Advertisement

EPR of Mononuclear Non-Heme Iron Proteins

  • Betty J. Gaffney
Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 28)

Flexible geometry of three- to six-protein side-chain ligands to nonheme iron in proteins is the basis for widely diverse reactivites ranging from iron transport to redox chemistry. The gap between fixed states determined by x-ray analysis can be filled by spectroscopic study of trapped intermediates. EPR is a versatile and relatively quick approach to defining intermediate states in terms of the geometry and electronic structures of iron. A number of examples in which the iron chemistry of non-heme proteins is understood through x-ray structures at subbond length resolution, refined calculations, and spectroscopy exist now. Some examples in which EPR has provided unique insight are summarized in Table 1. Assignment and quantitative evaluation of the EPR resonances in ferric, non-heme iron sites is the focus of the first section of this review. An earlier chapter in this series provides more background on the theory specific to EPR of S = 5/2 metal ions [1]. Besides EPR spectra of ferric mononuclear sites, EPR of ferrous iron coupled to a spin 1/2 radical, as it pertains to the categories mononuclear and nonheme, will also be covered, in the second half of this chapter. Examples include the quinone–ferrous interactions in photosynthetic reaction centers and nitric oxide complexes with non-heme ferrous iron. Other recent reviews of the biochemistry and spectroscopy of non-heme iron proteins provide additional background [2–6].

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Photosynthetic Reaction Center Nonheme Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gaffney BJ, Silverstone HJ. 1993. Simulation of the EMR spectra of high-spin iron in proteins. In EMR of paramagnetic molecules, pp. 1–57. Ed LJ Berliner, J Reuben. Biological magnetic resonance, Vol. 13. New York & London: Plenum Press.Google Scholar
  2. 2.
    Abu-Omar MM, Loaiza A, Hontzeas N. 2005. Reaction mechanisms of mononuclear non-heme iron oxygenases. Chem Rev 105(6):2227–2252.PubMedCrossRefGoogle Scholar
  3. 3.
    Costas M, Mehn MP, Jensen MP, Que L. 2004. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev 104(2):939–986.PubMedCrossRefGoogle Scholar
  4. 4.
    Hausinger RP. 2004. FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol 39(1):21–68.PubMedCrossRefGoogle Scholar
  5. 5.
    Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J. 2000. Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev 100(1):235–349.PubMedCrossRefGoogle Scholar
  6. 6.
    Kappock TJ, Caradonna JP. 1996. Pterin-dependent amino acid hydroxylases. Chem Rev 96(7):2659–2756.PubMedCrossRefGoogle Scholar
  7. 7.
    Kurtz DM. 2004. Microbial detoxification of superoxide: the non-heme iron reductive paradigm for combating oxidative stress. Acc Chem Res 37(11):902–908.PubMedCrossRefGoogle Scholar
  8. 8.
    Clay MD, Jenney FE, Hagedoorn PL, Goerge GN, Adams MWW, Johnson MK. 2002. Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active-site structures and the catalytic mechanism. J Am Chem Soc 124(5):788–805.PubMedCrossRefGoogle Scholar
  9. 9.
    Dubach J, Gaffney BJ, More K, Eaton GR, Eaton SS. 1991. Effect of the synergistic anion on electron paramagnetic resonance spectra of iron–transferrin anion complexes is consistent with bidentate binding of the anion. Biophys J 59(5):1091–1100.PubMedCrossRefGoogle Scholar
  10. 10.
    Yeh AP, Hu YL, Jenney FE, Adams MWW, Rees DC. 2000. Structures of the superoxide reductase from Pyrococcus furiosus in the oxidized and reduced states. Biochemistry 39(10):2499–2508.PubMedCrossRefGoogle Scholar
  11. 11.
    Baker HM, Anderson BF, Brodie AM, Shongwe MS, Smith CA, Baker EN. 1996. Anion binding by transferrins: importance of second-shell effects revealed by the crystal structure of oxalate-substituted diferric lactoferrin. Biochemistry 35(28):9007–9013.PubMedCrossRefGoogle Scholar
  12. 12.
