Advanced Pulse EPR Methods for the Characterization of Metalloproteins

  • Jeffrey Harmer
  • George Mitrikas
  • Arthur Schweiger
Part of the Biological Magnetic Resonance book series (BIMR, volume 28)

Electron Spin Echo Envelope Modulation (ESEEM) and pulse Electron Nuclear Double Resonance (ENDOR) experiments are considered to be two cornerstones of pulse EPR spectroscopy. These techniques are typically used to obtain the static spin Hamiltonian parameters of powders, frozen solutions, and single crystals. The development of new methods based on these two effects is mainly driven by the need for higher resolution, and therefore, a more accurate estimation of the magnetic parameters. In this chapter, we describe the inner workings of ESEEM and pulse ENDOR experiments as well as the latest developments aimed at resolution and sensitivity enhancement. The advantages and limitations of these techniques are demonstrated through examples found in the literature, with an emphasis on systems of biological relevance.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Hyperfine Coupling ENDOR Spectrum Electron Spin Echo Envelope Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoffman BM. 2003. ENDOR of metalloenzymes. Acc Chem Res 36:522–529.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoffman BM. 2003. Electron-nuclear double resonance spectroscopy (and electron spin-echo envelope modulation spectroscopy) in bioinorganic chemistry. Proc Natl Acad Sci USA 100:3575–3578.PubMedCrossRefGoogle Scholar
  3. 3.
    Deligiannakis Y, Louloudi M, Hadjiliadis N. 2000. Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coord Chem Rev 204:1–112.CrossRefGoogle Scholar
  4. 4.
    Lakshmi KV, Brudvig GW. 2001. Pulsed electron paramagnetic resonance methods for macromolecular structure determination. Curr Opin Struc Biol 11:523–531.CrossRefGoogle Scholar
  5. 5.
    Prisner T, Rohrer M, MacMillan F. 2001. Pulsed EPR spectroscopy: biological applications. Annu Rev Phys Chem 52:279–313.PubMedCrossRefGoogle Scholar
  6. 6.
    Goldfarb D, Arieli D. 2004. Spin distribution and the location of protons in paramagnetic proteins. Annu Rev Biophys Biomol Struct 33:441–468.PubMedCrossRefGoogle Scholar
  7. 7.
    Schweiger A, Jeschke G. 2001. Principles of pulse electron paramagnetic resonance.Oxford: Oxford UP.Google Scholar
  8. 8.
    Spin density ρ(x,y,z) denotes the difference in the number of electrons per unit volume having spin up and down: ρ(x,y,z) = ρ α(x,y,z) – ρ β(x,y,z). Spin population ρ ψ X is interpretable as the integrated spin density ρ(x,y,z) in the orbital ψ centered on nucleus x and is the difference in the populations of unpaired electrons with spin up and spin down, ρ ψ x = ρ ψ x αρ ψ x β. See Gerson F, Huber W. 2003. Electron spin resonance spectroscopy of organic radicals. Weinheim: Wiley-VCH Verlag.Google Scholar
  9. 9.
    McGarvey BR. 1967. The isotropic hyperfine interaction. J Phys Chem 71:51–67.CrossRefGoogle Scholar
  10. 10.
    Morton JR, Preston KF. 1978. Atomic parameters for paramagnetic-resonance data. J Magn Reson 30:577–582.Google Scholar
  11. 11.
    Golding RM, Stubbs LC. 1978. Higher-order hyperfine terms in spin. Proc Roy Soc London A362:525–536.Google Scholar
  12. 12.
    McGarvey BR. 1987. In Electronic magnetic resonance of the solid state, p. 83. Ed JA Weil. Ottawa: Canadian Society of Chemistry.Google Scholar
  13. 13.
    Neese F, Solomon EI. 2002. Interpretation and calculation of Spin Hamiltonian parameters in transition metal complexes. In Magnetism: molecules to materials, IV. Ed JS Miller, M Drillon. Weinheim: Wiley-VCH Verlag.Google Scholar
  14. 14.
    Harmer J, Van Doorslaer S, Gromov I, Schweiger A. 2002. Corrin nitrogens and remote dimethylbenzimidazole nitrogen interactions in Cob(II)alamin studied with HYSCORE at X- and Q-band. Chem Phys Lett 358:8–16.CrossRefGoogle Scholar
  15. 15.
