction of water activity of aqueous solutions in connection with intermediate moisture foods. III: a w prediction in multicomponent strong electrolyte aqueous solutions. J. Food Technol. 15, 47–58.CrossRefGoogle Scholar
  81. Ferry, J.D. 1980. Viscoelastic Properties of Polymers, 3rd ed., John Wiley, New York.Google Scholar
  82. Finegold, L., Franks, F., Hatley, R.H.M. 1989. Glass/rubber transitions and heat capacities of binary sugar blends. J. Chem. Soc. Faraday Trans. 85, 2945–2951.CrossRefGoogle Scholar
  83. Fitzpatrick, J.J., Iqbal, T., Delaney, C., Twomey, T., Keogh, M.K. 2004. Effect of powder properties and storage conditions on the flowability of milk powders with different fat contents. J. Food Eng. 64, 435–444.CrossRefGoogle Scholar
  84. Fitzpatrick, J.J., Barry, K., Cerqueira, P.S.M., Iqbal, T., O’ Neill, J., Roos, Y.H. 2007. Effect of composition and storage conditions on the flowability of dairy powders. Int. Dairy J. 17, 383–392.CrossRefGoogle Scholar
  85. Flory, P.J. 1953. Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, NewYork.Google Scholar
  86. Fontanet, I., Davidou, S., Dacremont, C., LeMeste, M. 1997. Effect of water on the mechanical behavior of extruded flat bread. J. Cereal Sci. 25, 303–311.CrossRefGoogle Scholar
  87. Foster, K.D. Bronlund, J.E., Paterson, T. 2005. The prediction of moisture sorption isotherms for dairy powders. Int. Dairy J. 15, 411–418.CrossRefGoogle Scholar
  88. Franks, F. 1985. Complex aqueous systems at subzero temperatures. In: Properties of Water in Foods (D. Simatos, J.-L. Multon, eds.), pp. 497–509, M. Nijhoff Publications, Dordrecht.CrossRefGoogle Scholar
  89. Franks, F. 1993. Solid aqueous solutions. Pure Appl. Chem. 65, 2527–2537.CrossRefGoogle Scholar
  90. Fredenslund, A., Gmehling, J., Michelsen, M.L., Rasmussen, P., Prausnitz, J.M. 1977. Computerized design of multicomponent distillation columns using UNIFAC group-contribution method for calculation of activity coefficients. Ind. Eng. Chem. Des. Dev. 16. 450–462.CrossRefGoogle Scholar
  91. Fujara, F., Geil, B., Sillescu, H., Fleischer, G. 1992. Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Z. Phys. B 195–204.Google Scholar
  92. Gabarra, P., Hartel, R.W. 1998. Corn syrup solids and their saccharide fractions affect crystallization of amorphous sucrose. J. Food Sci. 63, 523–528.CrossRefGoogle Scholar
  93. Gaiani, C., Scher, J. Schuck, P., Hardy, J., Desobry, S., Banon, S. 2006. The dissolution behaviour of native phosphocaseinate as a function of concentration and temperature using a rheological approach. Int. Dairy J. 16, 1427–1424.Google Scholar
  94. Gaiani, C., Scher, J., Ehrhart, J.-J., Linder, M., Schuck, P., Desobry, S., Banon, S. 2007a. Relationships between dairy powder surface composition and wetting properties during storage: Importance of residual lipids. J. Agric. Food Chem. 53, 6561–6567.Google Scholar
  95. Gaiani, C., Schuck, P., Scher, J., Desobry, S., Banon, S. 2007b. Dairy powder rehydration: Influence of protein state, incorporation mode, and agglomeration. J. Dairy Sci. 90, 570–581.Google Scholar
  96. Geurts, T.J., Walstra, P., Mulder, H. 1980. Transport of salt and water during salting of cheese. 2. Quantities of salt taken up and of moisture lost. Neth. Milk Dairy J. 34, 229–254.Google Scholar
  97. Giannakourou, M.C., Taoukis, P.S. 2003. Kinetic modelling of vitamin C loss in frozen green vegetables under variable storage conditions. Food Chem. 83, 33–41.CrossRefGoogle Scholar
  98. Goff, H.D., Caldwell, K.B., Stanley, D.W., Maurice, T.J. 1993. The influence of polysaccharides on the glass transition in frozen sucrose solutions and ice cream. J. Dairy Sci. 76, 1268–1277.CrossRefGoogle Scholar
  99. Goff, H.D., Montoya, K., Sahagian, M.E. 2002. The effect of microstructure on the complex glass transition occurring in frozen sucrose model systems and foods. In: Progress in Amorphous Food and Pharmaceutical Systems (H. Levine, ed.), pp. 145–157, Royal Society of Chemistry, Cambridge, USA.CrossRefGoogle Scholar
  100. Goff, H.D., Verespej, E., Jermann, D. 2003. Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. Thermochim. Acta 399, 43–55.CrossRefGoogle Scholar
  101. Grattard, N., Salaun, F., Champion, D., Roudaut, G., LeMeste, M. 2002. Influence of physical state and molecular mobility of freeze-dried maltodextrin matrices on the oxidation rate of encapsulated lipids. J. Food Sci. 67, 3002–3010.CrossRefGoogle Scholar
  102. Green, J.L., Fan, J., Angell, C.A. 1994. The protein-glass analogy: some insights from homopeptide comparisons. J. Phys. Chem. 98, 13780–13790.CrossRefGoogle Scholar
  103. Green, J.E., Sitaula, R., Fowler, A., Toner, M., Bhowmick, S. 2007. Enthalpic relaxation of convective desiccated trehalose-water glasses. Thermochim. Acta 453, 1–8.CrossRefGoogle Scholar
  104. Gregory, R.B. 1995. Protein hydration and glass transition behavior. In: Protein-solvent Interactions (R.B. Gregory, ed.), pp. 191–264, Marcel Dekker, New York.Google Scholar
