Nutritional Aspects of Minerals in Bovine and Human Milks

  • C.D. Hunt
  • F.H. Nielsen


This review summarizes the nutritional aspects of the 21 mineral elements present in bovine and human milks and considered essential or beneficial for human health (Table 10.1). This includes discussion of their respective physiological roles, signs of deficiency and toxicity, current recommended intakes, chemical presence as compounds that affect bioavailability and utilization and known enhancers and/or inhibitors of their absorption. The term “mineral” is not an accurate descriptor for the chemical nature of some of these elements but is a widely accepted terminology in the field of nutrition. The mineral elements occur in the body in one or more chemical forms, including inorganic ions and salts, complexes or constituents of organic molecules.


Human Milk Whey Protein Infant Formula Iodine Deficiency Bovine Milk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrams, S.A. 2005. Calcium supplementation during childhood: long-term effects on bone mineralization. Nutr. Rev. 63, 251–255.Google Scholar
  2. Abrams, S.A. 2006. Building bones in babies: can and should we exceed the human milk-fed infant's rate of bone calcium accretion? Nutr. Rev. 64, 487–494.Google Scholar
  3. Abrams, S.A., Copeland, K.C., Gunn, S.K., Gundberg, C.M., Klein, K.O., Ellis, K.J. 2000. Calcium absorption, bone mass accumulation, and kinetics increase during early pubertal development in girls. J. Clin. Endocrinol. Metab. 85, 1805–1809.Google Scholar
  4. Abrams, S.A., O'Grien, K.O., Stuff, J.E. 1996. Changes in calcium kinetics associated with menarche. J. Clin. Endocrinol. Metab. 81, 2017–2020.Google Scholar
  5. Abumrad, N.N., Schneider, A.J., Steel, D., Rogers, L.S. 1981. Amino acid intolerance during prolonged total parenteral nutrition reversed by molybdate therapy. Am. J. Clin. Nutr. 34, 2551–2559.Google Scholar
  6. Al-Awadi, F.M., Srikumar, T.S. 2000. Trace-element status in milk and plasma of Kuwaiti and non-Kuwaiti lactating mothers. Nutrition 16, 1069–1073.Google Scholar
  7. al-Saleh, I., al-Doush, I., Faris, R. 1997. Selenium levels in breast milk and cow's milk: a preliminary report from Saudi Arabia. J. Environ. Pathol. Toxicol. Oncol. 16, 41–46.Google Scholar
  8. Alkanani, T., Friel, J.K., Jackson, S.E., Longerich, H.P. 1994. Comparison between digestion procedures for the multielemental analysis of milk by inductively coupled plasma mass spectrometry. J. Agric. Food Chem. 42, 1965–1970.Google Scholar
  9. American Academy of Pediatrics 2005. Breastfeeding and the use of human milk. Pediatrics 115, 496–506.Google Scholar
  10. Anderson, R.R. 1992. Comparison of trace elements in milk of four species. J. Dairy Sci. 75, 3050–3055.Google Scholar
  11. Anderson, R.A., Bryden, N.A., Polansky, M.M. 1992. Dietary chromium intake. Freely chosen diets, institutional diet, and individual foods. Biol. Trace Elem. Res. 32, 117–121.Google Scholar
  12. Anderson, R.A., Bryden, N.A., Polansky, M.M. 1997a. Lack of toxicity of chromium chloride and chromium picolinate in rats. J. Am. Coll. Nutr. 16, 273–279.Google Scholar
  13. Anderson, R.A., Cheng, N., Bryden, N.A., Polansky, M.M., Chi, J., Feng, J. 1997b. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 46, 1786–1791.Google Scholar
  14. Anderson, J.J.B., Klemmer, P.J., Watts, M.L.S., Garner, S.C., Calvo, M.S. 2006. Phosphorus. In: Present Knowledge in Nutrition (B.A. Bowman and R.M. Russell, eds.), pp. 383–399, International Life Sciences Institute, Washington, DC.Google Scholar
  15. Anke, M. 1986. Arsenic. In: Trace Elements in Human and Animal Nutrition, 5th edn. (W. Mertz, ed.), pp. 347–372, Academic Press, Orlando, Florida.Google Scholar
  16. Anke, M., Angelow, M., Müller, M., Glei, M. 1993. Dietary trace element intake and excretion of man. In: Trace Elements in Man and Animals – TEMA 8 (M. Anke, D. Meissner and C.F. Mills, eds.), pp. 180–188, Verlag Media Touristik, Gersdorf.Google Scholar
  17. Anke, M., Glei, M., Arnhold, C., Drobner, C., Seifert, M.F. 1997. Arsenic. In: Handbook of Nutritionally Essential Mineral Elements (B.L. O'Dell and R.A. Sunde, eds.), pp. 631–639, Marcel Dekker, New York.Google Scholar
  18. Appel, L.J., Moore, T.J., Obarzanek, E., Vollmer, W.M., Svetkey, L.P., Sacks, F.M., Bray, G.A., Vogt, T.M., Cutler, J.A., Windhauser, M.M., Lin, P.H., Karanja, N. 1997. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124.Google Scholar
  19. Archibald, J.G. 1951. Molybdenum in bovine milk. J. Dairy Sci. 34, 1026–1029.Google Scholar
  20. Archibald, J.G. 1958. Trace elements in milk: a review – part II. Dairy Sci. Abstr. 20, 799–812.Google Scholar
  21. Armstrong, T.A., Spears, J.W., Crenshaw, T.D., Nielsen, F.H. 2000. Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites. J. Nutr. 130, 2575–2581.Google Scholar
  22. Arnaud, J., Prual, A., Preziosi, P., Favier, A., Hercberg, S. 1993. Selenium determination in human milk in Niger: influence of maternal status. J. Trace Elem. Electrolytes Health Dis. 7, 199–204.Google Scholar
  23. Atac, A., Altay, N., Olmez, S. 2001. Fluoride content of infant formulas and market milk in Turkey. Turk. J. Pediatr. 43, 102–104.Google Scholar
  24. Auso, E., Lavado-Autric, R., Cuevas, E., Del Rey, F.E., Morreale De Escobar, G., Berbel, P. 2004. A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology 145, 4037–4047.Google Scholar
  25. Awumey, E.M., Bukoski, R.D. 2006. Cellular functions and fluxes of calcium. In: Calcium in Human Health (C.M. Weaver and R.P. Heaney, eds.), pp. 13–35, Humana Press, Totowa, NJ.Google Scholar
  26. Bader, N., Moller, U., Leiterer, M., Franke, K., Jahreis, G. 2005. Pilot study: tendency of increasing iodine content in human milk and cow's milk. Exp. Clin. Endocrinol. Diabetes 113, 8–12.Google Scholar
  27. Bagchi, D., Stohs, S.J., Downs, B.W., Bagchi, M., Preuss, H.G. 2002. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180, 5–22.Google Scholar
  28. Bai, Y., Hunt, C.D. 1996. Dietary boron enhances efficacy of cholecalciferol in broiler chicks. J. Trace Elem. Exp. Med. 9, 117–132.Google Scholar
  29. Bakken, N.A., Hunt, C.D. 2003. Dietary boron decreases peak pancreatic in situ insulin release in chicks and plasma insulin concentrations in rats regardless of vitamin D or magnesium status. J. Nutr. 133, 3516–3522.Google Scholar
  30. Baron, J.A., Beach, M., Mandel, J.S., van Stolk, R.U., Haile, R.W., Sandler, R.S., Rothstein, R., Summers, R.W., Snover, D.C., Beck, G.J., Bond, J.H., Greenberg, E.R. 1999. Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group. N. Engl. J. Med. 340, 101–107.Google Scholar