    Finazzo C, Harmer J, Jaun B, Duin EC, Mahlert F, Thauer RK, Van Doorslaer S, Schweiger A. 2003. Characterization of the MCRred2 form of methyl-coenzyme M reductase: a pulse EPR and ENDOR study. J Biol Inorg Chem 8:586–593.PubMedGoogle Scholar
  16. 16.
    Rowan LG, Hahn EL, Mims WB. 1965. Electron-spin-echo envelope modulation. Phys Rev A137:61–71.CrossRefGoogle Scholar
  17. 17.
    Mims WB. 1972. Envelope modulation in spin-echo experiments. Phys Rev B5:2409– 2419.Google Scholar
  18. 18.
    Zweier J, Aisen P, Peisach J, Mims WB. 1979. Pulsed electron paramagnetic resonance studies of the copper complexes of transferrin. J Biol Chem 254:3512–3515.PubMedGoogle Scholar
  19. 19.
    Lu J, Bender CJ, McCracken J, Peisach J, Severns JC, McMillin DR. 1992. Pulsed EPR studies of the type 2 copper binding site in the mercury derivative of laccase. Biochemistry 31:6265–6272.PubMedCrossRefGoogle Scholar
  20. 20.
    Dikanov SA, Shubin AA, Parmon VN. 1981. Modulation effects in the electron spin echo resulting from hyperfine interaction with a nucleus of an arbitrary spin. J Magn Reson 42:474–487.Google Scholar
  21. 21.
    Stoll S, Calle C, Mitrikas G, Schweiger A. 2005. Peak suppression in ESEEM spectra of multinuclear spin systems. J Magn Reson 177:93–101.PubMedCrossRefGoogle Scholar
  22. 22.
    Dikanov SA, Samoilova RI, Kolling DR, Holland JT, Crofts AR. 2004. Hydrogen bonds involved in binding the Qi-site semiquinone in the bc1 complex, identified through deuterium exchange using pulsed EPR. J Biol Chem 279:15814–15823.PubMedCrossRefGoogle Scholar
  23. 23.
    Ponti A, Schweiger A. 1994. Echo phenomena in electron paramagnetic resonance spectroscopy. Appl Magn Reson 7:363–403.Google Scholar
  24. 24.
    Ponti A, Schweiger A. 1995. Nuclear coherence-transfer echoes in pulsed EPR. J Chem Phys 102:5207–5219.CrossRefGoogle Scholar
  25. 25.
    Hubrich M, Jeschke G, Schweiger A. 1995. The generalized hyperfine sublevel coherence transfer experiment in one and two dimensions. J Chem Phys 104:2172–2184.CrossRefGoogle Scholar
  26. 26.
    Schossler PM. 1998. Electron paramagnetic resonance study of the copper (II) complexation with carbonate ligands in aqueous solution and at calcium carbonate surfaces. PhD thesis, No. 12669, ETH Zürich.Google Scholar
  27. 27.
    Vinck E, Van Doorslaer S. 2004. Analysing low-spin ferric complexes using pulse EPR techniques: a structure determination of bis (4-methylimidazole) (tetraphenylporphyrinato) iron (III). Phys Chem Chem Phys 6:5324–5330.CrossRefGoogle Scholar
  28. 28.
    Höfer P, Grupp A, Nebenführ G, Mehring M. 1986. Hyperfine sublevel correlation (HYSCORE) spectroscopy: a 2D ESR investigation of the squaric acid radical. Chem Phys Lett 132:279–282.CrossRefGoogle Scholar
  29. 29.
    Tyryshkin AM, Dikanov SA, Goldfarb D. 1993. Sum combination harmonics in fourpulse ESEEM spectra: study of the ligand geometry in aqua–vanadyl complexes in polycrystalline and glass matrices. J Magn Reson A105:271–283.Google Scholar
  30. 30.
    Dikanov SA, Tyryshkin AM, Bowman MK. 2000. Intensity of cross-peaks in Hyscore spectra of S = ½, I = ½ spin systems. J Magn Reson 144:228–242.PubMedCrossRefGoogle Scholar
  31. 31.
    Mádi Z, Van Doorslaer S, Schweiger A. 2002. Efficient simulation of ESEEM spectra. J Magn Reson 154:181–191.PubMedCrossRefGoogle Scholar
  32. 32.