    Bloom LM, Benkovic SJ, Gaffney BJ. 1986. Characterization of phenylalanine hydroxylase. Biochemistry 25(15):4204–4210.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang AS, Gaffney BJ. 1987. Determination of relative spin concentration in some high-spin ferric proteins using E/D-distribution in electron paramagnetic resonance simulations. Biophys J 51(1):55–67.PubMedCrossRefGoogle Scholar
  14. 14.
    Gaffney BJ, Mavrophilipos DV, Doctor KS. 1993. Access of ligands to the ferric center in lipoxygenase-1. Biophys J 64(3):773–783.PubMedCrossRefGoogle Scholar
  15. 15.
    Gaffney BJ, Su C, Oliw EH. 2001. Assignment of EPR transitions in a manganesecontaining lipoxygenase and prediction of local structure. Appl Magn Reson 21(3–4):411–422.Google Scholar
  16. 16.
    Bennati M, Prisner TF. 2005. New developments in high field electron paramagnetic resonance with applications in structural biology. Rep Prog Phys 68(2):411–448.CrossRefGoogle Scholar
  17. 17.
    Andersson KK, Schmidt PP, Katterle B, Strand KR, Palmer AE, Lee SK, Solomon EI, Graslund A., Barra AL. 2003. Examples of high-frequency EPR studies in bioinorganic chemistry. J Biol Inorg Chem 8(3):235–247.PubMedGoogle Scholar
  18. 18.
    Gaffney BJ, Maguire BC, Weber RT, Maresch GG. 1999. Disorder at metal sites in proteins: a high-frequency-EMR study. Appl Magn Reson 16(2):207–221.CrossRefGoogle Scholar
  19. 19.
    Aasa R, Vänngård T. 1975. EPR signal intensity and powder shapes: a reexamination. J Magn Reson 19(3):308–315.Google Scholar
  20. 20.
    Pilbrow JR, Sinclair GR, Hutton DR, Troup GJ. 1983. Asymmetric lines in field-swept EPR:Cr3+ looping transitions in ruby. J Magn Reson 52(3):386–399.Google Scholar
  21. 21.
    Gaffney BJ, Silverstone HJ. 1998. Simulation methods for looping transitions. J Magn Reson 134(1):57–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Fiamingo FG, Brill AS, Hampton DA, Thorkildsen R. 1989. Energy distributions at the high-spin ferric sites in myoglobin crystals. Biophys J 55(1):67–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Rakowsky MH, Zecevic A, Eaton GR, Eaton SS. 1998. Determination of high-spin iron(III)-nitroxyl distances in spin-labeled porphyrins by time-domain EPR. J Magn Reson 131(1):97–110.PubMedCrossRefGoogle Scholar
  24. 24.
    Berliner LJ, Eaton GR, Eaton SS, eds. 2000. Distance measurements in biological systems by EPR. Biological magnetic resonance, Vol. 19. New York: Kluwer Academic/Plenum.Google Scholar
  25. 25.
    MacArthur R, Sazinsky MH, Kuhne H, Whittington DA, Lippard SJ, Brudvig GW. 2002. Component B binding to the soluble methane monooxygenase hydroxylase by saturation-recovery EPR spectroscopy of spin-labeled MMOB. J Am Chem Soc 124(45):13392–13393.PubMedCrossRefGoogle Scholar
  26. 26.
    Bennati M, Robblee JH, Mugnaini V, Stubbe J, Freed JH, Borbat P. 2005. EPR distance measurements support a model for long-range radical initiation in E. coli ribonucleotide reductase. J Am Chem Soc 127(43):15014–15015.PubMedCrossRefGoogle Scholar
  27. 27.
    Klug CS, Eaton SS, Eaton GR, Feix JB. 1998. Ligand-induced conformational change in the ferric enterobactin receptor FepA as studied by site-directed spin labeling and time-domain ESR. Biochemistry 37(25):9016–9023.PubMedCrossRefGoogle Scholar
  28. 28.
    Gaffney BJ, Eaton GR, Eaton SS. 1998. Electron spin relaxation rates for high-spin Fe(III) in iron transferrin carbonate and iron transferrin oxalate. J Phys Chem B 102(28):5536–5541.PubMedCrossRefGoogle Scholar
  29. 29.
