Chromium in Cancer and Dietary Supplements

  • Aviva Levina
  • Rachel Codd
  • Peter A. Lay
Part of the Biological Magnetic Resonance book series (BIMR, volume 28)

For many years, the carcinogenicity of Cr(VI) and the antidiabetic effects of Cr(III) compounds were regarded as independent biological activities, but recent evidence suggests that both these types of activities arise from varying amounts of Cr(VI) and reactive intermediates, such as Cr(V) species, which can be formed in vivo either by reduction of Cr(VI) or by oxidation of Cr(III) complexes. Applications of EPR spectroscopy for the studies of Cr(V) and other reactive intermediates of relevance to the biological activities of Cr(VI) and Cr(III) compounds have been reviewed. Due to the d1 electronic structure of Cr(V) complexes, EPR spectroscopy can be used as a highly sensitive and selective tool for the detection of Cr(V) intermediates formed in biological systems exposed to Cr(VI) (and potentially to Cr(III) complexes). Applications of EPR spectroscopy for the studies of Cr(V) and other reactive intermediates of relevance to the biological activities of Cr(VI) and Cr(III) compounds have been reviewed.


Electron Paramagnetic Resonance Dietary Supplement Spin Trap Amino Acid Complex Benzohydroxamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levina A, Codd R, Dillon CT, Lay PA. 2003. Chromium in biology: toxicology and nutritional aspects. Prog Inorg Chem51:145–250.Google Scholar
  2. 2.
    International Agency for Research on Cancer (IARC). 2001. Overall evaluations of carcinogenicity to humans.
  3. 3.
    Steinpress MG, Ward AC. 2001. The scientific process and Hollywood: the case of hexavalent chromium. Ground Water 39(3):321–322.PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson RA. 2000. Chromium in the prevention and control of diabetes. Diabetes Metab 26(1):22–27.PubMedGoogle Scholar
  5. 5.
    Stearns DM. 2000. Is chromium a trace essential metal? BioFactors 11(3):149–162.PubMedCrossRefGoogle Scholar
  6. 6.
    Martin RB. 2001. Are there proteins containing chromium? In Handbook on metalloproteins, pp.181–192. Ed I Bertini, A Sigel, H Sigel, New York: Marcel Dekker.Google Scholar
  7. 7.
    Vincent JB. 2004. Recent advances in the nutritional biochemistry of trivalent chromium. Proc Nutr Soc 63(1):41–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Levina A, Mulyani I, Lay PA. 2007. Redox chemistry and biological activities of chromium(III) complexes. In Nutritional biochemistry of chromium(III). Ed JB Vincent. Amsterdam: Elsevier Science.Google Scholar
  9. 9.
    Connett PH, Wetterhahn KE. 1983. Metabolism of the carcinogen chromate by cellular constituents. Struct Bonding (Berlin) 54:93–124.CrossRefGoogle Scholar
  10. 10.
    Levina A, Lay PA. 2005. Mechanistic studies of relevance to the biological activities of chromium. Coord Chem Rev 249(3–4):281–298.CrossRefGoogle Scholar
  11. 11.
    O'Brien TJ, Ceryak S, Patierno SR. 2003. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat Res 533(1–2):3–36.PubMedGoogle Scholar
  12. 12.
    Vincent JB. 2001. The bioinorganic chemistry of chromium(III). Polyhedron 20(1–2):1–26.CrossRefGoogle Scholar
  13. 13.
    Jacquamet L, Sun Y, Hatfield J, Gu W, Cramer SP, Crowder MW, Lorigan GA, Vincent JB, Latour J-M. 2003. Characterization of chromodulin by x-ray absorption and electron paramagnetic resonance spectroscopies and magnetic susceptibility measurements. J Am Chem Soc 125(3):774–780.PubMedCrossRefGoogle Scholar
  14. 14.
    Mulyani I, Levina A, Lay PA. 2004. Biomimetic oxidation of chromium(III): does the antidiabetic activity of chromium(III) involve carcinogenic chromium(VI)? Angew Chem, Int Ed 43(34):4504–4507.CrossRefGoogle Scholar
  15. 15.