    Stoll S. 2003. Spectral simulations in solid-state EPR. PhD thesis, No. 15059, ETH Zürich.Google Scholar
  33. 33.
    Pöppl A, Kevan L. 1996. A practical strategy for determination of proton hyperfine interaction parameters in paramagnetic transition metal ion complexes by twodimensional HYSCORE electron spin resonance spectroscopy in disordered systems. J Phys Chem 100:3387–3394.CrossRefGoogle Scholar
  34. 34.
    Reijerse E, Dikanov SA. 1991. Electron spin echo envelope modulation spectroscopy on orientationally disordered systems: line shape singularities in S = ½, I = ½ spin systems. J Chem Phys 95:836–845.CrossRefGoogle Scholar
  35. 35.
    Dikanov SA, Bowman MK. 1995. Cross-peak lineshape of two-dimensional ESEEM spectra in disordered S = ½, I = ½ spin systems. J Magn Reson A116:125–128.Google Scholar
  36. 36.
    Thauer RK. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406.PubMedCrossRefGoogle Scholar
  37. 37.
    Goenrich M, Mahlert F, Duin EC, Bauer C, Jaun B, Thauer RK. 2004. Probing the reactivity of Ni in the active site of methyl–coenzyme M reductase with substrate analogues. J Biol Inorg Chem 9:691–705.PubMedCrossRefGoogle Scholar
  38. 38.
    Hinderberger, D, Piskorski RP, Goenrich G, Thauer RK, Schweiger A, Harmer J, Jaun B. 2006. A nickel–alkyl bond in an inactivated state of the enzyme catalyzing methane formation. Angew Chem, Int Ed 45:3602–3607.CrossRefGoogle Scholar
  39. 39.
    Pöppl A, Böttcher R. 1997. Cross peak intensities in two-dimensional four-pulse electron spin echo modulation spectra of deuterium in single crystals. Chem Phys 221:53–66.CrossRefGoogle Scholar
  40. 40.
    Dikanov SA, Xun L, Karpiel AB, Tyryshkin AM, Bowman MK. 1996. Orientationallyselected two-dimensional ESEEM spectroscopy of the Rieske-type iron–sulfur cluster in 2,4,5-trichlorophenoxyacetate monooxygenase from Burkholderia cepacia AC1100. J Am Chem Soc 118:8408–8416.CrossRefGoogle Scholar
  41. 41.
    Maryasov AG, Bowman MK. 2004. Hyperfine sublevel correlation (HYSCORE) spectra for paramagnetic centers with nuclear spin I = 1 having isotropic hyperfine interactions. J Phys Chem B108:9412–9420.Google Scholar
  42. 42.
    Mitrikas G, Calle C, Schweiger A. 2005. Asymmetric spin density distribution in the copper (II) complex of N-confused tetraphenylporphyrin: a multifrequency continuouswave and pulse EPR study. Angew Chem Int Ed 44:3301–3303.CrossRefGoogle Scholar
  43. 43.
    The nuclear quadrupole coupling constant K = e 2 qQ/[4I(2I – 1)ħ] and the asymmetry parameter η = (P xP y)/P z are usually given in the definition of the nuclear quadrupole tensor in its principal axes system: P d = [P x, P y, P z] = [–K(1–η),–K(1 + η),2K], where Q is the nuclear electrical quadrupole moment and eq is the electric field gradient.Google Scholar
  44. 44.
    Iwasaki T, Kounosu A, Uzawa T, Samoilova RI, Dikanov SA. 2004. Orientationselected 15N-HYSCORE detection of weakly coupled nitrogens around the archaeal Rieske [2Fe–2S] center. J Am Chem Soc 126:13902–13903.PubMedCrossRefGoogle Scholar
  45. 45.
    Maly T, Grgic L, Zwicker K, Zickermann V, Brandt U, Prisner T. 2006. Cluster N1 of complex I from Yarrowia lipolytica studied by pulsed EPR spectroscopy. J Biol Inorg Chem 11:343–350.PubMedCrossRefGoogle Scholar
  46. 46.
    Foerster S, van Gastel M, Brecht M, Lubitz W. 2005. An orientation-selected ENDOR and HYSCORE study of the Ni–C active state of Desulfovibrio vulgaris Miyazaki F hydrogenase. J Biol Inorg Chem 10:51–62.PubMedCrossRefGoogle Scholar
  47. 47.