    Hendrich MP, Debrunner PG. 1989. Integer-spin electron paramagnetic resonance of iron proteins. Biophys J 56(3):489–506.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang DM, Pilbrow JR. 1988. Symmetry relationships for the 4 energy levels and the angular property of the EPR spectra for a spin-3/2 system. J Magn Reson 77(3):411–423.Google Scholar
  31. 31.
    Popescu VC, Munck E, Fox BG, Sanakis Y, Cummings JG, Turner IM, Nelson MJ. 2001. Mössbauer and EPR studies of the photoactivation of nitrile hydratase. Biochemistry 40(27):7984–7991.PubMedCrossRefGoogle Scholar
  32. 32.
    Fufezan C, Zhang CX, Krieger-Liszkay A, Rutherford AW. 2005. Secondary quinone in photosystem II of Thermosynechococcus elongatus: semiquinone-iron EPR signals and temperature dependence of electron transfer. Biochemistry 44(38):12780–12789.PubMedCrossRefGoogle Scholar
  33. 33.
    Utschig LM, Thurnauner MC, Tiede DM, Poluektov OG. 2005. Low-temperature interquinone electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides and Blastochloris viridis: characterization of Q(B)(–) states by high frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR). Biochemistry 44(43):14131–14142.PubMedCrossRefGoogle Scholar
  34. 34.
    Lakshmi KV, Brudvig GW. 2000. Electron paramagnetic resonance distance measurements in photosynthetic reaction centers. In Distance measurements in biological systems by EPR, pp. 513–567. Ed LJ Berliner, GR Eaton, SS Eaton. New York: Kluwer Academic/Plenum.Google Scholar
  35. 35.
    Feher G. 2002. My road to biophysics: picking flowers on the way to photosynthesis. Annu Rev Biophys Biomol Struct 31:1–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Calvo R, Abresch EC, Bittl R, Feher G, Hofbauer W, Isaacson RA, Lubitz W, Okamura MY, Paddock ML. 2000. EPR study of the molecular and electronic structure of the semiquinone biradical QA −· QB −· in photosynthetic reaction centers from Rhodobacter sphaeroides. J Am Chem Soc 122(30):7327–7341.CrossRefGoogle Scholar
  37. 37.
    Hanson GR, Gates KE, Noble CJ, Griffin M, Mitchell A, Benson S. 2004. XSophe- Sophe-XeprView: a computer simulation software suite (v. 1.1.3) for the analysis of continuous wave EPR spectra. J Inorg Biochem 98(5):903–916.PubMedCrossRefGoogle Scholar
  38. 38.
    Butler WF, Johnston DC, Shore HB, Fredkin DR, Okamura MY, Feher G. 1980. The electronic structure of Fe2+ in reaction centers from Rhodopseudomonas sphaeroides, I: static magnetization measurements. Biophys J 32(3):967–992.PubMedCrossRefGoogle Scholar
  39. 39.
    Butler WF, Calvo R, Fredkin DR, Isaacson RA, Okamura MY, Feher G. 1984. The electronic structure of Fe2+ in reaction centers from Rhodopseudomonas sphaeroides, III: EPR measurements of the reduced acceptor complex. Biophys J 45(5):947–973.PubMedCrossRefGoogle Scholar
  40. 40.
    Xu Q, Baciou L, Sebban P, Gunner MR. 2002. Exploring the energy landscape for QA to QB electron transfer in bacterial photosynthetic reaction centers: effect of substrate position and tail length on the conformational gating step. Biochemistry 41(31):10021–10025.PubMedCrossRefGoogle Scholar
  41. 41.
    Calvo, R, Isaacson, RA, Abresch, EC, Okamura, MY and Feher, G. 2002. Spin-lattice relaxation of coupled metal-radical spin dimers in proteins: application to Fe2+-cofactor (QA −•, QB −•, φ −•) dimers in reaction centers from photosynthetic bacteria. Biophys J 83(5):2440–2456.PubMedCrossRefGoogle Scholar
  42. 42.