    Thompson KH, Orvig C. 2004. Vanadium compounds in the treatment of diabetes. In Metal ions in biological systems, pp 221–252. Ed H Siegel, A Siegel, New York: Marcel Dekker.Google Scholar
  16. 16.
    Codd R, Irwin JA, Lay PA. 2003. Sialoglycoprotein and carbohydrate complexes in chromium toxicity. Curr Opinion Chem Biol 7(2):213–219.CrossRefGoogle Scholar
  17. 17.
    Harris HH, Levina A, Dillon CT, Mulyani I, Lai B, Cai Z, Lay PA. 2004. Timedependent uptake, distribution and biotransformation of chromium(VI) in individual and bulk human cells: application of synhrotron radiation techniques. J Biol Inorg Chem 10(2):105–118.CrossRefGoogle Scholar
  18. 18.
    Levina A, Harris HH, Lay PA. 2006. Binding of chromium(VI) to histones: implications for chromium(VI)-induced genotoxicity. J Biol Inorg Chem 11(2):225–234.PubMedCrossRefGoogle Scholar
  19. 19.
    Krepkiy D, Antholine WE, Petering DH. 2003. Properties of the reaction of chromate with metallothionein. Chem Res Toxicol 16(6):750–756.PubMedCrossRefGoogle Scholar
  20. 20.
    Qian Y, Jiang B, Flynn DC, Leonard SS, Wang S, Zhang Z, Ye J, Chen F, Wang L, Shi X. 2001. Cr(VI) increases tyrosine phosphorylation through reactive oxygen speciesmediated reactions. Mol Cell Biochem 222(1–2):199-204.PubMedCrossRefGoogle Scholar
  21. 21.
    Testa JJ, Grela MA, Litter MI. 2004. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species. Environ Sci Technol 38(5):1589–1594.PubMedCrossRefGoogle Scholar
  22. 22.
    Humar M, Petrič M, Pohleven F, Šentjurc M. 2002. Consumption of O2, evolution of CO2 and reduction of Cr(VI) during fixation of chromium based wood preservatives in wood. Wood Sci Technol 36(4):309–318.CrossRefGoogle Scholar
  23. 23.
    Pizzocaro C, Lafond C, Bolte M. 2002. Dichromated poly(vinyl alcohol): key role of chromium(V) in the properties of the photosensitive material. J Photochem Photobiol A 151(1–3):221–228.CrossRefGoogle Scholar
  24. 24.
    Bryliakov KP, Talsi EP. 2003. CrIII(salen)Cl catalyzed asymmetric epoxidations: insight into the catalytic cycle. Inorg Chem 42(22):7258–7265.PubMedCrossRefGoogle Scholar
  25. 25.
    Codd R, Dillon CT, Levina A, Lay PA. 2001. Studies on the genotoxicity of chromium: from the test tube to the cell. Coord Chem Rev 216–217:537–582.CrossRefGoogle Scholar
  26. 26.
    Lay PA, Levina A. 2004. Chromium. In Comprehensive coordination chemistry II: from biology to nanotechnology, Vol. 4, pp. 313–413. Ed JA McCleverty, TJ Meyer. Amsterdam: Elsevier Science.Google Scholar
  27. 27.
    Cawich CM, Ibrahim A, Link KL, Bumgartner A, Patro MD, Mahapatro SN, Lay PA, Levina A, Eaton SS, Eaton GR. 2003. Synthesis of a pyridinium bis[citrato(2–)]oxochromate(V) complex and its ligand-exchange reactions. Inorg Chem 42(20):6458–6468.PubMedCrossRefGoogle Scholar
  28. 28.
    Codd R, Levina A, Zhang L, Hambley TW, Lay PA. 2000. Characterization and x-ray absorption spectroscopic studies of bis[quinato(2-)]oxochromate(V). Inorg Chem 39(5):990–997.PubMedCrossRefGoogle Scholar
  29. 29.
    Gez S, Luxenhofer R, Levina A, Codd R, Lay PA. 2005. Chromium(V) complexes of hydroxamic acids: formation, structures, and reactivities. Inorg Chem 44(8):2934–2943.PubMedCrossRefGoogle Scholar
  30. 30.