    Brecht M, van Gastel M, Buhrke T, Friedrich B, Lubitz W. 2003. Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. J Am Chem Soc 125:13075–13083.PubMedCrossRefGoogle Scholar
  48. 48.
    García-Rubio I, Martínez JI, Picorel R, Yruela I, Alonso PJ. 2003. HYSCORE Spectroscopy in the cytochrome b 559 of the photosystem II reaction center. J Am Chem Soc 125:15846–15854.PubMedCrossRefGoogle Scholar
  49. 49.
    Ioanitescu AI, Dewide S, Kiger L, Marden MC, Moens L, Van Doorslaer S. 2005. Characterization of nonsymbiotic tomato hemoglobin. Biophys J 89:2628–2639.PubMedCrossRefGoogle Scholar
  50. 50.
    Vinck E, Van Doorslaer S, Dewilde S, Mitrikas G, Schweiger A, Moens L. 2006. Analyzing heme proteins using EPR techniques: the heme-pocket structure of ferric mouse neuroglobin. J Biol Inorg Chem 11:467–475.PubMedCrossRefGoogle Scholar
  51. 51.
    Gutjahr, M, Böttcher, R, Pöppl A. 2002. Analysis of correlation patterns in hyperfine sublevel correlation spectroscopy of S = 1/2, I = 3/2 systems. Appl Magn Reson 22:401–414.CrossRefGoogle Scholar
  52. 52.
    Matar K, Goldfarb D. 1992. Fourier transform electron spin echo envelope modulation of a S = 1/2, I = 5/2 spin system: an exact analysis and a second order perturbation approach. J Chem Phys 96:6464–6476.CrossRefGoogle Scholar
  53. 53.
    Ponti A. 1997. Electron-spin-echo envelope modulation arising from hyperfine coupling to a nucleus of arbitrary spin. J Magn Reson 127:87–104.CrossRefGoogle Scholar
  54. 54.
    Harmer J, Finazzo C, Piskorski R, Bauer C, Jaun B, Duin EC, Goenrich M, Thauer RK, Van Doorslaer S, Schweiger A. 2005. Spin density and coenzyme M coordination geometry of the ox1 form of methyl-coenzyme M reductase: a pulse EPR study. J Am Chem Soc 127:17744–17755.PubMedCrossRefGoogle Scholar
  55. 55.
    Cho H, Pfenninger S, Gemperle C, Schweiger A, Ernst RR. 1989. Zero deadtime pulsed ESR by remote echo detection. Chem Phys Lett 160:391–395.CrossRefGoogle Scholar
  56. 56.
    Jeschke G, Schweiger A. 1996. Generation and transfer of coherence in electronnuclear spin systems by non-ideal microwave pulses. Mol Phys 88:355–383.CrossRefGoogle Scholar
  57. 57.
    Jeschke G, Rakhmatullin R, Schweiger A. 1998. sensitivity enhancement by matched microwave pulses in one- and two-dimensional electron spin echo envelope modulation spectroscopy. J Magn Reson 131:261–271.PubMedCrossRefGoogle Scholar
  58. 58.
    Goldfarb D, Kofman V, Libman J, Shanzer A, Rahmatouline R, Van Doorslaer S, Schweiger A. 1998. Double nuclear coherence transfer (DONUT)-HYSCORE: a new tool for the assignment of nuclear frequencies in pulsed EPR experiments. J Am Chem Soc 120:7020–7029.CrossRefGoogle Scholar
  59. 59.
    Van Doorslaer, S, Bachmann, R, Schweiger, A. 1999. A pulse EPR and ENDOR investigation of the electronic and geometric structure of cobaltous tetraphenylporphyrin (pyridine). J Phys Chem A103:5446–5455.Google Scholar
  60. 60.
    Mitrikas G, Schweiger A. 2004. Hyperfine decoupling in electron paramagnetic resonance as a powerful tool for unraveling complicated ESEEM spectra of S = ½, I ≥ ½ systems. J Magn Reson 168:88–96.PubMedCrossRefGoogle Scholar
  61. 61.
    Jeschke, G, Schweiger A. 1997. Hyperfine decoupling in electron spin resonance. J Chem Phys 106:9979–9991.CrossRefGoogle Scholar
  62. 62.