    Hori H, Ikeda-Saito M, Yonetani M. 1981. Single crystal EPR of myoglobin nitroxide: freezing-induced reversible changes in the molecular orientation of the ligand. J Biol Chem 256(15):7849–7855.PubMedGoogle Scholar
  43. 43.
    Galpin JR, Veldink GA, Vliegenthart JFG, Boldingh J. 1978. The interaction of nitric oxide with soybean lipoxygenase-1. Biochim Biophys Acta 536(2):356–362.PubMedGoogle Scholar
  44. 44.
    Tierney DL, Rocklin AM, Lipscomb JD, Que L, Hoffman BM. 2005. ENDOR studies of the ligation and structure of the non-heme iron site in ACC oxidase. J Am Chem Soc 127(19):7005–7013.PubMedCrossRefGoogle Scholar
  45. 45.
    Cao M, Moore CM, Helmann JD. 2005. Bacillus subtilis paraquat resistance is directed by σM, an extracytoplasmic function sigma factor, and is conferred by YqjL and BcrC. J Bacteriol 187(9):2948–2956.PubMedCrossRefGoogle Scholar
  46. 46.
    Mukhopadhyay P, Zheng M, Bedzyk LA, LaRossa RA, Storz G. 2004. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci USA 101(3):745–750.PubMedCrossRefGoogle Scholar
  47. 47.
    D’Autreaux B, Tucker NP, Dixon R, Spiro S. 2005. A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature 437(7059):769–772.PubMedCrossRefGoogle Scholar
  48. 48.
    D’Autreaux B, Horner O, Oddou JL, Jeandey C, Gambarelli S, Berthomieu C, Latour JM, Michaud-Soret I. 2004. Spectroscopic description of the two nitrosyl-iron complexes responsible for fur inhibition by nitric oxide. J Am Chem Soc 126(19):6005–6016.PubMedCrossRefGoogle Scholar
  49. 49.
    Nelson MJ. 1987. The nitric oxide complex of ferrous soybean lipoxygenase-1: substrate, pH, and ethanol effects on the active-site iron. J Biol Chem 262(25):12137–12142.PubMedGoogle Scholar
  50. 50.
    Schenk G, Neidig ML, Zhou J, Holman TR, Solomon EI. 2003. Spectroscopic characterization of soybean lipoxygenase-1 mutants: the role of second coordination sphere residues in the regulation of enzyme activity. Biochemistry 42(24):7294–7302.PubMedCrossRefGoogle Scholar
  51. 51.
    Enemark JH, Feltham RD. 1974. Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord Chem Rev 13(9):339–406.CrossRefGoogle Scholar
  52. 52.
    Serres RG, Grapperhaus CA, Bothe E, Bill E, Weyhermuller T, Neese F, Wieghardt K. 2004. Structural, spectroscopic, and computational study of an octahedral, non-heme [Fe–NO](6–8) Series: [Fe(NO)(cyclam-ac)]2+/+/0. J Am Chem Soc 126(16):5138–5153.PubMedCrossRefGoogle Scholar
  53. 53.
    Brown CA, Pavlosky MA, Westre TE, Zhang Y, Hedman B, Hodgson KO, Solomon EI. 1995. Spectroscopic and theoretical description of the electronic structure of S = 3/2 iron-nitrosyl complexes and their relation to O2 activation by non-heme iron enzyme active sites. J Am Chem Soc 117(2):715–732.CrossRefGoogle Scholar
  54. 54.
    Hauser C, Glaser T, Bill E, Weyermuller T, Wieghardt K. 2000. The electronic structures of an isostructural series of octahedral nitrosyliron complexes {Fe–NO}6,7,8 elucidated by Mössbauer spectroscopy. J Am Chem Soc 122(18):4352–4365.CrossRefGoogle Scholar
  55. 55.
    Clay MD, Cosper CA, Jenney FE, Adams NWW, Johnson MK. 2003. Nitric oxide binding at the mononuclear active site of reduced Pyrococcus furiosus superoxide reductase. Proc Natl Acad Sci USA 100(7):3796–3801.PubMedCrossRefGoogle Scholar
  56. 56.