    Barnard PJ, Levina A, Lay PA. 2005. Chromium(V) peptide complexes: synthesis and spectroscopic characterization. Inorg Chem 44(4):1044–1053.PubMedCrossRefGoogle Scholar
  31. 31.
    Levina A, Zhang L, Lay PA. 2003. Structure and reactivity of a chromium(V) glutathione complex. Inorg Chem 42(3):767–784.PubMedCrossRefGoogle Scholar
  32. 32.
    Weeks CL, Levina A, Dillon CT, Turner P, Fenton RR, Lay PA. 2004. Synthesis and characterization of a chromium(V) cis-dioxo bis(1,10-phenanthroline) complex and crystal and molecular structures of its chromium(III) precursor. Inorg Chem 43(24):7844–7856.PubMedCrossRefGoogle Scholar
  33. 33.
    Levina A, Foran GJ, Pattison DI, Lay PA. 2004. x-ray absorption spectroscopic and electrochemical studies of tris(catecholato(2-))-chromate(V/IV/III) complexes. Angew Chem, Int Ed 43(4):462–465.CrossRefGoogle Scholar
  34. 34.
    Milsmann C, Levina A, Harris HH, Foran GJ, Turner P, Lay PA. 2006. Charge distribution in chromium and vanadium catecholato complexes: x-ray absorption spectroscopic and computational studies. Inorg Chem 45(12):4743–4754.PubMedCrossRefGoogle Scholar
  35. 35.
    Nishino H, Kochi JK. 1990. Unusually stable chromium(V) perfluoropinacolate complexes. Inorg Chim Acta 174(1):93–102.CrossRefGoogle Scholar
  36. 36.
    Farrell RP, Lay PA. 1992. New insights into the structures and reactions of Cr(V) complexes: implications for Cr(VI) and Cr(V) oxidations of organic substrates and the mechanisms of chromium-induced cancers. Comments Inorg Chem 13(3–4):133–175.Google Scholar
  37. 37.
    Headlam HA, Weeks CL, Turner P, Hambley TW, Lay PA. 2001. Dinuclear chromium(V) amino acid complexes from the reduction of chromium(VI) in the presence of amino acid ligands: XAFS characterization of a chromium(V) amino acid complex. Inorg Chem 40(20):5097–5105.PubMedCrossRefGoogle Scholar
  38. 38.
    Barr-David G, Charara M, Codd R, Farrell RP, Irwin JA, Lay PA, Bramley R, Brumby S, Ji J-Y, Hanson GR. 1995. EPR characterisation of the Cr(V) intermediates in the Cr(VI)/Cr(V) oxidations of organic substrates and of relevance to Cr-induced cancers. J Chem Soc Faraday Trans 91(8):1207–1216.CrossRefGoogle Scholar
  39. 39.
    Zhang L, Lay PA. 1996. EPR spectroscopic studies of the reactions of Cr(VI) with Lascorbic acid, L-dehydroascorbic acid and 5,6-O-isopropylidene-L-ascorbic acid in water: implications for chromium(VI) genotoxicity. J Am Chem Soc 118(50):12624–12637.CrossRefGoogle Scholar
  40. 40.
    Stearns DM, Kennedy LJ, Courtney KD, Giangrande PH, Phieffer LS, Wetterhahn KE. 1995. Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro. Biochemistry 34(3):910–919.PubMedCrossRefGoogle Scholar
  41. 41.
    Stearns DM, Wetterhahn KE. 1997. Intermediates produced in the reaction of chromium(VI) with dehydroascorbate cause single-strand breaks in plasmid DNA. Chem Res Toxicol 10(3):271–278.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang L. 1998. EPR and XAFS studies of biologically relevant chromium(V) complexes and manganese(II)-activated aminopeptidase. PhD thesis, The University of Sydney.Google Scholar
  43. 43.
    Levina A, Ludwig C, Lay PA. 2003. Reactive intermediates formed during the reactions of chromium(VI) with glutathione: which species are responsible for the DNA damage? J Inorg Biochem 96(1):177.CrossRefGoogle Scholar
  44. 44.