  31. Bazrafshan, H.R., Mohammadian, S., Ordookhani, A., Abedini, A., Davoudy, R., Pearce, E.N., Hedayati, M., Azizi, F., Braverman, L.E. 2005. An assessment of urinary and breast milk iodine concentrations in lactating mothers from Gorgan, Iran, 2003. Thyroid 15, 1165–1168.Google Scholar
  32. Beard, J. 2006. Iron. In: Present Knowledge in Nutrition (B.A. Bowman and R.M. Russell, eds.), pp. 430–444, International Life Sciences Institute, Washington, DC.Google Scholar
  33. Beard, J.L. 2001. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 131, 568S–580S.Google Scholar
  34. Beck, M.A., Levander, O.A., Handy, J. 2003. Selenium deficiency and viral infection. J. Nutr. 133, 1463S–1467S.Google Scholar
  35. Belver, A., Donaire, J.P. 1983. Partial purification of soluble lipoxygenase of sunflower cotyledons: action of boron on the enzyme and lipid constituents. Z. Pflanzenphysiol. 109, 309–317.Google Scholar
  36. Bianchi, M.L., Cruz, A., Zanetti, M.A., Dorea, J.G. 1999. Dietary intake of selenium and its concentration in breast milk. Biol. Trace Elem. Res. 70, 273–277.Google Scholar
  37. Blakeborough, P., Salter, D.N., Gurr, M.I. 1983. Zinc binding in cow's milk and human milk. Biochem. J. 209, 505–512.Google Scholar
  38. Bleys, J., Navas-Acien, A., Guallar, E. 2007. Serum selenium and diabetes in U.S. adults. Diabetes Care 30, 829–834.Google Scholar
  39. Bougle, D., Bureau, F., Foucault, P., Duhamel, J.F., Muller, G., Drosdowsky, M. 1988. Molybdenum content of term and preterm human milk during the first 2 months of lactation. Am. J. Clin. Nutr. 48, 652–654.Google Scholar
  40. Bratter, P., Blasco, I.N., Negretti de Bratter, V.E., Raab, A. 1998. Speciation as an analytical aid in trace element research in infant nutrition. Analyst 123, 821–826.Google Scholar
  41. Bratter, P., Bratter, V.E., Recknagel, S., Brunetto, R. 1997. Maternal selenium status influences the concentration and binding pattern of zinc in human milk. J. Trace Elem. Med. Biol. 11, 203–209.Google Scholar
  42. Brock, J.H. 2002. The physiology of lactoferrin. Biochem. Cell Biol. 80, 1–6.Google Scholar
  43. Bronner, F., Abrams, S.A. 1998. Development and regulation of calcium metabolism in healthy girls. J. Nutr. 128, 1474–1480.Google Scholar
  44. Bruhn, J.C., Franke, A.A. 1983. Iodine in human milk. J. Dairy Sci. 66, 1396–1398.Google Scholar
  45. Bucher, H.C., Cook, R.J., Guyatt, G.H., Lang, J.D., Cook, D.J., Hatala, R., Hunt, D.L. 1996. Effects of dietary calcium supplementation on blood pressure. A meta-analysis of randomized controlled trials. J. Am. Med. Assoc. 275, 1016–1022.Google Scholar
  46. Burk, R.F., Hill, K.E. 2005. Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu. Rev. Nutr. 25, 215–235.Google Scholar
  47. Butte, N.F., Garza, C., Johnson, C.A., Smith, E.O., Nichols, B.L. 1984. Longitudinal changes in milk composition of mothers delivering preterm and term infants. Early Hum. Dev. 9, 153–162.Google Scholar
  48. Butte, N.F., Garza, C., Smith, E.O., Wills, C., Nichols, B.L. 1987. Macro- and trace-mineral intakes of exclusively breast-fed infants. Am. J. Clin. Nutr. 45, 42–48.Google Scholar
  49. Buzalaf, M.A., de Almeida, B.S., Cardoso, V.E., Olympio, K.P., Furlani Tde, A. 2004. Total and acid-soluble fluoride content of infant cereals, beverages and biscuits from Brazil. Food Addit. Contam. 21, 210–215.Google Scholar
  50. Cade, J.E., Burley, V.J., Greenwood, D.C. 2004. The UK Women's Cohort Study: comparison of vegetarians, fish-eaters and meat-eaters. Public Health Nutr. 7, 871–878.Google Scholar
  51. Caldwell, K.L., Jones, R., Hollowell, J.G. 2005. Urinary iodine concentration: United States National Health and Nutrition Examination Survey 2001–2002. Thyroid 15, 692–699.Google Scholar
  52. Carlisle, E.M. 1997. Silicon. In: Handbook of Nutritionally Essential Mineral Elements (B.L. O’Dell and R.A. Sunde, eds.), pp. 603–618, Marcel Dekker, New York.Google Scholar
  53. Carver, J.D. 2003. Advances in nutritional modifications of infant formulas. Am. J. Clin. Nutr. 77, 1550S–1554S.Google Scholar
  54. Casey, C.E. 1977. The content of some trace elements in infant milk foods and supplements available in New Zealand. NZ Med. J. 85, 275–278.Google Scholar
  55. Casey, C.E., Hambidge, K.M., Neville, M.C. 1985. Studies in human lactation: zinc, copper, manganese and chromium in human milk in the first month of lactation. Am. J. Clin. Nutr. 41, 1193–1200.Google Scholar
  56. Casey, C.E., Neville, M.C. 1987. Studies in human lactation 3: molybdenum and nickel in human milk during the first month of lactation. Am. J. Clin. Nutr. 45, 921–926.Google Scholar
  57. Chapuy, M.C., Arlot, M.E., Duboeuf, F., Brun, J., Crouzet, B., Arnaud, S., Delmas, P.D., Meunier, P.J. 1992. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N. Engl. J. Med. 327, 1637–1642.Google Scholar
  58. Chevalley, T., Rizzoli, R., Nydegger, V., Slosman, D., Rapin, C.H., Michel, J.P., Vasey, H., Bonjour, J.P. 1994. Effects of calcium supplements on femoral bone mineral density and vertebral fracture rate in vitamin-D-replete elderly patients. Osteoporos. Int. 4, 245–252.Google Scholar
  59. Chuckpaiwong, S., Nakornchai, S., Surarit, R., Soo-ampon, S. 2000. Fluoride analysis of human milk in remote areas of Thailand. Southeast Asian J. Trop. Med. Public Health 31, 583–586.Google Scholar
  60. Committee on Minerals and Toxic Substances in Diets and Water for Animals (2005). Mineral Tolerance of Animals. National Academies Press, Washington, DC.Google Scholar
  61. Cousins, R.J. 2006. Zinc. In: Present Knowledge in Nutrition, (B.A. Bowman and R.M. Russell, eds.), pp. 445–457, International Life Sciences Institute, Washington, DC.Google Scholar
  62. Cumming, R.G., Nevitt, M.C. 1997. Calcium for prevention of osteoporotic fractures in postmenopausal women. J. Bone Miner. Res. 12, 1321–1329.Google Scholar
  63. Curhan, G.C., Willett, W.C., Rimm, E.B., Stampfer, M.J. 1993. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N. Engl. J. Med. 328, 833–838.Google Scholar
  64. Curhan, G.C., Willett, W.C., Speizer, F.E., Spiegelman, D., Stampfer, M.J. 1997. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann. Intern. Med. 126, 497–504.Google Scholar
  65. Dabeka, R.W. 1989. Survey of lead, cadmium, cobalt and nickel in infant formulas and evaporated milks and estimation of dietary intakes of the elements by infants 0-12 months old. Sci. Total Environ. 89, 279–289.Google Scholar