    Van Doorslaer S, Schweiger A. 1999. New hyperfine-decoupling schemes in electron paramagnetic resonance spectroscopy. Chem Phys Lett 308:187–194.CrossRefGoogle Scholar
  63. 63.
    Davies ER. 1974. New pulse ENDOR technique. Phys Lett A47:1–2.Google Scholar
  64. 64.
    Mims WB. 1965. Pulsed ENDOR experiments. Proc Roy Soc London 283:452.CrossRefGoogle Scholar
  65. 65.
    Fan C, Doan PE, Davoust CE, Hoffman B. 1992. Quantitative studies of Davies pulsed ENDOR. J Magn Reson 98:62–72.Google Scholar
  66. 66.
    Bolm C, Martin M, Gescheidt G, Palivan C, Neshchadin D, Bertagnolli H, Feth M, Schweiger A, Mitrikas G, Harmer J. 2003. Spectroscopic investigations of bis(sulfoximine) copper(II) complexes and their relevance in asymmetric catalysis. J Am Chem Soc:125, 6226–6227.CrossRefGoogle Scholar
  67. 67.
    Doan PE, Hoffman B. 1997. Making hyperfine selection in Mims ENDOR independent of deadtime. Chem Phys Lett 269:208–214.CrossRefGoogle Scholar
  68. 68.
    Epel B, Arieli D, Baute D, Goldfarb D. 2003. Improving W-band pulsed ENDOR sensitivity-random acquisition and pulsed special TRIPLE. J Magn Reson 164:78–83.PubMedCrossRefGoogle Scholar
  69. 69.
    Deblon S, Liesum L, Harmer J, Schönberg H, Schweiger A, Grützmacher H. 2002. High-resolution EPR spectroscopic investigations of a homologous set of d9-cobalt(0), d9-rhodium(0), and d9-iridium(0) complexes. Chem Eur J 8:601–611.CrossRefGoogle Scholar
  70. 70.
    Jeschke G, Schweiger A. 1995. Hyperfine-correlated electron-nuclear doubleresonance spectroscopy. Chem Phy Lett 246:431–438.CrossRefGoogle Scholar
  71. 71.
    Maire P, Sreekanth A, Büttner T, Harmer J, Gromov I, Rüegger H, Breher F, Schweiger A, Grützmacher H. 2006. Synthesis of a rhoda-aza-cyclopropane and characterization of its radical cation by EPR. Angew Chem, Int Ed 45:3265–3269.CrossRefGoogle Scholar
  72. 72.
    Mehring M, Höfer P, Grupp A. 1987. Pulsed electron nuclear double and triple resonance schemes. Ber Bunsenges Phys Chem 91:1132–1137,Google Scholar
  73. 73.
    Epel B, Goldfarb D. 2000. Two-dimensional pulsed TRIPLE at 95 GHz. J Magn Reson 146:196–203.PubMedCrossRefGoogle Scholar
  74. 74.
    Sammet A, Hubrich M, Spiess HW. 1995. Nature and dynamics of radicals in polyaramide as studied by pulsed electron nuclear double resonance. Adv Mater 7:747–750.CrossRefGoogle Scholar
  75. 75.
    Bennebroek MT, Schmidt J. 1997. Pulsed ENDOR spectroscopy at large thermal spin populations and the absolute sign of the hyperfine interaction. J Magn Reson 128:199–206.CrossRefGoogle Scholar
  76. 76.
    Epel B, Pöppl A, Manikandan P, Vega S, Goldfarb D. 2001. The effects of spin relaxation on the ENDOR spectra recorded at high magnetic fields and low temperatures. J Magn Reson 148:388–397.PubMedCrossRefGoogle Scholar
  77. 77.
    Epel B, Manikandan P, Kroneck PMH, Goldfarb D. 2001. High-field ENDOR and the sign of hyperfine coupling. Appl Magn Reson 21:287–297.Google Scholar
  78. 78.
    Abragam A, Bleaney B. 1970. Electron paramagnetic resonance of transition ions, §4.3, Oxford: Oxford UP.Google Scholar
  79. 79.
    Schweiger A. Günthard HsH. 1982. Transition-probabilities in electron nuclear doubleresonance and multiple-resonance spectroscopy with noncoherent and coherent radiofrequency fields. Chem Phys 70:1–22.CrossRefGoogle Scholar
  80. 80.