    Pattison DI, Lay PA, Davies MJ. 2000. EPR studies of chromium(V) intermediates generated via reduction of chromium(VI) by DOPA and related catecholamines: potential role for oxidized amino acids in chromium-induced cancers. Inorg Chem 39(13):2729–2739.PubMedCrossRefGoogle Scholar
  45. 45.
    Pattison DI, Davies MJ, Levina A, Dixon NE, Lay PA. 2001. Chromium(VI) reduction by catechol(amine)s results in DNA cleavage in vitro: relevance to chromium genotoxicity. Chem Res Toxicol 14(5):500–510.PubMedCrossRefGoogle Scholar
  46. 46.
    Headlam HA. 1998. The role of Cr(III) and Cr(V) peptide and amino acid complexes in Cr-induced carcinogenesis. PhD Thesis, The University of Sydney.Google Scholar
  47. 47.
    Duling D. 1996. PEST WinSim. National Institute of Environmental Health Science,
  48. 48.
    Codd R, Lay PA. 1999. Competition between 1,2-diol and 2-hydroxy acid coordination in Cr(V)-quinic acid complexes: implications for stabilization of Cr(V) intermediates of relevance to Cr(VI)-induced carcinogenesis. J Am Chem Soc 121(34):7864–7876.CrossRefGoogle Scholar
  49. 49.
    Bramley R, Ji J-Y, Judd RJ, Lay PA. 1990. Solvent dependence of the EPR spectra of oxochromate(V) complexes; solution structures and the effects of hydrogen bonding between the solvent and the complex. Inorg Chem 29(17):3089–3094.CrossRefGoogle Scholar
  50. 50.
    Irwin JA. 1998. Cr(V)-sugar complexes: possible intracellular intermediates of importance to chromate-induced carcinogenesis. PhD thesis, The University of Sydney.Google Scholar
  51. 51.
    Collins TJ, Slebodnick C, Uffelman ES. 1990. Cr(V)-oxo complexes of macrocyclic tetraamido-N ligands tailored for highly oxidized middle transition metal complexes. Inorg Chem 29(18):3433–3436.CrossRefGoogle Scholar
  52. 52.
    Meier-Callahan AE, Di Bilio AJ, Simkhovich L, Mahammed A, Goldberg I, Gray HB, Gross Z. 2001. Chromium corroles in four oxidation states. Inorg Chem 40(26):6788–6793.PubMedCrossRefGoogle Scholar
  53. 53.
    Headlam HA, Lay PA. 2001. EPR spectroscopic studies of the reduction of chromium(VI) by methanol in the presence of peptides: formation of long-lived chromium(V) peptide complexes. Inorg Chem 40(1):78–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Wu LE, Levina A, Harris HH, Cai Z, Lai B, Vogt S, James DE. 2006. Adipocytes oxidize a common Cr(III) dietary supplement into carcinogenic Cr(VI) and Cr(V). To be submitted.Google Scholar
  55. 55.
    Branca M, Micera G, Dessí A. 1988. Reduction of chromium(VI) by D-galacturonic acid and formation of stable chromium(V) intermediates. Inorg Chim Acta 153(1):61–65.CrossRefGoogle Scholar
  56. 56.
    Signorella S, Daier V, García S, Cargnello R, González JC, Rizzotto M, Sala LF. 1999. The relative ability of aldoses and deoxyaldoses to reduce Cr(VI) and Cr(V): a comparative and mechanistic study. Carbohydr Res 316(1–4):14-25.CrossRefGoogle Scholar
  57. 57.
    Signorella S, González JC, Sala LF. 2002. EPR spectroscopic characterization of CrV– saccharide complexes. J Arg Chem Soc 90(1–3):1-19.Google Scholar
  58. 58.
    Rizzotto M, Levina A, Santoro M, García S, Frascaroli MI, Signorella S, Sala LF, Lay PA. 2002. Redox and ligand-exchange chemistry of chromium(VI/V)-methyl glycoside systems. Dalton Trans 16:3206–3213.Google Scholar
  59. 59.
    Branca M, Dessí A, Kozlowski H, Micera G, Swiatek J. 1990. Reduction of chromateions by glutathione tripeptide in the presence of sugar ligands. J Inorg Biochem 39(3):217–226.CrossRefGoogle Scholar
  60. 60.