  66. Dahl, L., Opsahl, J.A., Meltzer, H.M., Julshamn, K. 2003. Iodine concentration in Norwegian milk and dairy products. Br. J. Nutr. 90, 679–685.Google Scholar
  67. Davidovits, M., Levy, Y., Avramovitz, T., Eisenstein, B. 2006. Calcium-deficiency rickets in a four-year-old boy with milk allergy. J. Pediatr. 122, 249–251.Google Scholar
  68. Davidsson, L., Cederblad, A., Lonnerdal, B., Sandstrom, B. 1989. Manganese absorption from human milk, cow's milk, and infant formulas in humans. Am. J. Dis. Child. 143, 823–827.Google Scholar
  69. Davidsson, L., Kastenmayer, P., Yuen, M., Lonnerdal, B., Hurrell, R.F. 1994. Influence of lactoferrin on iron absorption from human milk in infants. Pediatr. Res. 35, 117–124.Google Scholar
  70. Dawson-Hughes, B. 2006. Calcium throughout the life cycle. In: Calcium in Human Health (C.M. Weaver and R.P. Heaney, eds.), pp. 371–385, Humana Press, Totowa, NJ.Google Scholar
  71. Dawson-Hughes, B., Harris, S.S., Krall, E.A., Dallal, G.E. 1997. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N. Engl. J. Med. 337, 670–676.Google Scholar
  72. Dawson-Hughes, B., Harris, S.S., Krall, E.A., Dallal, G.E. 2000. Effect of withdrawal of calcium and vitamin D supplements on bone mass in elderly men and women. Am. J. Clin. Nutr. 72, 745–750.Google Scholar
  73. de Maria, C.G. 1978. Trace element content in colostrum of different ruminant species at various post-partum intervals. Ann. Rech. Vet. 9, 277–280.Google Scholar
  74. Dewey, K.G., Lonnerdal, B. 1983. Milk and nutrient intake of breast-fed infants from 1 to 6 months: relation to growth and fatness. J. Pediatr. Gastroenterol. Nutr. 2, 497–506.Google Scholar
  75. Domellof, M., Lonnerdal, B., Abrams, S.A., Hernell, O. 2002. Iron absorption in breast-fed infants: effects of age, iron status, iron supplements, and complementary foods. Am. J. Clin. Nutr. 76, 198–204.Google Scholar
  76. Domellof, M., Lonnerdal, B., Dewey, K.G., Cohen, R.J., Hernell, O. 2004. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am. J. Clin. Nutr. 79, 111–115.Google Scholar
  77. Dorea, J.G. 2007. Maternal smoking and infant feeding: breastfeeding is better and safer. Matern. Child Health J. 11, 287–291.Google Scholar
  78. Duffield-Lillico, A.J., Reid, M.E., Turnbull, B.W., Combs, G.F., Jr., Slate, E.H., Fischbach, L.A., Marshall, J.R., Clark, L.C. 2002. Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol. Biomarkers Prev. 11, 630–639.Google Scholar
  79. Duffield-Lillico, A.J., Slate, E.H., Reid, M.E., Turnbull, B.W., Wilkins, P.A., Combs, G.F., Jr., Park, H.K., Gross, E.G., Graham, G.F., Stratton, M.S., Marshall, J.R., Clark, L.C. 2003. Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. J. Natl. Cancer Inst. 95, 1477–1481.Google Scholar
  80. Eder, K., Kirchgessner, M. 1997. Nickel. In: Handbook of Nutritionally Essential Mineral Elements (B.L. O'Dell and R.A. Sunde, eds.), pp. 439–451, Marcel Dekker, New York.Google Scholar
  81. Elders, P.J., Netelenbos, J.C., Lips, P., van Ginkel, F.C., Khoe, E., Leeuwenkamp, O.R., Hackeng, W.H., van der Stelt, P.F. 1991. Calcium supplementation reduces vertebral bone loss in perimenopausal women: a controlled trial in 248 women between 46 and 55 years of age. J. Clin. Endocrinol. Metab. 73, 533–540.Google Scholar
  82. Emmett, P.M., Rogers, I.S. 1997. Properties of human milk and their relationship with maternal nutrition. Early. Hum. Dev. 49 Suppl, S7–28.Google Scholar
  83. Ereman, R.R., Lonnerdal, B., Dewey, K.G. 1987. Maternal sodium intake does not affect postprandial sodium concentrations in human milk. J. Nutr. 117, 1154–1157.Google Scholar
  84. Esala, S., Vuori, E., Helle, A. 1982. Effect of maternal fluorine intake on breast milk fluorine content. Br. J. Nutr. 48, 201–204.Google Scholar
  85. Esworthy, R.S., Yang, L., Frankel, P.H., Chu, F.F. 2005. Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice. J. Nutr. 135, 740–745.Google Scholar
  86. Favus, M.J., Bushinsky, D.A., Lemann, J.J. 2006. Regulation of calcuim, magnesium, and phosphate metabolism. In: Rimer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 6th edn. (1 M.J. Favus, ed.), pp. 76–83, American Society for Bone and Mineral Research, Washington, DC.Google Scholar
  87. Flynn, A. 1992. Minerals and trace elements in milk. Adv. Food Nutre. Res. 36, 209–252Google Scholar
  88. Flynn, A., Shortt, C., Morrissey, P.A. 1990. Sodium and potassium intakes in Ireland. Proc. Nutr. Soc. 49, 323–332.Google Scholar
  89. Fomon, S.J., Ekstrand, J. 1999. Fluoride intake by infants. J. Public Health Dent. 59, 229–234.Google Scholar
  90. Fomon, S.J., Ziegler, E.E., Nelson, S.E. 1993. Erythrocyte incorporation of ingested 58Fe by 56-day-old breast-fed and formula-fed infants. Pediatr. Res. 33, 573–576.Google Scholar
  91. Food and Nutrition Board: Institute of Medicine 1997, Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academy Press, Washington, DC.Google Scholar
  92. Food and Nutrition Board: Institute of Medicine 1998, Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B 6 , Folate, Vitamin B 12 , Pantothenic Acid, Biotin, and Choline. National Academy Press, Washington, DC.Google Scholar
  93. Food and Nutrition Board: Institute of Medicine 2000, Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academy Press, Washington, DC.Google Scholar
  94. Food and Nutrition Board: Institute of Medicine 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academy Press, Washington, D.C.Google Scholar
  95. Food and Nutrition Board: Institute of Medicine 2005. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. National Academy Press, Washington, DC.Google Scholar
  96. Fort, D.J., Stover, E.L., Rogers, R.L., Copley, H.F., Morgan, L.A., Foster, E.R. 2000. Chronic boron or copper deficiency induces limb teratogenesis in Xenopus. Biol. Trace Elem. Res. 77, 173–187.Google Scholar
  97. Fountoulakis, S., Philippou, G., Tsatsoulis, A. 2007. The role of iodine in the evolution of thyroid disease in Greece: from endemic goiter to thyroid autoimmunity. Hormones (Athens) 6, 25–35.Google Scholar
  98. Francis, R.M. 2008. What do we currently know about nutrition and bone health in relation to United Kingdom public health policy with particular reference to calcium and vitamin D? Br. J. Nutr. 99, 155–159.Google Scholar
  99. Fransson, G.B., Lonnerdal, B. 1983. Distribution of trace elements and minerals in human and cow's milk. Pediatr. Res. 17, 912–915.Google Scholar
  100. Friel, J.K., Andrews, W.L., Jackson, S.E., Longerich, H.P., Mercer, C., McDonald, A., Dawson, B., Sutradhar, B. 1999. Elemental composition of human milk from mothers of premature and full-term infants during the first 3 months of lactation. Biol. Trace Elem. Res. 67, 225–247.Google Scholar