    Schweiger A, Günthard HsH. 1981. Electron nuclear double-resonance with circularly polarized radio-frequency fields (CP-ENDOR): theory and applications. Mol Phys 42:283–295.CrossRefGoogle Scholar
  81. 81.
    Schweiger A. 1982. Electron nuclear double-resonance of transition metal complexes with organic ligands. Struct Bonding 51:1–119.CrossRefGoogle Scholar
  82. 82.
    Jeschke G, Schweiger A. 1995. Time-domain chirp electron nuclear double-resonance spectroscopy in one and 2 dimensions, J Chem Phys 103:8329–8337.CrossRefGoogle Scholar
  83. 83.
    Maly T, MacMillan F, Zwicker K, Kashani-Poor N, Brandt U, Prisner TF. 2004. Relaxation filtered hyperfine (REFINE) spectroscopy: a novel tool for studying overlapping biological electron paramagnetic resonance signals applied to mitochondrial complex I. Biochemistry 43:3969–3978.PubMedCrossRefGoogle Scholar
  84. 84.
    Willer M, Schweiger A. 1994. Forbidden-transition-labeled EPR (FORTE): an approach for the sensitive measurement of forbidden EPR transitions. Chem Phys Lett 230:67–74.CrossRefGoogle Scholar
  85. 85.
    Sierra G, Schweiger A. 1998. Anisotropy-resolved electron paramagnetic resonance spectroscopy. Mol Phys 95:973–987.CrossRefGoogle Scholar
  86. 86.
    Hessinger D, Bauer C, Hubrich M, Jeschke G, Spiess HW. 2000. Magic-angle sample spinning electron paramagnetic resonance: instrumentation, performance, and limitations. J Magn Reson 147:217–255.PubMedCrossRefGoogle Scholar
  87. 87.
    Willer M, Schweiger A. 1997. Determination of g values by a new electron spin transient nutation experiment: the g_ value of titanium-doped sapphire. Chem Phys Lett 264:1–8.CrossRefGoogle Scholar
  88. 88.
    Stoll S, Jeschke G, Willer M, Schweiger A. 1998. Nutation-frequency correlated EPR spectroscopy: the PEANUT experiment. J Magn Reson 130:86–96.PubMedCrossRefGoogle Scholar
  89. 89.
    Astashkin AV, Schweiger A. 1990. Electron-spin transient nutation: a new approach to simplify the interpretation of ESR spectra. Chem Phys Lett 174:595–602.CrossRefGoogle Scholar
  90. 90.
    Mizuochi N, Ohba Y, Yamauchi S. 1997. A two-dimensional EPR nutation study on excited multiplet states of fullerene linked to a nitroxide radical. J Phys Chem A101:5966–5968.Google Scholar
  91. 91.
    Kouskov V, Sloop DJ, Liu SB, Lin TS. 1995. Pulsed transient nutation experiments on the photoexcited triplet-state. J Magn Reson Series A117:9–15.Google Scholar
  92. 92.
    Sierra GA. 1997. Two-dimensional pulse electron spin resonance methods for spectral resolution enhancement in solids. PhD thesis, No. 12241, ETH Zürich.Google Scholar
  93. 93.
    Blum K. 1981. Density matrix theory and applications. New York: Plenum.Google Scholar
  94. 94.
  95. 95.
    Stoll S, Schweiger A. 2006. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55.PubMedCrossRefGoogle Scholar
  96. 96.
    Wang D, Hanson GR. 1996. New methodologies for computer simulation of paramagnetic resonance spectra. Appl Magn Res 11:401–415.CrossRefGoogle Scholar
  97. 97.
    Noble CJ, Benson, S, Hanson GR. 2007. Molecular Sophe: an integrated approach to the structural characterization of paramagnetic molecules. Biol Magn Reson 28. In press.Google Scholar
  98. 98.
    Shane JJ., Liesum LP, Schweiger A. 1998. Efficient simulation of ESEEM spectra using gamma. J Magn Reson 134:72–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Jeffrey Harmer
    • 1
  • George Mitrikas
    • 1
  • Arthur Schweiger
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesLaboratory of Physical ChemistryETH-ZürichSwitzerland

Personalised recommendations