  105. Gregory, R.B. 1998. Protein hydration and glass transition. In: The Properties of Water in Foods. ISOPOW 6, (D.S. Reid, ed.), pp. 57–99, Blackie, London.CrossRefGoogle Scholar
  106. Griffin, D.M. 1981. Water and microbial stress. Adv. Microb. Ecol. 5, 91–136.CrossRefGoogle Scholar
  107. Hagiwara, T., Hartel, R.W. 1996. Effect of sweetener, stabilizer and storage temperature on ice recrystallization in ice cream. J. Dairy Sci. 79, 735–744.CrossRefGoogle Scholar
  108. Hall, D.B., Deppe, D.D., Hamilton, K.E., Dhinojwala, A., Torkelson, J. 1998. Probe translational and rotational diffusion in polymers near Tg: Role of probe size, shape and secondary bonding in deviations from Debye-Stokes-Einstein scaling. J. Non-Cryst. Solids 235–237, 48–56.CrossRefGoogle Scholar
  109. Hallbrucker, A., Mayer, E., Johari, G.P. 1989. The heat capacity and glass transition of hyperquenched glassy water. Phil. Mag. B 60, 179–187.CrossRefGoogle Scholar
  110. Halle, B. 2004. Protein hydration dynamics in solution: a critical survey. Phil. Trans. R. Soc. Lond. B 359, 1207–1224.Google Scholar
  111. Halle, B., Andersson, T., Forsén, S., Lindman, B. 1981. Protein hydration from water oxygen-17 magnetic relaxation. J. Amer. Chem. Soc. 103, 500–508.CrossRefGoogle Scholar
  112. Halle, B., Davidovic, M. 2003. Biomolecular hydration: From water dynamics to hydrodynamics. Proc. Nat. Acad. Sci, USA 100, 12135–12140.CrossRefGoogle Scholar
  113. Hancock, B.C., Zografi, G. 1993. The use of solution theories for predicting water vapor absorption by amorphous pharmaceutical solids: A test of the Flory-Huggins and Vrentas models. Pharm. Res. 9, 1262–1267.CrossRefGoogle Scholar
  114. Haque, M.K., Roos, Y.H. 2004. Water sorption and plasticization behavior of spray-dried lactose/protein mixtures. J. Food Sci. 69, 384–391.CrossRefGoogle Scholar
  115. Hardy, J. 1983. Diffusion et Distribution du Chlorure de Sodium dans les Fromages. Influence sur l’Activité de l’Eau et les Propriétés de Sorption de l’Eau. Thèse d’Etat, INPL, Nancy, France.Google Scholar
  116. Hartel, R.W. 1998. Mechanisms and kinetics of recrystallization in ice cream. In: The Properties of Water in Foods. ISOPOW 6 (D.S. Reid, ed.), pp. 287–319, Blackie, London.CrossRefGoogle Scholar
  117. Hashimoto, T. Hagiwara, T. Suzuki, T., Takai, R. 2004. Study on the enthalpy relaxation of Katsuobushi (dried glassy fish meat) by differential scanning calorimetry and physical ageing upon its water sorption ability. Jap. J. Food Eng. 5, 11–19.Google Scholar
  118. Hemminga, M., Van den Dries, I.J., Magusin, P.C., van Duschoten, D., van den Berg, C. 1999. Molecular mobility in food components as studied by magnetic resonance spectroscopy. In: Water Management in the Design and Distribution of Quality Foods, ISOPOW 7 (Y.H. Roos, R.B. Leslie, P.J. Lillford, eds.), pp. 255–265, Technomic, Lancaster, PA, USA.Google Scholar
  119. Herrera, J.R., Roos, Y.H. 2001. A kinetic study on formaldehyde production in cryostabilized water-soluble fish muscle extracts. Innov. Food Sci. Emerging Technol. 1, 227–235.CrossRefGoogle Scholar
  120. Hills, B.P., Takacs, S.F., Belton, P.S. 1990. A new interpretation of proton NMR relaxation time measurements of water in food. Food Chem. 37, 95–111.CrossRefGoogle Scholar
  121. Hills, B.P., Wang, Y.L., Tang, H.R. 2001. Molecular dynamics in concentrated sugar solutions and glasses. An NMR field cycling study. Mol. Phys. 99, 1679–1687.CrossRefGoogle Scholar
  122. Hinrichs, R., Goetz, J., Weisser, H. 2003. Water-holding capacity and structure of hydrocolloid-gels, WPC-gels and yoghurts characterised by means of NMR. Food Chem. 82, 155–160.CrossRefGoogle Scholar
  123. Hinrichs, R., Goetz, J., Noll, M., Wolfscoon, A., Eibel, H., Weisser, H. 2004a. Characterisation of different treated whey protein concentrates by means of low-resolution nuclear magnetic resonance. Int. Dairy J. 14, 814–827.Google Scholar
  124. Hinrichs, R., Goetz, J., Noll, M., Wolfscoon, A., Eibel, H., Weisser, H. 2004b. Characterisation of the water-holding capacity of fresh cheese samples by means of low resolution nuclear magnetic resonance. Food Res. Int. 37, 667–676.Google Scholar
  125. Hodge, I.M. 1994. Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Solids 169, 211–266.CrossRefGoogle Scholar
  126. Hutchinson, J.M. 1995. Physical aging of polymers. Prog. Polym. Sci. 20, 703–760.CrossRefGoogle Scholar
  127. Iglesias, H.A., Chirife, J. 1982. Handbook of Food Isotherms: Water Sorption Parameters for Food and Food Components. Academic Press, New York.Google Scholar
  128. Inoue, C., Ishikawa, M. 2000.The contribution of water to the specific heat change at the glass-to-rubber transition of the ternary system BSA-water NaCl. J. Food Sci. 65, 1187–1193.CrossRefGoogle Scholar
  129. ISOPOW 2000, expert panel: Critical Issues Related to Water Activity and Glass Transition. Panel discussion, ISOPOW 2000, Zichron Yaakov, Israel, Sept. 2000.Google Scholar