    Knapp MJ, Klinman JP. 2003. Kinetic studies of oxygen reactivity in soybean lipoxygenase-1. Biochemistry 42(39):11466–11475.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang ZH, Ren JS, Harlos K, McKinnon CH, Clifton IJ, Schofield CJ. 2002. Crystal structure of a clavaminate synthase–Fe(II)–2-oxoglutarate–substrate–NO complex: evidence for metal centered rearrangements. FEBS Lett 517(1–3):7–12.PubMedCrossRefGoogle Scholar
  58. 58.
    Rocklin AM, Tierney DL, Kofman V, Brunhuber NMW, Hoffman BM, Christoffersen RE, Reich NO, Lipscomb JD, Que L. 1999. Role of the nonheme Fe(II) center in the biosynthesis of the plant hormone ethylene. Proc Natl Acad Sci USA 96(14):7905–7909.PubMedCrossRefGoogle Scholar
  59. 59.
    Tucker NP, D’Autreaux B, Studholme DJ, Spiro S, Dixon R. 2004. DNA binding activity of the Escherichia coli nitric oxide sensor NorR suggests a conserved target sequence in diverse proteobacteria. J Bacteriol 186(19):6656–6660.PubMedCrossRefGoogle Scholar
  60. 60.
    Nagashima S, Nakasako M, Dohmae N, Tsujimura M, Takio K, Odaka M, Yohda M, Damiya N, Endo I. 1998. Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms. Nat Struct Biol 5(5):347–351.PubMedCrossRefGoogle Scholar
  61. 61.
    Dey A, Chow M, Taniguchi K, Lugo-Mas P, Davin S, Maeda M, Kovacs JA, Odaka M, Hodgson KO, Hedman B, Solomon EI. 2006. Sulfur K-edge XAS and DFT calculations on nitrile hydratase: geometric and electronic structure of the non-heme iron active site. J Am Chem Soc 128(2):533–541.PubMedCrossRefGoogle Scholar
  62. 62.
    Orville AM, Lipscomb JD. 1997. Cyanide and nitric oxide binding to reduced protocatechuate 3,4-dioxygenase: insight into the basis for order-dependent ligand binding by intradiol catecholic dioxygenases. Biochemistry 36(46):14044–14055.PubMedCrossRefGoogle Scholar
  63. 63.
    Agarwalla S, Stroud RM, Gaffney BJ. 2004. Redox reactions of the iron-sulfur cluster in a ribosomal RNA methyltransferase, RumA: optical and EPR studies. J Biol Chem 279(33):34123–34129.PubMedCrossRefGoogle Scholar
  64. 64.
    Pohl E, Haller JC, Mijovilovich A, Meyer-Kaucke W, Garman E, Vasil ML. 2003. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47(4):903–915.PubMedCrossRefGoogle Scholar
  65. 65.
    Mills SA, Marletta MA. 2005. Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. Biochemistry 44(41):13553–13559.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee CM, Hsieh CH, Dutta A, Lee GH, Liaw WF. 2003. Oxygen binding to sulfur in nitrosylated iron–thiolate complexes: relevance to the Fe-containing nitrile hydratases. J Am Chem Soc 125(38):11492–11493.PubMedCrossRefGoogle Scholar
  67. 67.
    Erlandsen H, Fusetti F, Martinez A, Hough E, Flatmark T, Stevens, RC. 1997. Crystal structure of the catalytic domain of human phenylalanine hydroxylase reveals the structural basis for phenylketonuria. Nat Struct Biol 4(12):995–1000.PubMedCrossRefGoogle Scholar
  68. 68.
    Minor W, Steczko J, Stec B, Otwinowski Z, Bolin JT, Walter R, Axelrod B. 1996. Crystal structure of soybean lipoxygenase L-1 at 1.4 Å resolution. Biochemistry 35(33):10687–10701.PubMedCrossRefGoogle Scholar
  69. 69.
    Shiota Y, Yoshizawa K. 2004. QM/MM study of the mononuclear non-heme iron active site of phenylalanine hydroxylase. J Phys Chem B 108(44):17226–17237.CrossRefGoogle Scholar
  70. 70.
    Lehnert N, Solomon EI. 2003. Density-functional investigation on the mechanism of H-atom abstraction by lipoxygenase. J Biol Inorg Chem 8(3):294–305.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations