Spin-Hamiltonian Parameters from First Principle Calculations: Theory and Application

  • Frank Neese
Part of the Biological Magnetic Resonance book series (BIMR, volume 28)

EPR spectroscopists have refined the art of interpreting experimental results by means of an effective spin-Hamiltonian (SH) to a high degree of sophistication [1]. The SH parameters are the principal outcome of an EPR experiment and represent a concise summary of the information content of the experiments. However, the power of the SH approach extends far beyond summarizing experimental results. The SH describes the physics of spin systems so well that it can be used to creatively design new experiments. The behavior of the spin system can be simulated in advance through exact solutions of the quantum mechanical equations of motions in the SH formalism. In this respect it is of major utility that the SH is so simple—it usually works in a low-dimensional Hilbert space that is only spanned by the (effective) spin degrees of freedom of the system under investigation [2]. Due to this simplicity, exact solutions are relatively easy to generate with ordinary computational hardware, or, in many cases, just with paper and pencil.


Chem Phys Density Functional Theory Method Versus Versus Versus Versus Versus Cysteine Radical Density Functional Theory Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schweiger A, Jeschke G. 2001. Principles of pulse electron paramagnetic resonance . Oxford: Oxford UP.Google Scholar
  2. 2.
    Pake GE, Estle TL. 1973. The physical principles of electron paramagnetic resonance . London: W.A. Benjamin.Google Scholar
  3. 3.
    Neese F. 2003. Curr Opin Chem Biol 7:125PubMedCrossRefGoogle Scholar
  4. 4.
    Griffith JS. 1964. The theory of transition metal ions . Cambridge: Cambridge UP.Google Scholar
  5. 5.
    Abragam A, Bleaney B. 1970. Electron paramagnetic resonance of transition ions . Oxford: Clarendon Press.Google Scholar
  6. 6.
    Atherton NM. 1993. Principles of electron spin resonance , 2nd ed. New York: Ellis Horwood, Prentice-Hall.Google Scholar
  7. 7.
    Piligkos S, Bill E, Collison D, McInnes EJL, Timco GA, Weihe H, Winpenny REP, Neese F. 2007. J Am Chem Soc 129:760PubMedCrossRefGoogle Scholar
  8. 8.
    Neese F. 2006. ORCA: an ab initio density functional and semiempirical program package, Version 2.6.0. University of Bonn, Germany. Free download at
  9. 9.
    Neese F, Solomon EI. 2002. In Magnetoscience: from molecules to materials , Vol. 4, p. 345. Ed JS Miller, M Drillon. Weinheim: Wiley-VCH.Google Scholar
  10. 10.
    Neese F. 2004. In The quantum chemical calculation of NMR and EPR properties , p. 581. Ed M Kaupp, M Bühl, V Malkin. Heidelberg: Wiley-VCH.CrossRefGoogle Scholar
  11. 11.
    Neese F. 2004. In The quantum chemical calculation of NMR and EPR properties , p. 541. Ed M Kaupp, M Bühl, V Malkin. Heidelberg: Wiley-VCH.CrossRefGoogle Scholar
  12. 12.
    Neese F, Munzarova ML. 2004. In The quantum chemical calculation of NMR and EPR properties , p. 21. Ed M Kaupp, M Bühl, V Malkin. Heidelberg: Wiley-VCH.CrossRefGoogle Scholar
  13. 13.
    Neese F. 2006. In Specialist periodical reports on EPR spectroscopy , pp. 73 ff. Ed B Gilbert. London: Royal Society of Chemistry.Google Scholar
  14. 14.
    Kaupp M, Malkin V, Bühl M. 2004. The quantum chemical calculation of NMR and EPR properties . Heidelberg: Wiley-VCH.CrossRefGoogle Scholar
  15. 15.
    Patchkovskii S, Schreckenbach G. 2004. In Calculation of NMR and EPR parameters , p. 505. Ed M Kaupp, V Malkin, M Bühl. Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  16. 16.
    Koch W, Holthausen MC. 2000. A chemist's guide to density functional theory . Weinheim: Wiley-VCH.Google Scholar
  17. 17.
    Szabo A, Ostlund NS. 1982. Modern theoretical chemistry . New York: Macmillan.Google Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. 2004. Gaussian 03 (, revision C.02. Wallingford CT.
  19. 19.
    Ågren H, Helgaker T, Jørgensen P, Klopper W, Olsen J, Ruud K, Vahtras O, and coworkers. 2005. DALTON, a molecular electronic structure program, Release 2.0.Google Scholar
  20. 20.
    Baerends EJ, Ziegler T, and coworkers. 2005. ADF2004.01 ( Amsterdam, The Netherlands.
  21. 21.
    Malkin VG, Malkina OL, Reviakine R, Arbuznikov AV, Kaupp M, Schimmelpfennig B, Malkin I, Helgaker T, Ruud K. 2003. MAG-ReSpect, version 1.1. Würzburg and Bratislava.Google Scholar
  22. 22.
    McWeeny R. 1992. Methods of molecular quantum mechanics . London: Academic press.Google Scholar
  23. 23.
    Stavrev KK, Zerner MC. 1997. Int J Quantum Chem 65:877.CrossRefGoogle Scholar
  24. 24.
    Zerner MC. 1989. Int J Quantum Chem 35:567.CrossRefGoogle Scholar
  25. 25.
    Edwards WD, Zerner MC. 1987. Theor Chem Acta 72:347.CrossRefGoogle Scholar
  26. 26.
    Scuseria GE. 1999. J Phys Chem A 103:4782.CrossRefGoogle Scholar
  27. 27.
    Ochsenfeld C, Kussmann J, Koziol F. 2004. Angew Chem, Int Ed 43:4485.CrossRefGoogle Scholar
  28. 28.
    Jensen F. 1999. Introduction to computational chemistry. New York: Wiley.Google Scholar
  29. 29.
    Gauss J. 2000. In Modern methods and algorithms in quantum chemistry , p. 1. Ed J Grotendorst. Jülich: John von Neumann Institute for Computing.Google Scholar
  30. 30.
    Saebø S, Pulay P. 1987. J Chem Phys 86:914.CrossRefGoogle Scholar
  31. 31.
    Saebø S, Pulay P. 1988. J Chem Phys 88:1884.CrossRefGoogle Scholar
  32. 32.
    Pulay P, Saebø S. 1986. Theor Chim Acta 69:357.CrossRefGoogle Scholar
  33. 33.
    Schütz M, Werner H-J. 2001. J Chem Phys 114:661.CrossRefGoogle Scholar
  34. 34.
    Schütz M, Werner H-J, Manby FR. 2004. J Chem Phys 121:737.PubMedCrossRefGoogle Scholar
  35. 35.
    Werner H-J, Manby FR. 2006. J Chem Phys 124:054114.PubMedCrossRefGoogle Scholar
  36. 36.
    Werner H-J, Manby FR, Knowles PJ. 2003. J Chem Phys 118:8149.CrossRefGoogle Scholar
  37. 37.
    Parr RG, Yang W. 1989. Density functional theory of atoms and molecules. Oxford: Oxford UP.Google Scholar
  38. 38.
    Marian CM. 2001. In Reviews in computational chemistry , Vol 17. Ed KB Lipkowitz, DB Boyd. New York: Wiley-VCH.CrossRefGoogle Scholar
  39. 39.
    Hess BA, Marian CM, Peyerimhoff SD. 1995. In Modern electronic structure theory , pp. 152–278. Ed D Yarkony. Singapore: World Scientific Publishing.Google Scholar
  40. 40.
    Hess BA, Marian CM. 2000. In Computational molecular spectroscopy , pp. 169 ff. Ed P Jensen, PR Bunker. New York: John Wiley & Sons.Google Scholar
  41. 41.
    Neese F. 2005. J Chem Phys 122:034107/1.Google Scholar
  42. 42.
    Cohen Tanudji C, Diu B, Laloe F. 1977. Quantum mechanics , Vol. 2. Paris: Wiley.Google Scholar
  43. 43.
    Hess BA, Marian CM, Wahlgren U, Gropen O. 1996. Chem Phys Lett 251:365.CrossRefGoogle Scholar
  44. 44.
    Berning A, Schweizer M, Werner HJ, Knowles PJ, Palmieri P. 2000. Mol Phys 98:1823.CrossRefGoogle Scholar
  45. 45.
    Harriman JE. 1978. Theoretical foundations of electron spin resonance . New York: Academic Press.Google Scholar
  46. 46.
    Neese, F. 2003. J Chem Phys 118:3939.CrossRefGoogle Scholar
  47. 47.
    Luken EAC. 1969. Nuclear quadrupole coupling constants . London: Academic Press.Google Scholar
  48. 48.
    McWeeny R. 1970. Spins in chemistry . New York: Academic Press.Google Scholar
  49. 49.
    McWeeny R. 1965. J Chem Phys 42:1717.CrossRefGoogle Scholar
  50. 50.
    Neese F, Solomon EI. 1998. Inorg Chem 37:6568.PubMedCrossRefGoogle Scholar
  51. 51.
    Neese F, Solomon EI. 1999. Inorg Chem 38:1847.PubMedCrossRefGoogle Scholar
  52. 52.
    Neese F. 2001. Int J Quantum Chem 83:104.CrossRefGoogle Scholar
  53. 53.
    Neese F. 2003. Chem Phys Lett 380:721.CrossRefGoogle Scholar
  54. 54.
    Neese F. 2004. Magn Reson Chem 42:S187.PubMedCrossRefGoogle Scholar
  55. 55.
    Bündgen P, Lushington GH, Grein F. 1995. Int J Quantum Chem 29:283.CrossRefGoogle Scholar
  56. 56.
    Bruna PJ, Lushington GH, Grein F. 1996. Chem Phys Lett 258:427.CrossRefGoogle Scholar
  57. 57.
    Lushington GH, Grein F. 1997. J Chem Phys 106:3292.CrossRefGoogle Scholar
  58. 58.
    Vahtras O, Minaev B, Agren H. 1997. Chem Phys Lett 281:186.CrossRefGoogle Scholar
  59. 59.
    Engström M, Minaev B, Vahtras O, Agren H. 1998. Chem Phys Lett 237:149.Google Scholar
  60. 60.
    Neese F. 2001. J Chem Phys 115:11080.CrossRefGoogle Scholar
  61. 61.
    van Lenthe E, van der Avoird A, Wormer ES. 1998. J Chem Phys 108:4783.CrossRefGoogle Scholar
  62. 62.
    Arbuznikov A, Vaara J, Kaupp M. 2004. J Chem Phys 120:2127.PubMedCrossRefGoogle Scholar
  63. 63.
    Remenyi C, Arbuznikov A, Reviakine R, Vaara J, Kaupp M. 2004. J Phys Chem A 108:5026.CrossRefGoogle Scholar
  64. 64.
    Brownridge S, Grein F, Tatchen J, Kleinschmidt M, Marian CM. 2003. J Chem Phys 118:9552.CrossRefGoogle Scholar
  65. 65.
    Lushington GH, Bündgen P, Grein F. 1995. Int J Quantum Chem 55:377.CrossRefGoogle Scholar
  66. 66.
    Lushington GH, Grein F. 1996. Theor Chim Acta 93:259.Google Scholar
  67. 67.
    Lushington GH, Grein F. 1996. Int J Quantum Chem: Quantum Chem Symp 30:467.Google Scholar
  68. 68.
    Yamaguchi Y, Goddard JD, Osamura Y, Schaefer H. 1994. Analytic derivative approaches: a new dimension to quantum chemistry . Oxford: Oxford UP.Google Scholar
  69. 69.
    Pople JA, Krishnan R, Schlegel HB, Binkley JS. 1979. Int J Quantum Chem: Quantum Chem Symp 13:225.Google Scholar
  70. 70.
    Colwell SM, Handy NC. 1994. Chem Phys Lett 217:271.CrossRefGoogle Scholar
  71. 71.
    Lee AM, Colwell SM, Handy NC. 1994. Chem Phys Lett 229:225.CrossRefGoogle Scholar
  72. 72.
    Gerrat J, Mills IM. 1968. J Chem Phys 49:1719.CrossRefGoogle Scholar
  73. 73.
    Autschbach J, Ziegler T. 2003. Coord Chem Rev 238/239:83.CrossRefGoogle Scholar
  74. 74.
    Vahtras O, Minaev B, Ågren H. 1997. Chem Phys Lett 281:186.CrossRefGoogle Scholar
  75. 75.
    Luo Y, Jonsson D, Norman P, Ruud K, Vahtras O, Minaev B, Ågren H, Rizzo A, Mikkelsen KV. 1998. Int J Quantum Chem 70:219.CrossRefGoogle Scholar
  76. 76.
    Vahtras O, Loboda O, Minaev B, Agren H, Ruud K. 2002. Chem Phys 279:133.CrossRefGoogle Scholar
  77. 77.
    McWeeny R, Mizuno Y. 1961. Proc Roy Soc (London) A259:554.Google Scholar
  78. 78.
    Petrenko TT, Petrenko TL, Bratus VY. 2002. J Phys: Condens Matter 14:12433.CrossRefGoogle Scholar
  79. 79.
    Loboda O, Minaev B, Vahtras O, Schimmelpfennig B, Agren H, Ruud K, Jonsson D. 2003. Chem Phys 286:127.CrossRefGoogle Scholar
  80. 80.
    Minaev BF, Khomenko EM, Bilan EA, Yashchuk LB. 2005. Opt Spectrosc 98:209.CrossRefGoogle Scholar
  81. 81.
    Loboda O, Tunell I, Minaev B, Agren H. 2005. Chem Phys 312:299.CrossRefGoogle Scholar
  82. 82.
    Minaev B, Yaschuk L, Kukueva V. 2005. Spectrochim Acta A 61:1105.CrossRefGoogle Scholar
  83. 83.
    Shoji M, Koizumi K, Hamamoto T, Taniguchi T, Takeda R, Kitagawa Y, Kawakami T, Okumura M, Yamanaka S, Yamaguchi K. 2005. Polyhedron 24:2708.CrossRefGoogle Scholar
  84. 84.
    Neese F. 2006. J Am Chem Soc 128:10213.PubMedCrossRefGoogle Scholar
  85. 85.
    Sinnecker S, Neese F. 2006. J Phys Chem A 110:12267.PubMedCrossRefGoogle Scholar
  86. 86.
    Berliner LJ, Eaton SS, Eaton GR. 2000. Distance measurements in biological systems by EPR . New York: Kluwer Academic.Google Scholar
  87. 87.
    Eaton GR, Eaton SS. 1988. Acc Chem Res 21:107.CrossRefGoogle Scholar
  88. 88.
    Eaton SS, Eaton GR. 1988. Coord Chem Rev 83:29.CrossRefGoogle Scholar
  89. 89.
    Schiemann O, Piton N, Mu YG, Stock G, Engels JW, Prisner TF. 2004. J Am Chem Soc 126:5722.PubMedCrossRefGoogle Scholar
  90. 90.
    Zanker PP, Jeschke G, Goldfarb D. 2005. J Chem Phys 122:024515.PubMedCrossRefGoogle Scholar
  91. 91.
    Bertrand P, More C, Guigliarelli B, Fournel A, Bennett B, Howes B. 1994. J Am Chem Soc 116:3078.CrossRefGoogle Scholar
  92. 92.
    Kahn O. 1993. Molecular magnetism . New York: VCH Publishers.Google Scholar
  93. 93.
    Pederson MR, Khanna SN. 1999. Phys Rev B 60:9566.CrossRefGoogle Scholar
  94. 94.
    Schreckenbach G, Ziegler T. 1998. Theor Chem Acc 99:71.Google Scholar
  95. 95.
    Ditchfield R. 1974. Mol Phys 27:789.CrossRefGoogle Scholar
  96. 96.
    Schreckenbach G, Ziegler T. 1997. J Phys Chem A 101:3388.CrossRefGoogle Scholar
  97. 97.
    Van Lenthe E, Wormer PES, van der Avoird A. 1997. J Chem Phys 107:2488.CrossRefGoogle Scholar
  98. 98.
    Kutzelnigg W, Fleischer U, Schindler M. 1991. In NMR basic principles and progress , pp. 165–262. Ed P Diehl, E Fluck, H Günther, R Kosfield, J Seeling. Heidelberg: Springer.Google Scholar
  99. 99.
    Kaupp M, Gress T, Reviakine R, Malkina OL, Malkin VG. 2003. J Phys Chem B 107:331.CrossRefGoogle Scholar
  100. 100.
    Luzanov AV, Babich EN, Ivanov VV. 1994. J Mol Struc (Theochem) 311:211.CrossRefGoogle Scholar
  101. 101.
    Improta R, Barone V. 2004. Chem Rev 104:1231.PubMedCrossRefGoogle Scholar
  102. 102.
    Engels B, Eriksson LA, Lunell S. 1996. Adv Quantum Chem 27:297.CrossRefGoogle Scholar
  103. 103.
    Gao J. 1996. Rev Comp Chem 7:119.CrossRefGoogle Scholar
  104. 104.
    Schöneboom J, Neese F, and Thiel W. 2005. J Am Chem Soc 127:5840.PubMedCrossRefGoogle Scholar
  105. 105.
    Sinnecker S, Neese F. 2006. J Comp Chem 27:1463.CrossRefGoogle Scholar
  106. 106.
    Asher JR, Doltsinis NL, Kaupp M. 2005. Magn Reson Chem 43:S237.PubMedCrossRefGoogle Scholar
  107. 107.
    Barone V, Polimeno P. 2006. Phys Chem Chem Phys 8:4609.PubMedCrossRefGoogle Scholar
  108. 108.
    Munzarova ML, Kaupp M. 1999. J Phys Chem A 103:9966.CrossRefGoogle Scholar
  109. 109.
    Malkina OL, Vaara J, Schimmelpfenning B, Munzarova M, Malkin V, Kaupp M. 2000. J Am Chem Soc 122:9206.CrossRefGoogle Scholar
  110. 110.
    Rinkevicius Z, Telyatnyk L, Salek P, Vahtras O, Agren H. 2003. J Chem Phys 119:10489.CrossRefGoogle Scholar
  111. 111.
    Perdew JP, Burke K, Ernzerhof M. 1996. Phys Rev Lett 77:3865.PubMedCrossRefGoogle Scholar
  112. 112.
    Adamo C, Barone V. 1999. J Chem Phys 110:6158.CrossRefGoogle Scholar
  113. 113.
    Mattar SM. 2005. Chem Phys Lett 405:382.Google Scholar
  114. 114.
    Hehre WJ, Ditchfield R, Pople JA. 1972. J Chem Phys 56:2257.CrossRefGoogle Scholar
  115. 115.
    Schäfer A, Horn H, Ahlrichs R. 1992. J Chem Phys 97:2571.CrossRefGoogle Scholar
  116. 116.
    Godbout N, Salahub DR, Andzelm J, Wimmer E. 1992. Can J Chem 70:560.CrossRefGoogle Scholar
  117. 117.
    Krishnan R, Binkley JS, Seeger R, Pople JA. 1980. J Chem Phys 72:650.CrossRefGoogle Scholar
  118. 118.
    Dunning JTH. 1980. J Chem Phys 90:1007.CrossRefGoogle Scholar
  119. 119.
    Schäfer A, Huber C, Ahlrichs R. 1994. J Chem Phys 100:5829.CrossRefGoogle Scholar
  120. 120.
    Barone V. 1995. In Recent advances in density functional methods , Part I, pp. 287–334. Ed DP Chong. Singapore: World Scientific.Google Scholar
  121. 121.
    Neese F. 2002. Inorg Chim Acta 337C:181.CrossRefGoogle Scholar
  122. 122.
    Ahlrichs R, and coworkers. 2006. Karlsruhe.Google Scholar
  123. 123.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R. 1995. Chem Phys Lett 240:283.CrossRefGoogle Scholar
  124. 124.
    Eichkorn K, Weigend F, Treutler O, Ahlrichs R. 1997. Theor Chem Acc 97:119.Google Scholar
  125. 125.
    Benisvy L, Bittl R, Bothe E, Garner CD, McMaster J, Ross S, Teutloff C, Neese F. 2005. Angew Chem, Int Ed 44:5314.CrossRefGoogle Scholar
  126. 126.
    Stone AJ. 1963. J Mol Phys 6:509.CrossRefGoogle Scholar
  127. 127.
    Stone AJ. 1964. J Mol Phys 7:311.CrossRefGoogle Scholar
  128. 128.