  130. ISOPOW 2006. Micro- and Nano-Scale Techniques in the Analysis of Food Structures. IUFoST-ISOPOW symposium, 13th World Congress of Food Science and Technology Nantes.Google Scholar
  131. Jansson, H., Bergman, R., Swenson, J. 2005a. Dynamics of sugar solutions as studied by dielectric spectroscopy. J. Non-Cryst. Solids 351, 2858–2863.Google Scholar
  132. Jansson, H., Bergman, R., Swenson, J. 2005b. Relation between solvent and protein dynamics as studied by dielectric spectroscopy. J. Phys. Chem. B 109, 24134–24141.Google Scholar
  133. Jansson, H., Bergman, R., Swenson, J. 2006. Protein and solvent dynamics as studied by QENS and dielectric spectroscopy. J. Non-Cryst. Sol. 352, 4410–4416.CrossRefGoogle Scholar
  134. Johari, G.P., Hallbrucker, A., Mayer, E. 1987. The glass-liquid transition of hyperquenched water. Nature 330, 552–553.CrossRefGoogle Scholar
  135. Jouppila, K., Roos, Y.H. 1994. Glass transitions and crystallization in milk powders. J. Dairy Sci. 77, 2907–2915.CrossRefGoogle Scholar
  136. Jul, M. 1984. The Quality of Frozen Foods, Academic Press, London.Google Scholar
  137. Kalichevsky, M.T., Jaroskiewicz, E.M., Blanshard, J.M.V. 1992. The glass transition of gluten. Int. J. Biol. Macromol. 14, 257–266.CrossRefGoogle Scholar
  138. Kalichevsky, M.T., Blanshard, J.M.V., Tokarczuk, P.F. 1993. Effect of water content and sugars on the glass transition of casein and sodium caseinate. Int. J. Food Sci. Technol. 28, 139–151.CrossRefGoogle Scholar
  139. Karel, M. 1985. Effects of water activity and water content on mobility of food components and their effects on phase transitions in food systems. In: Properties of Water in Foods (D. Simatos, J.-L. Multon, eds.), pp. 153–170, M. Nijhoff Publications, Dordrecht.CrossRefGoogle Scholar
  140. Karel, M. 1999. Food research tasks at the beginning of the new millenium. A personal vision. In: Water Management in the Design and Distribution of Quality Foods (ISOPOW VII), (Y.H. Roos, R.B. Leslie, P.J. Lillford, eds.), pp. 535–559, Technomic, Lancaster. PA, USA.Google Scholar
  141. Karel, M., Buera, M.P., Roos, Y. 1993. Effects of glass transition on processing and storage. In: The Glassy State in Foods (J.M.V. Blanshard, P.J. Lillford, eds.), pp. 12–34, Nottingham University Press, Nottingham, UK.Google Scholar
  142. Karel, M., Reid, D.S. 2000. Water science in food science and technology: future needs, potential sources of information and cooperation. Panel discussion, ISOPOW 2000, Zichron Yaakov, Israel, Sept. 2000.Google Scholar
  143. Karel, M., Saguy, I. 1991. Effects of water on diffusion in food systems. In: Water Relationships in Food (H. Levine, L. Slade, eds.), pp. 157– 174, Plenum Press, New York.Google Scholar
  144. Kawai, K. Hagiwara, T., Takai, R., Suzuki, T. 2004. Maillard reaction rate in various glassy matrices. Biosc-Biotechnol. Biochem. 68, 2285–2288.CrossRefGoogle Scholar
  145. Kawai, K. Hagiwara, T., Takai, R., Suzuki, T. 2005. Comparative investigation by two analytical approaches of enthalpy relaxation for glassy glucose, sucrose, maltose, and trehalose. Pharm. Res. 22, 490–495.CrossRefGoogle Scholar
  146. Kedward, C.J., MacNaughtan, W., Blanshard, J.M.V., Mitchell, J.R. 1998. Crystallization kinetics of lactose and sucrose based on isothermal differential scanning calorimetry. J. Food Sci. 63, 192–197.CrossRefGoogle Scholar
  147. Kedward, C.J., MacNaughtan, W., Mitchell, J.R. 2000. Crystallization kinetics of amorphous lactose as a function of moisture content using isothermal DSC. J. Food Sci. 2, 324–328.CrossRefGoogle Scholar
  148. Kilburn, D., Claude, J., Mezzenga, R., Dlubek, G., Alam, A., Ubbink, J. 2004. Water in glassy carbohydrates: Opening it up at the nanolevel. J. Phys. Chem. B 108, 12436–12441.CrossRefGoogle Scholar
  149. Kilburn, D., Claude, J., Schweizer, T., Alam, A., Ubbink, J. 2005. Carbohydrate polymers in amorphous states: An integrated thermodynamic and nanostructural investigation. Biomacromol. 6, 864–879.CrossRefGoogle Scholar
  150. Kim, S.S., Bhowmik, S.R. 1994. Moisture sorption isotherms of concentrated yogurt and microwave vacuum dried yogurt powder. J. Food Eng. 157–175.Google Scholar
  151. Kim, Y. J., Hagiwara, T., Kawi, K., Suzuki, T., Takai, R. 2003. Kinetic process of enthalpy relaxation of glassy starch and effect of physical aging upon its water permeability property. Carbohydr. Polym. 53, 289–296.CrossRefGoogle Scholar
  152. Kinsella, J.E., Fox, P.F. 1986. Water sorption by proteins: Milk and whey proteins. Crit. Rev. Food Sci. Nutr. 24, 91–139.CrossRefGoogle Scholar
  153. Kockel, T.K., Allen, S., Hennigs, C., Langrish, T.A.G. 2002. An experimental study of the equilibrium for skim milk powder at elevated temperatures. J. Food Eng. 51, 291–297.CrossRefGoogle Scholar
  154. Konopacka, D., Plocharsky, W., Beveridge, T. 2002. Water sorption and crispness of fat-free apple chips. J. Food Sci. 67, 87–92.CrossRefGoogle Scholar
  155. Kontogiorgios, V., Goff, H.D. 2006. Calorimetric and microstructural investigation of frozen hydrated gluten. FOBI 1, 202–215.Google Scholar