  101. Friel, J.K., Aziz, K., Andrews, W.L., Harding, S.V., Courage, M.L., Adams, R.J. 2003. A double-masked, randomized control trial of iron supplementation in early infancy in healthy term breast-fed infants. J. Pediatr. 143, 582–586.Google Scholar
  102. Garcia-Aznar, J.M., Rueberg, T., Doblare, M. 2005. A bone remodelling model coupling micro-damage growth and repair by 3D BMU-activity. Biomech. Model Mechanobiol. 4, 147–167.Google Scholar
  103. Garcia-Lorda, P., Salas-Salvado, J., Fernandez Ballart, J., Murphy, M.M., Bullo, M., Arija, V. 2007. Dietary calcium and body mass index in a Mediterranean population. Int. J. Vitam. Nutr. Res. 77, 34–40.Google Scholar
  104. Gaucheron, F. 2005. The minerals of milk. Reprod. Nutr. Dev. 45, 473–483.Google Scholar
  105. Giovannucci, E., Rimm, E.B., Wolk, A., Ascherio, A., Stampfer, M.J., Colditz, G.A., Willett, W.C. 1998. Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res. 58, 442–447.Google Scholar
  106. Goes, H.C., Torres, A.G., Donangelo, C.M., Trugo, N.M. 2002. Nutrient composition of banked human milk in Brazil and influence of processing on zinc distribution in milk fractions. Nutrition 18, 590–594.Google Scholar
  107. Griffin, I.J., Abrams, S.A. 2001. Iron and breastfeeding. Pediatr. Clin. North Am. 48, 401–413.Google Scholar
  108. Hallanger Johnson, J.E., Kearns, A.E., Doran, P.M., Khoo, T.K., Wermers, R.A. 2007. Fluoride-related bone disease associated with habitual tea consumption. Mayo Clin. Proc. 82, 719–724.Google Scholar
  109. Hambidge, K.M., Krebs, N.F. 1989. Upper limits of zinc, copper and manganese in infant formulas. J. Nutr. 119, 1861–1864.Google Scholar
  110. Hamill, T.W., Young, E.R., Eitenmiller, R.R., Hogarty, C.D., Soliman, A.M. 1989. Ca, P, Mg, Cu, Mn, Na, K and Cl contents of infant formulas manufactured in the United States. J. Food Compos. Anal. 2, 132–139.Google Scholar
  111. Han, O., Failla, M.L., Hill, A.D., Morris, E.R., Smith, J.C., Jr. 1995. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells. J. Nutr. 125, 1291–1299.Google Scholar
  112. Harinarayan, C.V., Ramalakshmi, T., Prasad, U.V., Sudhakar, D., Srinivasarao, P.V., Sarma, K.V., Kumar, E.G. 2007. High prevalence of low dietary calcium, high phytate consumption, and vitamin D deficiency in healthy south Indians. Am. J. Clin. Nutr. 85, 1062–1067.Google Scholar
  113. Harris, E.D. 1997. Copper. In: Handbook of Nutritionally Essential Mineral Elements (B.L. O'Dell and R.A. Sunde, eds.), pp. 231–273, Marcel Dekker, New York.Google Scholar
  114. Hart, L.I., Owen, E.C., Proudfoot, R. 1967. The influence of dietary molybdenum on the xanthine oxidase activity of the milk of ruminants. Br. J. Nutr. 21, 617–630.Google Scholar
  115. Harvey, N., Earl, S., Cooper, C. 2006. Epidemiology of osteoporotic fracgtures. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (M.J. Favus, ed.), pp. 244–248, American Society for Bone and Mineral Research, Washington, DC.Google Scholar
  116. Hazell, T. 1985. Minerals in foods: dietary sources, chemical forms, interactions, bioavailability. World Rev. Nutr. Diet. 46, 1–123.Google Scholar
  117. Heaney, R.P. 1996. Calcium. In: Principles of Bone Biology (J.P. Bilezikian, L.G. Raisz and G.A. Rodan, eds.), pp. 1007–1018, Academic Press, San Diego.Google Scholar
  118. Heaney, R.P. 2006. Bone as the calcium nutrient reserve. In: Calcium in Human Health (C.M. Weaver and R.P. Heaney, eds.), pp. 7–12, Humana Press, Totowa, NJ.Google Scholar
  119. Hepburn, D.D.D., Burney, J.M., Woski, S.A., Vincent, J.B. 2003. The nutritional supplement chromium picolinate generates oxidative DNA damage and peroxidized lipids in vivo. Polyhedron 22, 455–463.Google Scholar
  120. Hidiroglou, M., Proulx, J.G. 1982. Factors affecting the calcium, magnesium and phosphorus content of beef cow milk. Can. J. Comp. Med. 46, 212–214.Google Scholar
  121. Hitz, M.F., Jensen, J.E., Eskildsen, P.C. 2007. Bone mineral density and bone markers in patients with a recent low-energy fracture: effect of 1 y of treatment with calcium and vitamin D. Am. J. Clin. Nutr. 86, 251–259.Google Scholar
  122. Hoac, T., Lundh, T., Purup, S., Onning, G., Sejrsen, K., Akesson, B. 2007. Separation of selenium, zinc, and copper compounds in bovine whey using size exclusion chromatography linked to inductively coupled plasma mass spectrometry. J. Agric. Food Chem. 55, 4237–4243.Google Scholar
  123. Holt, C. 1985. The milk salts: their secretion, concentrations and physical chemistry. In: Developments of Diary Chemistry–3: Lactose and Minor Constituents (P.F. Fox, ed.), pp. 143–181, Elsevier Applied Science Publishers, London.Google Scholar
  124. Holt, C. 1993. Interrelationships of the concentrations of some ionic constituents of human milk and comparison with cow and goat milks. Comp. Biochem. Physiol. Comp. Physiol. 104, 35–41.Google Scholar
  125. Hunt, C.D. 1988. Boron homeostasis in the cholecalciferol-deficient chick. Proc. N. Dakota Acad. Sci. 42, 60.Google Scholar
  126. Hunt, C.D. 1989. Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick. Biol. Trace Elem. Res. 22, 201–220.Google Scholar
  127. Hunt, C.D., Butte, N.F., Johnson, L.K. 2005. Boron concentrations in milk from mothers of exclusively breast-fed healthy full-term infants are stable during the first four months of lactation. J. Nutr. 135, 2383–2386.Google Scholar
  128. Hunt, C.D., Friel, J.K., Johnson, L.K. 2004. Boron concentrations in milk from mothers of full-term and premature infants. Am. J. Clin. Nutr. 80, 1327–1333.Google Scholar
  129. Hunt, C.D., Herbel, J.L., Idso, J.P. 1994. Dietary boron modifies the effects of vitamin D3 nutriture on indices of energy substrate utilization and mineral metabolism in the chick. J. Bone Miner. Res. 9, 171–181.Google Scholar
  130. Hunt, C.D., Herbel, J.L., Nielsen, F.H. 1997. Metabolic response of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: boron, calcium, and magnesium absorption and retention and blood mineral concentrations. Am. J. Clin. Nutr. 65, 803–813.Google Scholar
  131. Hunt, C.D., Johnson, L.K. 2006. Magnesium requirements: new estimations for men and women by cross-sectional statistical analyses of metabolic magnesium balance data. Am. J. Clin. Nutr. 84, 843–852.Google Scholar
  132. Hunt, C.D., Johnson, L.K. 2007. Calcium requirement: new estimations for men and women by cross-sectional statistical analyses of calcium balance data from metabolic studies. Am. J. Clin. Nutr. 86, 1054–1063.Google Scholar