    Bartholomäus R, Levina A, Lay PA. 2006. Unpublished data.Google Scholar
  61. 61.
    Signorella S, Daier V, Santoro M, García S, Palopoli C, González JC, Korecz L, Rockenbauer A, Sala LF. 2001. The EPR pattern of [CrO(cis-1,2-cyclopentanediolato)2] and [CrO(trans-1,2-cyclopentanediolato)2]. Eur J Inorg Chem7:1829–1833.CrossRefGoogle Scholar
  62. 62.
    Codd R, Lay PA. 2001. Chromium(V)-sialic (neuraminic) acid species are formed from mixtures of chromium(VI) and saliva. J Am Chem Soc 123(47):11799–11800.PubMedCrossRefGoogle Scholar
  63. 63.
    Codd R, Lay PA. 2003. Oxochromium(V) species formed with 2,3-dehydro-2-deoxy-N-acetylneuraminic or N-acetylneuraminic (sialic) acids: an in vitro model system of oxochromium(V) species potentially stabilized in the respiratory tract upon inhalation of carcinogenic chromium(VI) compounds. Chem Res Toxicol 16(7):881–892.PubMedCrossRefGoogle Scholar
  64. 64.
    Signorella S, García S, Rizzotto M, Levina A, Lay PA, Sala LF. 2005. The EPR pattern of CrV complexes of D-ribose derivatives. Polyhedron 24(9):1079–1085.CrossRefGoogle Scholar
  65. 65.
    Meejoo S, Levina A, Lay PA. 2006. Unpublished data.Google Scholar
  66. 66.
    Liu KJ, Shi X, Jiang J, Goda F, Dalal N, Swartz HM. 1996. Low frequency electron paramagnetic resonance investigation on metabolism of chromium(VI) by whole live mice. Ann Clin Lab Sci 26(2):176–184.PubMedGoogle Scholar
  67. 67.
    Liu KJ, Shi X. 2001. In vivo reduction of chromium(VI) and its related free radical generation. Mol Cell Biochem 222(1–2):41–47.PubMedCrossRefGoogle Scholar
  68. 68.
    Myers CR, Myers JM, Carstens BP, Antholine WE. 2000. Reduction of chromium(VI) to chromium(V) by human microsomal enzymes: effects of iron and quinones. Toxic Subst Mech 19(1):25–51.CrossRefGoogle Scholar
  69. 69.
    Porter R, Jáchymová M, Martásek P, Kalyanaraman B, Vásquez-Vivar J. 2005. Reductive activation of Cr(VI) by nitric oxide synthase. Chem Res Toxicol 18(5):834–843.PubMedCrossRefGoogle Scholar
  70. 70.
    Codd R. 2004. Metalloglycomics: a new perspective upon competitive metal– carbohydrate binding using EPR spectroscopy. Chem Commun 23:2653–2655.CrossRefGoogle Scholar
  71. 71.
    Rakitin YV, Yablokov YV. 1982. Distortion of clusters and EPR of trinuclear chromium carboxylates. Zh Neorg Khim 27(1):104–108. Engl transl: Rus J Inorg Chem 27(1):59–62.Google Scholar
  72. 72.
    Pilbrow JR. 1990. Transition ion electron paramagnetic resonance, pp. 120–125. Oxford: Clarendon Press.Google Scholar
  73. 73.
    Pilbrow JR. 1978. Effective gValues for S= 3/2 and S= 5/2. J Magn Reson 31:479–490.Google Scholar
  74. 74.
    Bonomo RP, Di Bilio AJ, Riggi F. 1991. EPR investigation of chromium(III) complexes: analysis of their frozen solution and magnetically dilute powder spectra. Chem Phys 151(3):323–333.CrossRefGoogle Scholar
  75. 75.
    Wu S-Y, Gao X-Y, Yan W-Z. 2003. Theoretical studies of the EPR gfactors and the hyperfine structure constants of Cr3+ in MgS and SrS. Z Naturforsch A 58(9–10):503–506.Google Scholar
  76. 76.