  156. Kou, Y., Molitor, P.F., Schmidt, S.J. 1999. Mobility and stability characterization of model food systems using NMR, DSC, and conidia germination techniques. J. Food Sci. 64, 950–959.CrossRefGoogle Scholar
  157. Kouassi, K., Roos, Y.H. 2001. Glass transition and water effects on sucrose inversion in non-crystalline carbohydrate food systems. Food Res. Int. 34, 895–901.CrossRefGoogle Scholar
  158. Kuntz, I.D., Kauzmann, W. 1974. Hydration of proteins and polypeptides. In: Advances in Protein Chemistry (C.B. Anfinsen, J.T. Edsall, F.M. Richards, eds.), pp. 239– 345, Academic Press, New York.Google Scholar
  159. Labuza, T.P. 1971. Kinetics of lipid oxidation in foods. CRC Crit. Rev. Food Technol. 2, 355–405.CrossRefGoogle Scholar
  160. LeMeste, M., Simatos, D. 1980. Use of electron spin resonance for the study of the “ante-melting” phenomenon, observed in sugar solutions by differential scanning calorimetry. Cryo-Lett. 1, 402–407.Google Scholar
  161. LeMeste, M., Aynié, S., Colas, B. 1992. Etude des propriétes viscoélastiques du pain de mie. Ind. Alim. Agric. 109, 862–866.Google Scholar
  162. LeMeste, M., Champion, D., Roudaut, G., Blond, G., Simatos, D. 2002. Glass transition and food technology: A critical appraisal. J. Food Sci. 67, 2444–2458.CrossRefGoogle Scholar
  163. LeMeste, M., Viguier, L., Lorient, D., Simatos, D. 1990. Rotational diffusivity of solutes in concentrated caseinate. Influence of glycosylation. J. Food Sci. 55, 724–727.CrossRefGoogle Scholar
  164. LeMeste, M., Voilley, A., Colas, B. 1991. Influence of water on the mobility of small molecules dispersed in polymeric systems. In: Water Relationships in Foods (H. Levine, L. Slade, eds.), pp. 123– 138, Plenum Press, New York.Google Scholar
  165. Levi, G., Karel, M. 1995. Volumetric shrinkage (collapse) in freeze-dried carbohydrates above their glass transition temperature. Food Res. Int. 2, 145–151.CrossRefGoogle Scholar
  166. Levine, H., Slade, L. 1988. Principles of cryostabilization technology from structure/property relationships of carbohydrate-water systems-a review. Cryo-Lett. 9, 21–63.Google Scholar
  167. Levine, H., Slade, L. 1989. Interpreting the behavior of low-moisture foods. In: Water and Food Quality (T.M. Hardman, ed.), pp. 71– 134, Elsevier, London.Google Scholar
  168. Levine, H., Slade, L. 1990. Cryostabilization technology : thermoanalytical evaluation of food ingredients and systems. In: Thermal Analysis of Foods (V.R. Harwalkar, C.Y. Ma, eds.), pp. 221– 305, Elsevier Applied Science, London.Google Scholar
  169. Lewicki, P.P. 2000. Raoult’s law based food water sorption isotherm. J. Food Eng. 43, 31–40.CrossRefGoogle Scholar
  170. Li, Y, Kloeppel K.M., Hsieh, F. 1998. Texture of glassy corn cakes as function of moisture content. J. Food Sci. 63,869–872.CrossRefGoogle Scholar
  171. Lievonen, S.M., Roos, Y.H. 2002. Non-enzymatic browning in amorphous food models: effects of glass transition and water. J. Food Sci. 67, 2100–2106.CrossRefGoogle Scholar
  172. Lievonen, S.M., Roos, Y.H. 2003. Comparison of dielectric properties and non-enzymatic browning kinetics around glass transition. Innov. Food Sci. Emerg. Technol. 4, 297–305.CrossRefGoogle Scholar
  173. Lillford, P.J., Clark, A.H., Jones, D.V. 1980. Distribution of water in heterogeneous food and model systems. In: Water in Polymers(S.P. Rowland, ed.), pp. 177–195, ACS Symposium Series, 27.Google Scholar
  174. Lin, S.X.Q. Chen X.D., Pearce D.L. 2005. Desorption isotherm of milk powders at elevated temperatures and over a wide range of relative humidity. J. Food Eng. 68, 257–264.CrossRefGoogle Scholar
  175. Liu, Y., Bhandari, B., Zhou, W. 2007. Study of glass transition and enthalpy relaxation of mixtures of amorphous sucrose and amorphous tapioca starch syrup solid by differential scanning calorimetry (DSC). J. Food Eng. 81, 599–610.CrossRefGoogle Scholar
  176. Livney, T., Goff, H.D., Verespej, E. 2003. On the calculation of ice cream freezing curves. Milchwissenschaft 58, 640–643.Google Scholar
  177. MacFarlane, D.R., Angell, C.A. 1984. Nonexistent glass transition for amorphous solid water. J. Phys. Chem. 88, 759–762.CrossRefGoogle Scholar
  178. Malec, L.S. Pereyra Gonzales, A.S., Naranjo, G.B., Vigo, M.S. 2002. Influence of water activity and storage temperature on lysine availability of a milk-like system. Food Res. Int. 35, 849–853.CrossRefGoogle Scholar
  179. Manzocco, L., Nicoli, M. C., Anese, M., Pitotti, A., Maltini, E. 1999. Polyphenoloxidase and peroxidase activity in partially frozen systems with different physical properties. Food Res. Int. 31, 363–370.CrossRefGoogle Scholar
  180. Mariette, F., Tellier, C., Brule, G., Marchal, P. 1993. Multinuclear NMR study of the pH dependent water state in skim milk and caseinate solutions. J. Dairy Res. 60, 175–188.CrossRefGoogle Scholar
  181. Mariette, F., Topgaard, D., Jonsson, B., Soderman, O. 2002. 1H NMR diffusometry study of water in casein dispersion and gels. J. Agric. Food Chem. 50, 4295–4302.CrossRefGoogle Scholar