  133. Hunt, C.D., Meacham, S.L. 2001. Aluminum, boron, calcium, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, sodium, and zinc: concentrations in common Western foods and estimated daily intakes by infants, toddlers, and male and female adolescents, adults, and seniors in the United States. J. Am. Diet. Assoc. 101, 1058–1060; Table 1 available at
  134. Hunt, J.R., Roughead, Z.K. 1999. Nonheme-iron absorption, fecal ferritin excretion, and blood indexes of iron status in women consuming controlled lactoovovegetarian diets for 8 wk. Am. J. Clin. Nutr. 69, 944–952.Google Scholar
  135. Ibrahim, M., Sinn, J., McGuire, W. 2006. Iodine supplementation for the prevention of mortality and adverse neurodevelopmental outcomes in preterm infants. Cochrane Database Syst. Rev., CD005253.Google Scholar
  136. Jackson, R.D., LaCroix, A.Z., Gass, M., Wallace, R.B., Robbins, J., Lewis, C.E., Bassford, T., Beresford, S.A., Black, H.R., Blanchette, P., Bonds, D.E., Brunner, R.L., Brzyski, R.G., Caan, B., Cauley, J.A., Chlebowski, R.T., Cummings, S.R., Granek, I., Hays, J., Heiss, G., Hendrix, S.L., Howard, B.V., Hsia, J., Hubbell, F.A., Johnson, K.C., Judd, H., Kotchen, J.M., Kuller, L.H., Langer, R.D., Lasser, N.L., Limacher, M.C., Ludlam, S., Manson, J.E., Margolis, K.L., McGowan, J., Ockene, J.K., O'Sullivan, M.J., Phillips, L., Prentice, R.L., Sarto, G.E., Stefanick, M.L., Van Horn, L., Wactawski-Wende, J., Whitlock, E., Anderson, G.L., Assaf, A.R., Barad, D. 2006. Calcium plus vitamin D supplementation and the risk of fractures. N. Engl. J. Med. 354, 669–683.Google Scholar
  137. Jeejeebhoy, K.N., Chu, R.C., Marliss, E.B., Greenberg, G.R., Bruce-Robertson, A. 1977. Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. Am. J. Clin. Nutr. 30, 531–538.Google Scholar
  138. Johnson, J.L. 1997. Molybdenum. In: Handbook of Nutritionally Essential Mineral Elements (B.L. O'Dell and R.A. Sunde, eds.), pp. 413–438, Marcel Dekker, New York.Google Scholar
  139. Johnson, M.A., Smith, M.M., Edmonds, J.T. 1998. Copper, iron, zinc, and manganese in dietary supplements, infant formulas, and ready-to-eat breakfast cereals. Am. J. Clin. Nutr. 67, 1035S–1040S.Google Scholar
  140. Josefsson, M., Grunditz, T., Ohlsson, T., Ekblad, E. 2002. Sodium/iodide-symporter: distribution in different mammals and role in entero-thyroid circulation of iodide. Acta Physiol. Scand. 175, 129–137.Google Scholar
  141. Jugdaohsingh, R., Anderson, S.H., Tucker, K.L., Elliott, H., Kiel, D.P., Thompson, R.P., Powell, J.J. 2002. Dietary silicon intake and absorption. Am. J. Clin. Nutr. 75, 887–893.Google Scholar
  142. Jugdaohsingh, R., Tucker, K.L., Qiao, N., Cupples, L.A., Kiel, D.P., Powell, J.J. 2004. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham offspring cohort. J. Bone Miner. Res. 19, 297–307.Google Scholar
  143. Juniper, D.T., Phipps, R.H., Jones, A.K., Bertin, G. 2006. Selenium supplementation of lactating dairy cows: effect on selenium concentration in blood, milk, urine, and feces. J. Dairy Sci. 89, 3544–3551.Google Scholar
  144. Keen, C.L., Bell, J.G., Lonnerdal, B. 1986. The effect of age on manganese uptake and retention from milk and infant formulas in rats. J. Nutr. 116, 395–402.Google Scholar
  145. Kelleher, S.L., Lonnerdal, B. 2005. Molecular regulation of milk trace mineral homeostasis. Mol. Aspects Med. 26, 328–339.Google Scholar
  146. Kerstetter, J.E., Wall, D.E., O'Brien, K.O., Caseria, D.M., Insogna, K.L. 2006. Meat and soy protein affect calcium homeostasis in healthy women. J. Nutr. 136, 1890–1895.Google Scholar
  147. King, N., Odom, T.W., Sampson, H.W., Yersin, A.G. 1991. The effect of in ovo boron supplementation on bone mineralization of the vitamin D-deficient chicken embryo. Biol. Trace Elem. Res. 31, 223–233.Google Scholar
  148. Kirchhoff, P., Geibel, J.P. 2006. Role of calcium and other trace elements in the gastrointestinal physiology. World J. Gastroenterol. 12, 3229–3236.Google Scholar
  149. Kirksey, A., Ernst, J.A., Roepke, J.L., Tsai, T.L. 1979. Influence of mineral intake and use of oral contraceptives before pregnancy on the mineral content of human colostrum and of more mature milk. Am. J. Clin. Nutr. 32, 30–39.Google Scholar
  150. Kjeldsen, F., Savitski, M.M., Nielsen, M.L., Shi, L., Zubarev, R.A. 2007. On studying protein phosphorylation patterns using bottom-up LC-MS/MS: the case of human alpha-casein. Analyst 132, 768–776.Google Scholar
  151. Kleerekoper, M., Mendlovic, D.B. 1993. Sodium fluoride therapy of postmenopausal osteoporosis. Endocr. Rev. 14, 312–323.Google Scholar
  152. Kochersberger, G., Bales, C., Lobaugh, B., Lyles, K.W. 1990. Calcium supplementation lowers serum parathyroid hormone levels in elderly subjects. J. Gerontol. 45, M159–M162.Google Scholar
  153. Kooienga, L. 2007. Phosphorus balance with daily dialysis. Semin. Dial. 20, 342–345.Google Scholar
  154. Koparal, E., Ertugrul, F., Oztekin, K. 2000. Fluoride levels in breast milk and infant foods. J. Clin. Pediatr. Dent. 24, 299–302.Google Scholar
  155. Kosta, L., Byrne, A.R., Dermelj, M. 1983. Trace elements in some human milk samples by radiochemical neutron activation analysis. Sci. Total Environ. 29, 261–268.Google Scholar
  156. Kumpulainen, J., Salmenpera, L., Siimes, M.A., Koivistoinen, P., Perheentupa, J. 1985. Selenium status of exclusively breast-fed infants as influenced by maternal organic or inorganic selenium supplementation. Am. J. Clin. Nutr. 42, 829–835.Google Scholar
  157. Laskey, M.A., Prentice, A., Shaw, J., Zachou, T., Ceesay, S.M., Vasquez-Velasquez, L., Fraser, D.R. 1990. Breast-milk calcium concentrations during prolonged lactation in British and rural Gambian mothers. Acta Paediatr. Scand. 79, 507–512.Google Scholar
  158. Leach, R.M., Harris, E.D. 1997. Manganese. In: Handbook of Nutritionally Essential Mineral Elements (B.L. O'Dell and R.A. Sunde, eds.), pp. 335–355, Marcel Dekker, New York.Google Scholar
  159. Lei, X.G., Cheng, W.H., McClung, J.P. 2007. Metabolic regulation and function of glutathione peroxidase-1. Annu. Rev. Nutr. 27, 41–61.Google Scholar
  160. Levander, O.A., Moser, P.B., Morris, V.C. 1987. Dietary selenium intake and selenium concentrations of plasma, erythrocytes, and breast milk in pregnant and postpartum lactating and nonlactating women. Am. J. Clin. Nutr. 46, 694–698.Google Scholar
  161. Li, M., Waite, K.V., Ma, G., Eastman, C.J. 2006. Declining iodine content of milk and re-emergence of iodine deficiency in Australia. Med. J. Aust. 184, 307.Google Scholar