    Van Gastel M, Lassman G, Lubitz W, Neese F. 2004. J Am Chem Soc 126:2237.PubMedCrossRefGoogle Scholar
  129. 129.
    Atkins PW, Jamieson AM. 1967. Mol Phys 14:425.CrossRefGoogle Scholar
  130. 130.
    Mayer M, Krüger S, Rösch N. 2001. J Chem Phys 115:4411.CrossRefGoogle Scholar
  131. 131.
    Di Valentin C, Neyman KM, Risse T, Sterer M, Fischbach E, Freund H-J, Nasluzov VA, Pacchioni G, Rösch N. 2006. J Chem Phys 124:044708.PubMedCrossRefGoogle Scholar
  132. 132.
    Malkin I, Malkina O, Malkin V, Kaupp M. 2005. J Chem Phys 123:244103.PubMedCrossRefGoogle Scholar
  133. 133.
    Sinnecker S, Rajendran A, Klamt A, Diedenhofen M, Neese F. 2006. J Phys Chem A 110:2235.PubMedCrossRefGoogle Scholar
  134. 134.
    Rinkevicius Z, Telyatnyk L, Vahtras O, Ruud K. 2004. J Chem Phys 121:5051.PubMedCrossRefGoogle Scholar
  135. 135.
    Ciofini I. 2004. In Calculation of NMR and EPR parameters , p. 505. Ed M Kaupp, V Malkin, M Bühl. Weinheim: Wiley-VCH.Google Scholar
  136. 136.
    Klamt A, Schüürmann G. 1993. Perkin Trans 799.Google Scholar
  137. 137.
    Ciofini I, Reviakine R, Arbuznikov A, Kaupp M. 2004. Theor Chem Acc 111:132.Google Scholar
  138. 138.
    Ciofini I. 2004. Magn Reson Chem 42:S48.PubMedCrossRefGoogle Scholar
  139. 139.
    Ciofini I, Adamo C, Barone V. 2004. J Chem Phys 121:6710.PubMedCrossRefGoogle Scholar
  140. 140.
    Asher JR, Doltsinis NL, Kaupp M. 2004. J Am Chem Soc 126:9854.PubMedCrossRefGoogle Scholar
  141. 141.
    Klamt A. 1995. J Phys Chem 99:2224.CrossRefGoogle Scholar
  142. 142.
    Penfield KW, Gay RR, Himmelwright RS, Eickman NC, Norris VA, Freeman HC, Solomon EI. 1981. J Am Chem Soc 103:4382.CrossRefGoogle Scholar
  143. 143.
    Solomon EI. 1984. Comments Inorg Chem 3:227.CrossRefGoogle Scholar
  144. 144.
    Penfield KW, Gewirth AA, Solomon EI. 1985. J Am Chem Soc 107:4519.CrossRefGoogle Scholar
  145. 145.
    Gewirth AA, Cohen SL, Schugar HJ, Solomon EI. 1987. Inorg Chem 26:1133.CrossRefGoogle Scholar
  146. 146.
    Gewirth AA, Solomon EI. 1988. J Am Chem Soc. 110:3811.CrossRefGoogle Scholar
  147. 147.
    Solomon EI, Gewirth AA, Westmoreland TD. 1989. In Advanced EPR: applications in biology and biochemistry , p. 865. Ed AJ Hoff. Amsterdam: Elsevier.Google Scholar
  148. 148.
    Solomon EI, Baldwin MJ, Lowery MD. 1992. Chem Rev 92:521.CrossRefGoogle Scholar
  149. 149.
    Solomon EI, Lowery MD. 1993. Science 259:1575.PubMedCrossRefGoogle Scholar
  150. 150.
    Solomon EI, Lowery MD. 1993. In The chemistry of copper and zinc triads , p. 12. Ed AJ Welch, SK Chapman. Cambridge: Royal Society of Chemistry.Google Scholar
  151. 151.
    Solomon EI, Lowery MD, LaCroix LB, Root DE. 1993. Meth Enzymol 226:1.PubMedCrossRefGoogle Scholar
  152. 152.