  182. Marsh, R.D.L., Blanshard, J.M.V. 1988. The application of polymer crystal growth theory to the kinetics of formation of the β-amylose polymorph in a 50 % wheat starch gel. Carbohydr. Polym. 9, 301–317.CrossRefGoogle Scholar
  183. Marshall, A.S., Petrie, S.E.B. 1980. Thermal transitions in gelatin and aqueous gelatin solutions. J. Photographic Sci. 28, 128–134.Google Scholar
  184. Martins, R.C., Silva, C.L.M. 2002. Modelling colour and chlorophyll losses of frozen green beans (Phaseolus vulgaris, L.). Int. J. Refrig. 25, 966–974.CrossRefGoogle Scholar
  185. Mathlouthi, M. 1981. X-Ray diffraction study of the molecular association in aqueous solutions of D-fructose, and D-glucose, and sucrose. Carbohydr. Res. 91, 113–123.CrossRefGoogle Scholar
  186. Matveev, Y.I., Grinberg, V.Y., Tolstoguzov, V.B. 2000. The plasticizing effect of water on proteins, polysaccharides and their mixtures. The glassy state of biopolymers, foods and seeds. Food Hydrocoll. 14, 425–437.CrossRefGoogle Scholar
  187. Miao, S., Roos, Y.H. 2004. Nonenzymatic browning kinetics of a carbohydrate-based low-moisture food system at temperatures applicable to spray drying. J. Agric. Food Chem. 52, 5250–5257.CrossRefGoogle Scholar
  188. Miracco, J.L., Alzamora, S.M., Chirife, J., Ferro Fontan, C. 1981. On the water activity of lactose solutions. J. Food Sci. 46, 1612–1613.CrossRefGoogle Scholar
  189. Mizuno, A., Mitsuiki, M., Motoki, M. 1999. Glass transition temperature of casein as affected by transglutaminase. J. Food Sci. 64, 796–799.CrossRefGoogle Scholar
  190. Montès, H., Mazeau, K., Cavaillé, J.Y. 1998. The mechanical β relaxation in amorphous cellulose. J. Non-Cryst. Solids 235–237, 416–421.CrossRefGoogle Scholar
  191. Mora-Gutierrez, A., Farrell, H. M., Kumosinski, T.F. 1995. Comparison of hydration behavior of bovine and caprine caseins as determined by oxygen-17 nuclear magnetic resonance: effects of salt. J. Agric. Food Chem. 43, 2574–2579.CrossRefGoogle Scholar
  192. Mora-Gutierrez, A., Farrell, H. M., Kumosinski, T.F. 1996. Comparison of hydration behavior of bovine and caprine caseins as determined by oxygen-17 nuclear magnetic resonance: Temperature dependence of colloidal stability. J. Agric. Food Chem. 44, 48–53.CrossRefGoogle Scholar
  193. Morales, A., Kokini, J.L. 1997. Glass transition of soy globulins using differential scanning calorimetry and mechanical spectrometry. Biotechnol. Prog. 13, 624–629.CrossRefGoogle Scholar
  194. Mousia, Z., Farhat, I.A., Blachot, J.F., Mitchell, J.R.. 2000. Effect of water partitioning on the glass transition behaviour of phase separated amylopectin-gelatin mixtures. Polymer 41, 1841–1848.CrossRefGoogle Scholar
  195. Muhr, A.H., Blanshard, J.M.V. 1986. Effect of polysaccharide stabilizers on the rate of growth of ice. J. Food Technol. 21, 683–710.Google Scholar
  196. Mulet, A., Garcia-Reverter, J., Sanjuan, R., Bon, J. 1999. Sorption isosteric heat determination by thermal analysis and sorption isotherms. J. Food Sci. 1, 64–68.CrossRefGoogle Scholar
  197. Mulvihill, D.M., Fox, P.F. 1989. Physicochemical and functional properties of milk proteins. In: Developments in Dairy Chemistry 4, (P.F. Fox ed.), pp. 131–172, Elsevier Applied Science, London.Google Scholar
  198. Nicholls, R.J., Appelqvist, I.A.M., Davies, A.P., Ingman, S.J., Lillford, P.J. 1995. Glass transitions and fracture behavior of gluten and starches within the glassy state. J. Cereal Sci. 25–36.Google Scholar
  199. Noel, T.R., Ring, S.G., Whittam, M.A. 1990. Glass transitions in low-moisture foods. Trends Food Sci. Technol. 1, 62–67.CrossRefGoogle Scholar
  200. Noel, T.R., Parker, R., Ring, S.G., Tatham, A.S. 1995. The glass-transition behavior of wheat gluten proteins. Int. J. Biol. Macromol. 17, 81–85.CrossRefGoogle Scholar
  201. Norrish, R.S. 1966. Equation for the activity coefficients and equilibrium relative humidities of water in confectionery syrups. J. Food Technol. 1, 25–39.CrossRefGoogle Scholar
  202. Orford, P.D., Parker, R., Ring, S.G., Smith, A.C. 1989. The effect of water as a diluent on the glass transition behavior of malto-oligosaccharides, amylose and amylopectin. Int. J. Biol. Macromol. 11, 91–96.CrossRefGoogle Scholar
  203. Orlien, V., Risbo, J., Andersen, M.L., Skibsted, L.H. 2003. The question of high- and low-temperature glass transition in frozen fish. Construction of the supplemented state diagram for tuna by differential scanning calorimetry. J. Agric. Food Chem. 51, 211–217.CrossRefGoogle Scholar
  204. Ozkan, N., Walisinghe, N., Chen, X.D. 2002. Characterization of stickiness and cake formation in whole and skim milk powders. J. Food Eng. 55, 293–303.CrossRefGoogle Scholar
  205. Ozkan, N., Withy, B., Chen, X.D. 2003. Effects of time, temperature, and pressure on the cake formation of milk powders. J. Food Eng. 58, 355–361.CrossRefGoogle Scholar
  206. Paterson, A.H.J., Brooks, G.F., Bronlund, J.E., Foster, K.D. 2005. Development of stickiness in amorphous lactose at constant T-Tg levels. Int. Dairy J. 15, 513–519.CrossRefGoogle Scholar