  162. Lipsman, S., Dewey, K.G., Lonnerdal, B. 1985. Breast-feeding among teenage mothers: milk composition, infant growth, and maternal dietary intake. J. Pediatr. Gastroenterol. Nutr. 4, 426–434.Google Scholar
  163. Lonnerdal, B. 1985. Bioavailability of trace elements from human milk, bovine milk and infant formulas. In: Composition and Physiological Properties of Human Milk, (J. Schaub, ed.), pp. 3–16, Elsevier Science Publishers, New York.Google Scholar
  164. Lonnerdal, B. 1986. Effects of maternal dietary intake on human milk composition. J. Nutr. 116, 499–513.Google Scholar
  165. Lonnerdal, B. 1989. Trace element absorption in infants as a foundation to setting upper limits for trace elements in infant formulas. J. Nutr. 119, 1839–1845.Google Scholar
  166. Lonnerdal, B. 1997. Effects of milk and milk components on calcium, magnesium, and trace element absorption during infancy. Physiol. Rev. 77, 643–669.Google Scholar
  167. Lonnerdal, B., Glazier, C. 1985. Calcium binding by alpha-lactalbumin in human milk and bovine milk. J. Nutr. 115, 1209–1216.Google Scholar
  168. Lonnerdal, B., Hoffman, B., Hurley, L.S. 1982. Zinc and copper binding proteins in human milk. Am. J. Clin. Nutr. 36, 1170–1176.Google Scholar
  169. Lonnerdal, B., Keen, C.L., Hurley, L.S. 1981. Iron, copper, zinc, and manganese in milk. Annu. Rev. Nutr. 1, 149–174.Google Scholar
  170. Lonnerdal, B., Keen, C.L., Hurley, L.S. 1985. Manganese binding proteins in human and cow's milk. Am. J. Clin. Nutr. 41, 550–559.Google Scholar
  171. Lonnerdal, B., Keen, C.L., Ohtake, M., Tamura, T. 1983. Iron, zinc, copper, and manganese in infant formulas. Am. J. Dis. Child. 137, 433–437.Google Scholar
  172. Looker, A.C. 2006. Dietary calcium. Recommendations and intakes around the world. In: Calcium in Human Health (C.M. Weaver and R.P. Heaney, eds.), pp. 105–127, Humana Press, Totowa, NJ.Google Scholar
  173. Looker, A.C., Loria, C.M., Carroll, M.D., McDowell, M.A., Johnson, C.L. 1993. Calcium intakes or Mexican Americans, Cubans, Puerto Ricans, non-Hispanic whites, and non-Hispanic blacks in the United States. J. Am. Diet. Assoc. 93, 1274–1279.Google Scholar
  174. Loomis, W.D., Durst, R.W. 1992. Chemistry and biology of boron. BioFactors 3, 229–239.Google Scholar
  175. Lotz, M., Zisman, E., Bartter, F.C. 1968. Evidence for a phosphorus-depletion syndrome in man. N. Engl. J. Med. 278, 409–415.Google Scholar
  176. Lozoff, B., De Andraca, I., Castillo, M., Smith, J.B., Walter, T., Pino, P. 2003. Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics 112, 846–854.Google Scholar
  177. Marchin, S., Putaux, J.L., Pignon, F., Leonil, J. 2007. Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering. J. Chem. Phys. 126, 045101.Google Scholar
  178. Mastroeni, S.S., Okada, I.A., Rondo, P.H., Duran, M.C., Paiva, A.A., Neto, J.M. 2006. Concentrations of Fe, K, Na, Ca, P, Zn and Mg in maternal colostrum and mature milk. J. Trop. Pediatr. 52, 272–275.Google Scholar
  179. Matkovic, V., Jelic, T., Wardlaw, G.M., Ilich, J.Z., Goel, P.K., Wright, J.K., Andon, M.B., Smith, K.T., Heaney, R.P. 1994. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J. Clin. Invest. 93, 799–808.Google Scholar
  180. McGuire, M.K., Burgert, S.L., Milner, J.A., Glass, L., Kummer, R., Deering, R., Boucek, R., Picciano, M.F. 1993. Selenium status of infants is influenced by supplementation of formula or maternal diets. Am. J. Clin. Nutr. 58, 643–648.Google Scholar
  181. Miller, J.K., Swanson, E.W., Spalding, G.E. 1975. Iodine absorption, excretion, recycling, and tissue distribution in the dairy cow. J. Dairy Sci. 58, 1578–1593.Google Scholar
  182. Miyazaki, E., Kato, J., Kobune, M., Okumura, K., Sasaki, K., Shintani, N., Arosio, P., Niitsu, Y. 2002. Denatured H-ferritin subunit is a major constituent of haemosiderin in the liver of patients with iron overload. Gut 50, 413–419.Google Scholar
  183. Moshfegh, A., Goldman, J., Cleveland, L., 2005. What we eat in America, NHANES 2001-2002: Usual nutrient intakes from food compared to dietary reference intakes., accessed 30 September 2005.
  184. Muniz-Naveiro, O., Dominguez-Gonzalez, R., Bermejo-Barrera, A., Cocho de Juan, J.A., Fraga Bermudez, J.M., Goris Pereiras, A., Lopez Santamarina, A., Martinez Lede, I., Valledor Puente, J., Fernandez-Couto Gomez, L., Bermejo-Barrera, P. 2005. Selenium content and distribution in cow's milk supplemented with two dietary selenium sources. J. Agric. Food Chem. 53, 9817–9822.Google Scholar
  185. Murthy, G.K., Thomas, J.W. 1974. Trace elements in milk. Crit. Rev. Environ. Control 4, 1–37.Google Scholar
  186. Myron, D.R., Givand, S.H., Nielsen, F.H. 1977. Vanadium content of selected foods as determined by flameless atomic absorption spectroscopy. J. Agric. Food Chem. 25, 297–300.Google Scholar
  187. Naghii, M.R., Samman, S. 1997. The effect of boron supplementation on its urinary excretion and selected cardiovascular risk factors in healthy male subjects. Biol. Trace Elem. Res. 56, 273–286.Google Scholar
  188. National Research Council 1980. Recommended Dietary Allowances. National Academy of Sciences, Washington, DC.Google Scholar
  189. Nielsen, F.H. 1997. Vanadium. In: Handbook of Nutritionally Essential Mineral Elements (B.L. O'Dell and R.A. Sunde, eds.), pp. 619–630, Marcel Dekker, New York.Google Scholar
  190. Nielsen, F.H. 2006. Boron, manganese, molybdenum, and other trace elements. In: Present Knowledge in Nutrition (B.A. Bowman and R.M. Russell, eds.), pp. 506–526, International Life Sciences Institute, Washington, DC.Google Scholar
  191. Nielsen, F.H., Gallagher, S.K., Johnson, L.K., Nielsen, E.J. 1992. Boron enhances and mimics some effects of estrogen therapy in postmenopausal women. J. Trace Elem. Exp. Med. 5, 237–246.Google Scholar
  192. Nilas, L. 1993. Calcium intake and osteoporosis. World Rev. Nutr. Diet. 73, 1–26.Google Scholar
  193. Oliver, I., Sperling, O., Liberman, U.A., Frank, M., De Vries, A. 1971. Deficiency of xanthine oxidase activity in colostrum of a xanthinuric female. Biochem. Med. 5, 279–280.Google Scholar
  194. Ontsouka, C.E., Bruckmaier, R.M., Blum, J.W. 2003. Fractionized milk composition during removal of colostrum and mature milk. J. Dairy Sci. 86, 2005–2011.Google Scholar
  195. Palmese, S., Pezza, M., De Robertis, E. 2005. Hypophosphatemia and metabolic acidosis. Minerva Anestesiol. 71, 237–242.Google Scholar
  196. Park, M., Li, Q., Shcheynikov, N., Zeng, W., Muallem, S. 2004. NaBC1 is a ubiquitous electrogenic Na(+)-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol. Cell 16, 331–341.Google Scholar