    Solomon EI, Lowery MD, Root DE, Hemming BL. 1995. In Mechanistic bioinorganic biochemistry , p. 121. Ed HH Thorp, VL Pecoraro. Washington, DC: American Chemical Society.Google Scholar
  153. 153.
    van Lenthe E, Snijders JG, Baerends EJ. 1996. J Chem Phys 105:6505.CrossRefGoogle Scholar
  154. 154.
    van Wüllen C. 1998. J Chem Phys 109:392.CrossRefGoogle Scholar
  155. 155.
    Szylagi R, Metz M, Solomon EI. 2002. J Phys Chem A 106:2994.CrossRefGoogle Scholar
  156. 156.
    Siegbahn PEM. 2001. J Comp Chem 22:1634.CrossRefGoogle Scholar
  157. 157.
    Siegbahn PEM, Blomberg MRA. 2000. Chem Rev 100:421.PubMedCrossRefGoogle Scholar
  158. 158.
    Neese F. 2006. J Inorg Biochem 100:716.PubMedCrossRefGoogle Scholar
  159. 159.
    Kababya SJN, Calle C, Neese F, Goldfarb D. 2006. J Am Chem Soc 128:2017.PubMedCrossRefGoogle Scholar
  160. 160.
    Berry JF, Bill E, Neese F, Garcia-Serres R, Weyhermüller T, Wieghardt K. 2006. Inorg Chem 45:2027.PubMedCrossRefGoogle Scholar
  161. 161.
    Sinnecker S, Neese F, Lubitz W. 2005. J Biol Inorg Chem 10:231.PubMedCrossRefGoogle Scholar
  162. 162.
    Praneeth VKK, Neese F, Lehnert N. 2005. Inorg Chem 44:2570.PubMedCrossRefGoogle Scholar
  163. 163.
    Mader-Cosper M, Neese F, Astashkin AV, Carducci MA, Raitsimring AM, Enemark JH. 2005. Inorg Chem 44:1290.CrossRefGoogle Scholar
  164. 164.
    Astashkin AV, Neese F, Raitsimaring AM, Cooney JJA, Bultman E, Enemark JH. 2005. J Am Chem Soc 127:16713.PubMedCrossRefGoogle Scholar
  165. 165.
    Sinnecker S, Noodleman L, Neese F, Lubitz W. 2004. J Am Chem Soc 126:2613.PubMedCrossRefGoogle Scholar
  166. 166.
    Baute D, Arieli D, Zimmermann H, Neese F, Weckhuysen B, Goldfarb D. 2004. J Am Chem Soc 126:11733.PubMedCrossRefGoogle Scholar
  167. 167.
    Werst MM, Davoust CE, Hoffman BM. 1991. J Am Chem Soc 113:1533.CrossRefGoogle Scholar
  168. 168.
    Neese F, Kappl R, Zumft WG, Hüttermann J, Kroneck PMH. 1998. J Biol Inorg Chem 1:53.Google Scholar
  169. 169.
    Bertini I, Ciurli S, Dikiy A, Gasanov R, Luchinat C, Martini G, Safarov N. 1999. J Am Chem Soc 121:2037.CrossRefGoogle Scholar
  170. 170.
    Weigend F, Furche F, Ahlrichs R. 2003. J Chem Phys 119:12753.CrossRefGoogle Scholar
  171. 171.
    Grimme S. 2006. Angew Chem 118:4571.CrossRefGoogle Scholar
  172. 172.
    Ganyushin D, Neese F. 2006. J Chem Phys 125:024103.CrossRefGoogle Scholar
  173. 173.
    Barra AL, Caneschi A, Cornia A, de Biani FF, Gatteschi D, Sangregorio C, Sessoli R, Sorace L. 1999. J Am Chem Soc 121:5302.CrossRefGoogle Scholar
  174. 174.
    Krzystek J, Yeagle GJ, Park J-H, Britt RD, Meisel MW, Brunel L-C, Telser J. 2003. Inorg Chem 42:4610.PubMedCrossRefGoogle Scholar
  175. 175.
    Neese F. 2007. J Chem Phys 127:164112.PubMedCrossRefGoogle Scholar
  176. 176.
    Neese F. 2001. J Phys Chem A 105:4290.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Frank Neese
    • 1
  1. 1.Lehrstuhl für Theoretische ChemieInstitut für Physikalische und Theoretische Chemie, Universität BonnBonn D-53115Germany

Personalised recommendations