  207. Peleg, M. 1993. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J. Food Proc. Eng. 16, 21–37.CrossRefGoogle Scholar
  208. Perez, J. 1994. Theories of liquid-glass transition. In: Water in Foods: Fundamental Aspects and their Significance in relation to Processing of Foods, ISOPOW V (P. Fito, A. Mulet, B. McKenna, eds.), pp. 89– 114, Elsevier Applied Science, London.Google Scholar
  209. Perez, J., Cavaillé, J.Y. 1994. Temperature dependence of the molecular dynamics in amorphous polymers through the rubber-glass transition. J. Non-Cryst. Solids 172–174, 1028–1036.CrossRefGoogle Scholar
  210. Pitzer, K.S. 1980. Electrolytes: from dilute solutions to fused salts. J. Am. Chem. Soc. 96, 2902–2906.CrossRefGoogle Scholar
  211. Pitzer, K.S., Kim, J.J. 1974. Thermodynamics of electrolytes. III: activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707.CrossRefGoogle Scholar
  212. Poirier-Brulez, F., Roudaut G., Champion, D., Tanguy, M., Simatos, D. 2006. Influence of sucrose and water content on molecular mobility in starch-based glasses as assessed through structure and secondary relaxation. Biopolymers 81, 63–73.CrossRefGoogle Scholar
  213. Rasmussen, D. 1969. A note about “phase diagrams” of frozen tissues. Biodynamica 10, 333–339.Google Scholar
  214. Regand, A., Goff, H.D. 2003. Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocoll. 17, 95–102.CrossRefGoogle Scholar
  215. Regand, A., Goff, H.D. 2005. Freezing and ice recrystallization properties of sucrose solutions containing ice structuring proteins from cold-acclimated winter wheat grass extract. J. Food Sci. 70, E552–556.CrossRefGoogle Scholar
  216. Regand, A., Goff, H.D. 2006. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J. Dairy Sci. 89, 49–57.CrossRefGoogle Scholar
  217. Rennie, P.R., Chen, X.D., Hargreaves, C., Mackareth, A.R. 1999. A study of the cohesion of dairy powders. J. Food Eng. 39, 277–284.CrossRefGoogle Scholar
  218. Roos, Y.H., Karel, M. 1991a. Applying state diagrams to food processing and development. Food Technol. 45, 66–71.Google Scholar
  219. Roos, Y.H., Karel, M. 1991b. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J. Food Sci. 56, 38–43.Google Scholar
  220. Roos, Y.H., Karel, M. 1991c. Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnol. Progress 7, 49–53.Google Scholar
  221. Roos, Y.H., Karel, M. 1992. Crystallization of amorphous lactose. J. Food Sci. 3, 775–777.CrossRefGoogle Scholar
  222. Roudaut, G., Dacremont, C., LeMeste, M. 1998. Influence of water on the crispness of cereal based foods: acoustic, mechanical, and sensory studies. J. Text. Stud. 29, 199–213.CrossRefGoogle Scholar
  223. Roudaut, G., Maglione, M., Van Duschotten, D., LeMeste, M. 1999a. Molecular mobility in glassy bread: a multi spectroscopic approach. Cereal Chem. 76, 70–77.Google Scholar
  224. Roudaut, G., Maglione, M., LeMeste, M. 1999b. Sub-Tg relaxations in bread and in its components. Cereal Chem. 76 , 78–81.Google Scholar
  225. Ruckold, S., Isengard, H-D., Hanss, J., Grobecker, K.H. 2003. The energy of interaction between water and surfaces of biological reference materials. Food Chem. 82, 51–59.CrossRefGoogle Scholar
  226. Ruegg, M. 1985. Water in dairy products related to quality, with special reference to cheese. In: Properties of Water in Foods (D. Simatos, J.-L. Multon, eds.), pp. 603– 625, Martinus Nijhoff Publications, Dordrecht.CrossRefGoogle Scholar
  227. Sa, M.M., Figueiredo, A.M., Sereno, A.M. 1999. Glass transition and state diagrams for fresh and processed apple. Thermochim. Acta 329, 31–38.CrossRefGoogle Scholar
  228. Saleki-Gerhardt, A., Zografi, G. 1994. Non-isothermal and isothermal crystallization of sucrose from the amorphous state. Pharm. Res. 11, 1166–1173.CrossRefGoogle Scholar
  229. Salomonsen, T., Sejersen, M.T., Viereck, N., Ipsen, R., Engelsen S.B. 2007. Water mobility in acidified milk drinks studied by low-field 1H NMR. Int. Dairy J. 17, 294–301.CrossRefGoogle Scholar
  230. Saurel, R, Pajonk, A., Andrieu, J. 2004. Modelling of French Emmental cheese water activity during salting and ripening periods. J. Food Eng. 63, 163–170.CrossRefGoogle Scholar
  231. Schawe, J.E.K. 2006. A quantitative DSC analysis of the metastable phase behaviour of the sucrose–water system. Thermochim. Acta 451, 115–125.CrossRefGoogle Scholar
  232. Schebor, C., Burin, L., Buera, M. P., Aguilera, J. M., Chirife, J. 1997. Glass state and thermal inactivation of invertase and lactase in dried amorphous matrixes. Biotechnol. Prog. 13, 857–863.CrossRefGoogle Scholar
  233. Sears, J.K., Darby, J.R. 1982. Mechanism of plasticizer action. In: The Technology of Plasticizers, pp. 35– 77, Wiley Intersci. Publications., New York.Google Scholar
  234. Sereno, A.M., Hubinger, M.D., Comesana, J.F., Correa, A. 2001. Prediction of water activity of osmotic solutions. J. Food Eng. 49, 103–114.CrossRefGoogle Scholar
  235. Shamblin, S.L., Hancock, B.C., Zografi, G. 1998. Water vapor sorption by peptides, proteins and their formulations. Eur. J. Pharm. Biopharm. 45, 239–247.CrossRefGoogle Scholar
  236. Sherwin, C.P., Labuza, T.P. 2003. Role of moisture in Maillard browning reaction rate in intermediate moisture foods: Comparing solvent phase and matrix properties. J. Food Sci. 68, 588–594.CrossRefGoogle Scholar
  237. Shrestha, A.K, Howes, T., Adhikari, B.P., Wood, B.J., Bhandari, B.R. 2007. Effect of protein concentration on the surface composition, water sorption and glass transition temperature of spray-dried skim milk powders. Food Chem. 104, 1436–1444.CrossRefGoogle Scholar
  238. Simatos, D., Faure, M., Bonjour, E., Couach, M. 1975. Differential thermal analysis and differential scanning calorimetry in the study of water in foods. In: Water Relations of Foods (R.B. Duckworth, ed.), pp. 193– 209, Academic Press, New York.Google Scholar
  239. Simatos, D., Blond, G. 1991. DSC studies and stability of frozen foods. In: Water Relationships in Foods (H. Levine, L. Slade, eds.), pp. 139– 155, Plenum Press, New York.Google Scholar
  240. Simatos, D., Blond, G. 1993. Some aspects of the glass transition in frozen foods systems. In: The Glassy State in Food (J.M.V. Blanshard, P.J. Lillford, eds.), pp. 395– 415, Nottingham University Press, Nottingham.Google Scholar
  241. Simatos, D., Blond, G., Martin, F. 1995a. Influence of macromolecules on the glass transition in frozen systems. In: Food Macromolecules and Colloids (E. Dickinson, D. Lorient, eds.), pp. 519– 533, Royal Society of Chemistry, Cambridge, UK.Google Scholar
  242. Simatos, D., Blond, G., Perez, J. 1995b. Basic physical aspects of glass transition. In: Food Preservation by Moisture Control. ISOPOW Practicum II (V. Barbosa-Canovas, J. Welti-Chanes, eds.), pp. 3– 31, Technomic, Lancaster, PA, USA.Google Scholar
  243. Simatos, D., Karel, M. 1988. Characterization of the condition of water in foods-physico-chemical aspects. In: Food Preservation by Moisture Control (C.C. Seow, ed.), pp. 1– 41, Elsevier Applied Science, London.Google Scholar
  244. Singh, K.J., Roos, Y.H. 2005. Frozen state transitions of sucrose–protein–cornstarch mixtures. J. Food Sci. 70, 198–204.CrossRefGoogle Scholar
  245. Singh, K.J., Roos, Y.H. 2006. State transitions and freeze concentration in trehalose–protein–cornstarch mixtures. Lebensmitt. Wiss. Technol. 39, 930–938.CrossRefGoogle Scholar
  246. Slade, L., Levine, H. 1985. Intermediate moisture systems; concentrated and supersaturated solutions; pastes and dispersions; water as plasticizer; the mystique of “bound” water; thermodynamics versus kinetics. In: Water Activity: a Credible Measure of Technological Performance and Physiological Stability? pp. 24– 27, Royal Society of Chemistry Discussion Conference, Cambridge University, Cambridge, UK.Google Scholar
  247. Slade, L., Levine, H. 1991. Beyond water activity: recent advances on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30, 115–360.CrossRefGoogle Scholar
  248. Slade, L., Levine, H. 1993. Glass transition and water-food structure interactions. In: Advances in Nutrition and Food Research (L. Taylor, J.F. Kinsella, eds.), pp. 103– 269, Academic. Press, San Diego, CA, USA.Google Scholar
  249. Slade, L., Levine, H. 1994. Water and the glass transition-dependence of the glass transition on composition and chemical structure: Special implications for flour functionality in cookie baking. In: Water in Foods: Fundamental Aspects and their Significance in relation to Processing of Foods, ISOPOW V (P. Fito, A. Mulet, B. McKenna, eds.), pp. 143– 188, Elsevier Applied Science, London.Google Scholar
  250. Snoeren, T.H.M., Klok, H.J., Van Hooydonk, A.C.M., Damman, A.J. 1984. The voluminosity of casein micelles. Milchwissenschaft 39, 461–463.Google Scholar
  251. Sochava, I.V., Smirnova, O.I. 1993. Heat capacity of hydrated and dehydrated globular proteins. Food Hydrocoll. 6, 513–524.CrossRefGoogle Scholar
  252. Sperling, L.H. 1986. Introduction to Physical Polymer Science, Wiley & Sons, New York.Google Scholar
  253. Stapelfeldt, H., Nielsen, B.R., Skibsted, L.H. 1997. Effect of heat treatment, water activity and storage temperature on the oxidative stability of whole milk powder. Int. Dairy J. 7, 331–339.CrossRefGoogle Scholar
  254. Starr, F.W., Angell, C.A, La Nave, E., Sastry, S., Scala, A., Sciortino, F., Stanley, H.E. 2003. Recent results on the connection between thermodynamics and dynamics in supercooled water. Biophys. Chem. 105, 573–583.CrossRefGoogle Scholar
  255. Sugisaki, M., Suga, H., Seki, S. 1968. Calorimetric study of the glassy state. IV. Heat capacities of glassy water and cubic ice. Bull. Chem. Soc. Jp. 41, 2591–2599.CrossRefGoogle Scholar
  256. Surana, R., Pyne, A., Suryanarayanan, R. 2004. Effect of preparation method on physical properties of amorphous trehalose. Pharm. Res. 21, 1167–1176.CrossRefGoogle Scholar
  257. Sutton, R.L., Wilcox, J. 1998. Recrystallization in model ice cream solutions as affected by stabilizer concentration. J. Food Sci. 63, 9–11.CrossRefGoogle Scholar
  258. Swenson, J., Jansson, H., Bergman, R. 2006. Relaxation processes in supercooled confined water and implications for protein dynamics. Phys. Rev. Lett. 96, 247802, 1–4.Google Scholar
  259. Swenson, J., Jansson, H., Hedstrom, J., Bergman, R. 2007. Properties of hydration water and its role in protein dynamics. J. Phys.: Condens. Matter 19, 205109, 1–9.Google Scholar
  260. Terefe, N.S., Hendrickx, M. 2002. Kinetics of the pectin methylesterase-catalyzed de-esterification of pectin in frozen food model systems. Biotechnol. Prog. 18, 221–228.CrossRefGoogle Scholar
  261. Thomas, M.E.C., Scher, J., Desobry, S. 2004. Lactose/β-lactoglobulin interaction during storage of model whey powders. J. Dairy Sci. 87, 1158–1166.CrossRefGoogle Scholar
  262. Thomsen, M.K., Lauridsen, L., Skibsted, L.H., Risbo, J. 2005. Temperature effect on lactose crystallization, Maillard reactions, and lipid oxidation in whole milk powder. J. Agric. Food Chem. 53, 7082–7090.CrossRefGoogle Scholar
  263. Timmermann, E.O., Chirife, J., Iglesias, H.A. 2001. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? J. Food Eng. 48, 19–31.CrossRefGoogle Scholar
  264. Tromp, R.H., Parker, R., Ring, S.G. 1997. Water diffusion in glasses of carbohydrates. Carbohydr. Res. 303, 199–205.CrossRefGoogle Scholar
  265. Ubbink, J. Giardiello, M.I., Limbach, H.J. 2007. Sorption of water by bidisperse mixtures of carbohydrates in glassy and rubbery states. Biomacromol. 8, 2862–2873.CrossRefGoogle Scholar
  266. Van den Berg, C., Bruin, S. 1981. Water activity and its estimation in food systems. In: Water Activity: Influences on Food Quality (L.B. Rockland, G.F. Stewart, eds.), pp. 1– 61, Academic Press, New York.Google Scholar
  267. Van Vliet, T., Walstra, P. 1994. Water in casein gels: How to get it out or to keep it in. In: Water in Foods: Fundamental Aspects and their Significance in relation to Processing of Foods, ISOPOW V (P. Fito, A. Mulet, B. McKenna, eds.), pp. 75– 88, Elsevier Applied Science, London.Google Scholar
  268. Velikov, V., Borick, S., Angell, C.A. 2001. The glass transition of water, based on hyperquenching experiments. Science 294, 2335–2338.CrossRefGoogle Scholar
  269. Vrentas, J.S., Duda, J.L. 1978. A free volume interpretation of the influence of the glass transition on the diffusion in amorphous polymers. J. Appl. Polym. Sci. 22, 2325–2339.Google Scholar
  270. Vrentas, J. S., Duda, J.L., Ling, H.C. 1988. Antiplasticization and volumetric behavior in glassy polymers. Macromolecules 21, 1470–1475.Google Scholar
  271. Vuattaz, G. 1999. Prévention des transitions de phases dans les systèmes déshydratés pendant le traitement et le stockage. In: AGORAL 99: Les Produits Alimentaires et l’Eau, pp. 75– 86, Tec et Doc, Paris.Google Scholar
  272. Vuattaz, G. 2002. The phase diagram of milk: A new tool for optimising the drying process. Lait 82, 485–500.CrossRefGoogle Scholar
  273. Walstra, P. 1979. The voluminosity of bovine casein micelles and some of its implications. J. Dairy Res. 46, 317–323.CrossRefGoogle Scholar
  274. Weisser, H. 1985. Influence of temperature on sorption equilibria. In: Properties of Water in Foods, (D. Simatos, J.L. Multon, eds.), pp. 95–118, Martinus Nijhoff Publications, Dordrecht.Google Scholar
  275. Williams, M., Landel, R.F., Ferry, J.D. 1955. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707.CrossRefGoogle Scholar
  276. Wolf, W., Spiess, W.E.L., Jung, G. 1985. Sorption Isotherms and Water Activity of Food Materials, a Bibliography. Science and Technique Publications, London.Google Scholar
  277. Wolkers, W.F., Oldenhof, H., Alberda, M., Hoekstra, F.A. 1998. A Fourier transform infrared spectroscopy study of sugar glasses: Application to anhydrobiotic higher plant cells. Biochim. Biophys. Acta 83–96.Google Scholar
  278. Wungtanagorn, R., Schmidt, S.J. 2001a. Thermodynamic properties and kinetics of the physical aging of amorphous glucose, fructose and their mixture. J. Thermal Anal. Cal. 65, 9–35.Google Scholar
  279. Wungtanagorn, R., Schmidt, S.J. 2001b. Phenomenological study of enthalpy relaxation of amorphous glucose, fructose and their mixture. Thermochim. Acta 369, 95–116.Google Scholar
  280. Yetismeyen, A., Deveci, O. 2000. Some quality characteristics of spray dried skim milk powders produced by two different atomizers. Milchwissenschaft 55, 210–212.Google Scholar
  281. Zhang, J., Zografi, G. 2000. The relationship between “BET” and “Free Volume”-derived parameters for water vapor absorption into amorphous solids. J. Pharm. Sci. 89, 1063–1072.Google Scholar
  282. Zhou, P., Labuza, T.P. 2007. Effect of water content on glass transition and protein aggregation of whey protein powders during short-term storage. Food Biophysics, 2, 108–116.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D. Simatos
    • 1
  • D. Champion
    • 1
  • D. Lorient
    • 1
  • C. Loupiac
    • 1
  • G. Roudaut
    • 1
  1. 1.Laboratoire EMMA (Eau-Molécules Actives-Macromolécules-Activités)Ensbana, Université de DijonDijonFrance

Personalised recommendations