  197. Parr, R.M., DeMaeyer, E.M., Iyengar, V.G., Byrne, A.R., Kirkbright, G.F., Schoch, G., Niinisto, L., Pineda, O., Vis, H.L., Hofvander, Y., Omololu, A. 1991. Minor and trace elements in human milk from Guatemala, Hungary, Nigeria, Philippines, Sweden, and Zaire. Results from a WHO/IAEA joint project. Biol. Trace Elem. Res. 29, 51–75.Google Scholar
  198. Pearce, E.N., Leung, A.M., Blount, B.C., Bazrafshan, H.R., He, X., Pino, S., Valentin-Blasini, L., Braverman, L.E. 2007. Breast milk iodine and perchlorate concentrations in lactating Boston-area women. J. Clin. Endocrinol. Metab. 92, 1673–1677.Google Scholar
  199. Pennington, J.A., Wilson, D.B., Young, B.E., Johnson, R.D., Vanderveen, J.E. 1987. Mineral content of market samples of fluid whole milk. J. Am. Diet. Assoc. 87, 1036–1042.Google Scholar
  200. Pennington, J.A.T., Jones, J.W. 1987. Molybdenum, nickel, cobalt, vanadium, and strontium in total diets. J. Am. Diet. Assoc. 87, 1644–1650.Google Scholar
  201. Perez-Lopez, F.R. 2007. Iodine and thyroid hormones during pregnancy and postpartum. Gynecol. Endocrinol. 23, 414–428.Google Scholar
  202. Phang, J.M., Berman, M., Finerman, G.A., Neer, R.M., Rosenberg, L.E., Hahn, T.J. 1969. Dietary perturbation of calcium metabolism in normal man: compartmental analysis. J. Clin. Invest. 48, 67–77.Google Scholar
  203. Phillips, D.I., Nelson, M., Barker, D.J., Morris, J.A., Wood, T.J. 1988. Iodine in milk and the incidence of thyrotoxicosis in England. Clin. Endocrinol. (Oxf) 28, 61–66.Google Scholar
  204. Preuss, H.G. 2006. Electrolytes: sodium, chloride, and potassium. In: Present Knowledge in Nutrition, (B.A. Bowman and R.M. Russell, eds.), pp. 409–421, International Life Sciences Institute, Washington, DC.Google Scholar
  205. Prohaska, J.R. 2006, Copper. In: Present Knowledge in Nutrition, (B.A. Bowman and R.M. Russell, eds.), pp. 458–470, International Life Sciences Institute, Washington, DC.Google Scholar
  206. Rajalakshmi, K., Srikantia, S.G. 1980, Copper, zinc, and magnesium content of breast milk of Indian women. Am. J. Clin. Nutr. 33, 664–669.Google Scholar
  207. Rajendran, K.G., Burnham, B.S., Sood, C.A., Spielvogel, B.F., Shaw, B.R., Hall, I.H. 1994, Anti-inflammatory and anti-osteoporotic activities of base-boronated nucleosides and phosphate-boronated nucleotides in rodents. J. Pharm. Sci. 83, 1391–1395.Google Scholar
  208. Rajpathak, S., Rimm, E., Morris, J.S., Hu, F. 2005, Toenail selenium and cardiovascular disease in men with diabetes. J. Am. Coll. Nutr. 24, 250–256.Google Scholar
  209. Rayman, M.P. 2000. The importance of selenium to human health. Lancet 356, 233–241.Google Scholar
  210. Recker, R., Lappe, J., Davies, K., Heaney, R. 2000. Characterization of perimenopausal bone loss: a prospective study. J. Bone Miner. Res. 15, 1965–1973.Google Scholar
  211. Renner, E. 1983. Milk and Dairy Products in Human Nutrition. Volkswirtschaftlicher Verlag, Munich.Google Scholar
  212. Renner, E., Schaafsma, G., Scott, K.J. 1989. Micronutrients in milk. In: Micronutrients in Milk and Milk-Based Food Products (E. Renner, ed.), pp. 1–70, Elsevier Applied Science, London.Google Scholar
  213. Roh, J.K., Bradley, R.L., Richardson, T., Weckel, K.G. 1976. Removal of copper from milk. J. Dairy Res. 59, 382–385.Google Scholar
  214. Rossi, A.F., Miles, R.D., Damron, B.L., Flunker, L.K. 1993. Effects of dietary boron supplementation on broilers. Poul. Sci. 72, 2124–2130.Google Scholar
  215. Rossipal, E., Krachler, M. 1998. Pattern of trace elements in human milk during the course of lactation. Nutr. Res. 18, 11–24.Google Scholar
  216. Roughead, Z.K., Johnson, L.K., Lykken, G.I., Hunt, J.R. 2003. Controlled high meat diets do not affect calcium retention or indices of bone status in healthy postmenopausal women. J. Nutr. 133, 1020–1026.Google Scholar
  217. Rubin, C., Rubin, J. 2006. Biomechanics and mechanobiology of bone. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 6th edn. (M.J. Favus, ed.), pp. 36–42, American Society for Bone and Mineral Research, Washington, D.C.Google Scholar
  218. Sazawal, S., Black, R.E., Ramsan, M., Chwaya, H.M., Stoltzfus, R.J., Dutta, A., Dhingra, U., Kabole, I., Deb, S., Othman, M.K., Kabole, F.M. 2006. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 367, 133–143.Google Scholar
  219. Schroeder, H.A., Vinton, W.H., Jr., Balassa, J.J. 1963. Effect of chromim, cadmium and other trace metals on the growth and survival of mice. J. Nutr. 80, 39–47.Google Scholar
  220. Schuurman, A.G., van den Brandt, P.A., Dorant, E., Goldbohm, R.A. 1999. Animal products, calcium and protein and prostate cancer risk in The Netherlands Cohort Study. Br. J. Cancer 80, 1107–1113.Google Scholar
  221. Schwarz, K., Mertz, W. 1959. Chromium(III) and the glucose tolerance factor. Arch. Biochem. Biophys. 85, 292–295.Google Scholar
  222. Shapiro, R., Heaney, R.P. 2003. Co-dependence of calcium and phosphorus for growth and bone development under conditions of varying deficiency. Bone 32, 532–540.Google Scholar
  223. Sheng, M.H.-C., Taper, L.J., Veit, H., Thomas, E.A., Ritchey, S.J., Lau, K.-H.W. 2001. Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in ovariectomized rats. Biol. Trace Elem. Res. 81, 29–45.Google Scholar
  224. Sieck, B., Takagi, S., Chow, L.C. 1990. Assessment of loosely-bound and firmly-bound fluoride uptake by tooth enamel from topically applied fluoride treatments. J. Dent. Res. 69, 1261–1265.Google Scholar
  225. Siimes, M.A., Salmenpera, L., Perheentupa, J. 1984. Exclusive breast-feeding for 9 months: risk of iron deficiency. J. Pediatr. 104, 196–199.Google Scholar
  226. Singh, H., Flynn, A., Fox, P.F. 1989. Zinc binding in bovine milk. J. Dairy Res. 56, 249–263.Google Scholar
  227. Skeaff, S.A., Ferguson, E.L., McKenzie, J.E., Valeix, P., Gibson, R.S., Thomson, C.D. 2005. Are breast-fed infants and toddlers in New Zealand at risk of iodine deficiency? Nutrition 21, 325–331.Google Scholar
  228. Sood, S.M., Herbert, P.J., Slattery, C.W. 1997. Structural studies on casein micelles of human milk: dissociation of beta-casein of different phosphorylation levels induced by cooling and ethylenediaminetetraacetate. J. Dairy Sci. 80, 628–633.Google Scholar
  229. Soremark, R. 1967. Vanadium in some biological specimens. J. Nutr. 92, 183–190.Google Scholar
  230. Spielberg, S.P., Butler, J.D., MacDermot, K., Schulman, J.D. 1979. Treatment of glutathione synthetase deficient fibroblasts by inhibiting gamma-glutamyl transpeptidase activity with serine and borate. Biochem. Biophys. Res. Commun. 89, 504–511.Google Scholar