    Weckhuysen BM, Schoonheydt RA, Mabbs FE, Collison D. 1996. Electron paramagnetic resonance of heterogeneous chromium catalysts. J Chem Soc, Faraday Trans 92(13):2431–2436.CrossRefGoogle Scholar
  77. 77.
    Thompson M, Connick RE. 1981. Hydrolytic polymerization of chromium(III), 1: two dimeric species. Inorg Chem 20(7):2279–2285.CrossRefGoogle Scholar
  78. 78.
    Aisen P, Aasa R, Redfield AG. 1969. The chromium, manganese, and cobalt complexes of transferrin. J Biol Chem 244(17):4628–4633.PubMedGoogle Scholar
  79. 79.
    Martinelli RA, Hanson GR, Thompson JS, Holmquist B, Pilbrow JR, Auld DS, Vallee BL. 1989. Biochemistry 28(5):2251–2258.PubMedCrossRefGoogle Scholar
  80. 80.
    Della Rocca BM, Lauria G, Venerini F, Palmieri L, Polizio F, Capobianco L, Stipani V, Pedersen J, Cappello AR, Desideri A, Palmieri F. 2003. The mitochondrial oxoglutarate carrier: structural and dynamic properties of transmembrane segment IV studied by site-directed spin labeling. Biochemistry 42(18):5493–5499.CrossRefGoogle Scholar
  81. 81.
    Hedin EMK, Hoyrup P, Patkar SA, Vind J, Svendsen A, Fransson L, Hult K. 2002. Interfacial orientation of Thermomyces lanuginosalipase on phospholipid vesicles investigated by electron spin resonance relaxation spectroscopy. Biochemistry 41(48):14185–14196.PubMedCrossRefGoogle Scholar
  82. 82.
    Montarani L, Scotti R, Lockhart TP. 1994. Kinetics and mechanism of the reaction of hydrated chromium(III) with partially hydrolyzed polyacrylamide. Macromolecules 27(12):3341–3348.CrossRefGoogle Scholar
  83. 83.
    Marshall SA, Yu C, Zhang YN. 1988. Comments on the EPR spectrum of tetravalent chromium in ruby. Phys Stat Sol B 149(2):691–695.CrossRefGoogle Scholar
  84. 84.
    Reinen D, Kesper U, Atanasov M, Roos J. 1995. Cr4+ in tetrahedral coordination of oxidic solids: a spectroscopic and structural investigation. Inorg Chem 34(1):184–192.CrossRefGoogle Scholar
  85. 85.
    König E. 1968. Electron paramagnetic resonance. In Physical methods in advanced inorganic chemistry, pp. 329–339. Ed HAO Hill, P Day, London: Interscience Publishers.Google Scholar
  86. 86.
    Chiu A, Chiu N, Shi X, Beaubier J, Dalal NS. 1998. Activation of a procarcinogen by reduction: Cr6+−Cr5+−Cr4+−Cr3+: a case study by electron spin resonance (ESR/PMR). Environ Carcin Ecotox Rev C16(2):135–148.Google Scholar
  87. 87.
    Katz AJ, Chiu A, Beaubier J, Shi X. 2001. Combining Drosophila melanogastersomatic mutation-recombination and electron spin resonance spectroscopy data to interpret epidemiologic observations on chromium carcinogenicity. Mol Cell Biochem 222(1–2):61–68.PubMedCrossRefGoogle Scholar
  88. 88.
    Kalabegishvili TL, Tsibakhashvili NY, Holman H-YN. 2003. Electron spin resonance study of chromium(V) formation and decomposition by basalt-inhabiting bacteria. Environ Sci Technol 37(20):4678–4684.PubMedCrossRefGoogle Scholar
  89. 89.
    Luo H, Lu Y, Shi X, Mao Y, Dalal NS. 1996. Cr(IV)-mediated Fenton-like reaction causes DNA damage: implication to genotoxicity of chromate. Ann Clin Lab Sci 26(2):185–191.PubMedGoogle Scholar
  90. 90.
    Luo H, Lu Y, Mao Y, Shi X, Dalal NS. 1996. Role of Cr(IV) in the Cr(VI)-related free radical formation, dG hydroxylation and DNA damage. J Inorg Biochem 64(1):25–35.PubMedCrossRefGoogle Scholar
  91. 91.