  231. Stabler, S.P. 2006. Vitamin B12. In: Present Knowledge in Nutrition, (B.A. Bowman and R.M. Russell, eds.), pp. 302–313, International Life Sciences Institute, Washington, DC.Google Scholar
  232. Stastny, D., Vogel, R.S., Picciano, M.F. 1984. Manganese intake and serum manganese concentration of human milk-fed and formula-fed infants. Am. J. Clin. Nutr. 39, 872–878.Google Scholar
  233. Stewart, J.S., Roberts, P.D., Hoffbrand, A.V. 1970. Response of dietary vitamin-B12 deficiency to physiological oral doses of cyanocobalamin. Lancet 2, 542–545.Google Scholar
  234. Stoecker, B.J. 2006. Chromium. In: Present Knowledge in Nutrition (B.A. Bowman and R.M. Russell, eds.), pp. 498–505, International Life Sciences Institute, Washington, DC.Google Scholar
  235. Stranges, S., Marshall, J.R., Natarajan, R., Donahue, R.P., Trevisan, M., Combs, G.F., Cappuccio, F.P., Ceriello, A., Reid, M.E. 2007. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann. Intern. Med. 147, 217–223.Google Scholar
  236. Sunde, R.A. 2006. Selenium. In: Present Knowledge in Nutrition, (B.A. Bowman and R.M. Russell, eds.), pp. 480–497, International Life Sciences Institute, Washington, DC.Google Scholar
  237. Tanner, M.S. 1998. Role of cupper in Indian childhood cirrhosis. Am. J. Clin. Nutr. 67, 1074S–1081S.Google Scholar
  238. Thacher, T.D., Fischer, P.R., Strand, M.A., Pettifor, J.M. 2006. Nutritional rickets around the world: causes and future directions. Ann. Trop. Paediatr. 26, 1–16.Google Scholar
  239. Tsongas, T.A., Meglen, R.R., Walravens, P.A., Chappell, W.R. 1980. Molybdenum in the diet: an estimate of average daily intake in the United States. Am. J. Clin. Nutr. 33, 1103–1107.Google Scholar
  240. Tudhope, G.R., Swan, H.T., Spray, G.H. 1967. Patient variation in pernicious anaemia, as shown in a clinical trial of cyanocobalamin, hydroxocobalamin and cyanocobalamin–zinc tannate. Br. J. Haematol. 13, 216–228.Google Scholar
  241. US Department of Agriculture Agricultural Research Service, 2006. USDA Nutrient Database for Standard Reference, Release 19. Available at:, accessed 28 August, 2007.
  242. US Department of Agriculture Agricultural Research Service, 2007. USDA National Nutrient Database for Standard Reference, Release 20. Nutrient Data Laboratory Home Page., accessed 29 December, 2007.
  243. Vanderpas, J.B., Contempre, B., Duale, N.L., Deckx, H., Bebe, N., Longombe, A.O., Thilly, C.H., Diplock, A.T., Dumont, J.E. 1993. Selenium deficiency mitigates hypothyroxinemia in iodine-deficient subjects. Am. J. Clin. Nutr. 57, 271S–275S.Google Scholar
  244. Velona, T., Abbiati, L., Beretta, B., Gaiaschi, A., Flauto, U., Tagliabue, P., Galli, C.L., Restani, P. 1999. Protein profiles in breast milk from mothers delivering term and preterm babies. Pediatr. Res. 45, 658–663.Google Scholar
  245. Vincent, J.B., Bennett, R. 2007. Potential and purported roles for chromium in insulin signaling: the search for the holy grail. In: The Nutritional Biochemistry of Chromium (III) (J.B. Vincent, ed.), pp. 139–160, Elsevier, Amsterdam.Google Scholar
  246. Volpe, S.L. 2006. Magnesium. In: Present Knowledge in Nutrition (B.A. Bowman and R.M. Russell, eds.), pp. 400–408, International Life Sciences Institute, Washington, DC.Google Scholar
  247. Vuori, E., Makinen, S.M., Kara, R., Kuitunen, P. 1980. The effects of the dietary intakes of copper, iron, manganese, and zinc on the trace element content of human milk. Am. J. Clin. Nutr. 33, 227–231.Google Scholar
  248. Walravens, P.A., Hambidge, K.M. 1976. Growth of infants fed a zinc supplemented formula. Am. J. Clin. Nutr. 29, 1114–1121.Google Scholar
  249. Ward, P.P., Conneely, O.M. 2004. Lactoferrin: role in iron homeostasis and host defense against microbial infection. Biometals 17, 203–208.Google Scholar
  250. Weaver, C. 2006. Calcium. In: Present Knowledge in Nutrition (B.A. Bowman and R.M. Russell, eds.), pp. 373–382, International Life Sciences Institute, Washington, DC.Google Scholar
  251. Weaver, C.M., Heaney, R.P. 2006. Food sources, supplements, and bioavailability. In: Calcium in Human Health (C.M. Weaver and R.P. Heaney, eds.), pp. 129–142, Humana Press, Totowa, NJ.Google Scholar
  252. Weaver, C.M., Proulx, W.R., Heaney, R. 1999. Choices for achieving adequate dietary calcium with a vegetarian diet. Am. J. Clin. Nutr. 70, 543S–548S.Google Scholar
  253. Wedler, F.C. 1994. Biochemical and nutritional role of manganese: an overview. In: Manganese in Health and Disease, pp. 1–35, CRC, Boca Raton.Google Scholar
  254. Weinberg, E.D. 2007. Antibiotic properties and applications of lactoferrin. Curr. Pharm. Des. 13, 801–811.Google Scholar
  255. Wheeler, S.M., Fleet, G.H., Ashley, R.J. 1983. Effect of processing upon concentration and distribution of natural and iodophor-derived iodine in milk. J. Dairy Sci. 66, 187–195.Google Scholar
  256. Wilson, J.H., Ruzler, P.L. 1997. Effects of boron on growing pullets. Biol. Trace Elem. Res. 56, 287–294.Google Scholar
  257. Winzenberg, T., Shaw, K., Fryer, J., Jones, G. 2006. Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. Bmj 333, 775.Google Scholar
  258. Wu, K., Willett, W.C., Fuchs, C.S., Colditz, G.A., Giovannucci, E.L. 2002. Calcium intake and risk of colon cancer in women and men. J. Natl. Cancer Inst. 94, 437–446.Google Scholar
  259. Yamawaki, N., Yamada, M., Kan-no, T., Kojima, T., Kaneko, T., Yonekubo, A. 2005. Macronutrient, mineral and trace element composition of breast milk from Japanese women. J. Trace Elem. Med. Biol. 19, 171–181.Google Scholar
  260. Zeise, L., Zikakis, J.P. 1987. Characterization of human colostral xanthine oxidase. J. Agric. Food Chem. 35, 942–947.Google Scholar
  261. Zhou, B.F., Stamler, J., Dennis, B., Moag-Stahlberg, A., Okuda, N., Robertson, C., Zhao, L., Chan, Q., Elliott, P. 2003. Nutrient intakes of middle-aged men and women in China, Japan, United Kingdom, and United States in the late 1990s: the INTERMAP study. J. Hum. Hypertens. 17, 623–630.Google Scholar
  262. Ziegler, E.E., Fomon, S.J. 1989. Potential renal solute load of infant formulas. J. Nutr. 119, 1785–1788.Google Scholar
  263. Zimmermann, M.B. 2006. Iodine and the iodine deficiency disorders. In: Present Knowledge in Nutrition, (B.A. Bowman and R.M. Russell, eds.), pp. 471–479, International Life Sciences Institute, Washington, DC.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C.D. Hunt
    • 1
  • F.H. Nielsen
    • 1
  1. 1.US Department of AgricultureAgricultural Research Service, Grand Forks Human Nutrition Research CenterGrand ForksUSA

Personalised recommendations