    Liu KJ, Shi X, Dalal NS. 1997. Synthesis of Cr(IV)–GSH, its identification and its free hydroxyl radical generation: a model compound for Cr(VI) carcinogenicity. Biochem Biophys Res Commun 235(1):54–58.PubMedCrossRefGoogle Scholar
  92. 92.
    Lay PA, Levina A. 1998. Activation of molecular oxygen during the reactions of chromium(VI/V/IV) with biological reductants: implications for chromium-induced genotoxicities. J Am Chem Soc 120(27):6704–6714.CrossRefGoogle Scholar
  93. 93.
    Dalla-Pozza A-M. 1996. Formation of DNA-damaging Cr(V) complexes during the reactions of Cr(VI) with a vitamin E analogue and D-glucose. BSc(Hons) thesis, The University of Sydney.Google Scholar
  94. 94.
    Sugden KD, Wetterhahn KE. 1996. Reaction of chromium(V) with the EPR spin traps 5,5-dimethylpyrroline n-oxide and phenyl-N-tert-butylnitrone resulting in direct oxidation. Inorg Chem 35(3):651–657.CrossRefGoogle Scholar
  95. 95.
    Buettner G. 1987. Spin trapping: ESR parameters of spin traps. Free Rad Biol Med 3(4):259–303.PubMedCrossRefGoogle Scholar
  96. 96.
    Antonini JM, Leonard SS, Roberts JR, Solano-Lopez C, Young S-H, Shi X, Taylor MD. 2005. Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction. Mol Cell Biochem 279(1–2):17–23.PubMedCrossRefGoogle Scholar
  97. 97.
    Poljšak B, Gazdag Z, Jenko-Brinovec Š, Fujs Š, Pesti M, Bélagyi J, Plesničar S, Raspor P. 2005. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)- induced damage: an in vivo and in vitro approach. J Appl Toxicol 25(6):535–548.PubMedCrossRefGoogle Scholar
  98. 98.
    Shi H, Hudson LG, Liu KJ. 2004. Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Rad Biol Med 37(5):582–593.PubMedCrossRefGoogle Scholar
  99. 99.
    Levina A, Barr-David R, Codd R, Lay PA, Dixon NE, Hammershøi A, Hendry P. 1999. In vitro plasmid DNA cleavage by chromium(V) and -(IV) 2-hydroxycarboxylato complexes. Chem Res Toxicol 12(4):371–381.PubMedCrossRefGoogle Scholar
  100. 100.
    Wetterhahn Jennette K. 1982. Microsomal reduction of the carcinogen chromate produces chromium(V). J Am Chem Soc 104(3):874–875.CrossRefGoogle Scholar
  101. 101.
    Rossi SC, Gorman N, Wetterhahn KE. 1988. Mitochondrial reduction of the carcinogen chromate: formation of chromium(V). Chem Res Toxicol 1(2):101–107.PubMedCrossRefGoogle Scholar
  102. 102.
    Branca M, Dessí A, Kozlowski H, Micera G, Serra MV. 1989. In vitro interaction of mutagenic chromium(VI) with red blood cells. FEBS Lett 257(1):52–54.PubMedCrossRefGoogle Scholar
  103. 103.
    Sugiyama M, Ando A, Ogura R. 1989. Effect of vitamin E on survival, GSH reductase and formation of Cr(V) in Chinese hamster V-79 cells treated with sodium chromate (VI). Carcinogenesis 10(4):737–741.PubMedCrossRefGoogle Scholar
  104. 104.
    Sugiyama M, Tsuzuki K, Ogura R. 1991. Effect of ascorbic acid on DNA damage, cytotoxicity, glutathione reductase and formation of paramagnetic Cr in Chinese hamster V-79 cells treated with sodium chromate. J Biol Chem 266(6):3383–3386.PubMedGoogle Scholar
  105. 105.
    Witmer C, Faria E, Park H-S, Sadrieh N, Yurkow E, O'Connell S, Sirak A, Schleyer H. 1994. In vivo effects of chromium. Environ Health Perspect 102(2):169–176.PubMedCrossRefGoogle Scholar
  106. 106.
    Shi X, Dalal NS, Vallyathan V. 1991. One-electron reduction of carcinogen chromate by microsomes, mitochondria and E. coli: identification of chromium(V) and OH radical. Arch Biochem Biophys 290(2):381–386.PubMedCrossRefGoogle Scholar
  107. 107.
    Myers CR, Carstens BP, Antholine WE, Myers JM. 2000. Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciensMR-1. J Appl Microbiol 88(1):98–106.PubMedCrossRefGoogle Scholar
  108. 108.
    Micera G, Dessí A. 1988. Chromium adsorption by plant roots and formation of longlived Cr(V) species: an ecological hazard? J Inorg Biochem 34(3):157–166.CrossRefGoogle Scholar
  109. 109.
    Appenroth KJ, Bischoff M, Gabrys H, Stoeckel J, Swartz HM, Walczak T, Winnefeld K. 2000. Kinetics of chromium(V) formation and reduction in fronds of the duckweed Spirodela polyrhiza: a low-frequency EPR study. J Inorg Biochem 78(3):235–242.PubMedCrossRefGoogle Scholar
  110. 110.
    Liu KJ, Mäder K, Shi X, Swartz HM. 1997. Reduction of carcinogenic chromium(VI) on the skin of living rats. Magn Reson Med 38(4):524–525.PubMedCrossRefGoogle Scholar
  111. 111.
    Sakurai H, Takechi K, Tsuboi H, Yasui H. 1999. ESR characterization and metallokinetic analysis of Cr(V) in the blood of rats given carcinogen chromate(VI) compounds. J Inorg Biochem 76(1):71–80.PubMedCrossRefGoogle Scholar
  112. 112.
    Ueno S, Kashimoto T, Susa N, Furukawa Y, Ishii M, Yokoi K, Yasuno M, Sasaki YF, Ueda J, Nishimura Y, Sugiyama M. 2001. Detection of dichromate(VI)-induced DNA strand breaks and formation of paramagnetic chromium in multiple mouse organs. Toxicol Appl Pharmacol 170(1):56–62.PubMedCrossRefGoogle Scholar
  113. 113.
    Codd R, Lay PA, Tsibakhashvili NY, Kalabegishvili TL, Murusidze IG, Holman H-YN. 2006. Chromium(V) complexes generated in Arthrobacter oxydansby simulation analysis of EPR spectra. J Inorg Biochem 100(11):1827–1833.PubMedCrossRefGoogle Scholar
  114. 114.
    Levina A, Harris HH, Lay PA. 2007. x-ray absorption and epr spectroscopic studies of the biotransformations of chromium(vi) in mammalian cells. Is chromodulin an artefact of isolation methods? J Am Chem Soc. In press.Google Scholar
  115. 115.
    Kosower EM. 1976. Glutathione. In Glutathione: metabolism and function, pp 1–15. Ed IM Arias, WB Jacoby, New York: Raven Press.Google Scholar
  116. 116.
    Quievryn G, Peterson E, Messer J, Zhitkovich A. 2003. Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells. Biochemistry 42(4):1062–1070.PubMedCrossRefGoogle Scholar
  117. 117.
    Kartvelishvili T, Abuladze M, Asatiani N, Akhvlediani J, Kiziria E, Asanishvili L, Lejava L, Holman H-YN, Sapojnikova N. 2004. Estimation of the cellular antioxidant response to chromium action using ESR method. The Scientific World 4(Suppl. 2):785–794.Google Scholar
  118. 118.
    Shayer R, Kinchesh P, Raffray M, Kortenkamp A. 2004. Biomonitoring of chromium(VI) deposited in pulmonary tissues: pilot studies of a magnetic resonance imaging technique in a post–mortem rodent model. Biomarkers 9(1):32–46.PubMedCrossRefGoogle Scholar
  119. 119.
    Lovy D. 1996. WinDIG, University of Geneva, Switzerland.

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Centre for Heavy Metals Research and Centre for Structural Biology and Structural Chemistry, School of Chemistry, The University of SydneySydneyAustralia

Personalised recommendations