Insulin-Enhancing Vanadium Pharmaceuticals: The Role of Electron Paramagnetic Resonance Methods in the Evaluation of Antidiabetic Potential

  • Barry D. Liboiron
Part of the Biological Magnetic Resonance book series (BIMR, volume 28)

Electron paramagnetic resonance spectroscopy has been heavily used for the study of vanadium(IV) compounds in both naturally containing vanadium species and spin-labeled or metal-substituted systems. Vanadium compounds have been shown to possess potent antidiabetic properties such as normalization of blood glucose levels and lipid metabolism. Vanadium compounds, and in particular vanadyl (VIVO2+) coordination complexes, represent a potential new treatment option for diabetes mellitus. Understanding of the metabolism and mechanism of these complexes in vivo has been greatly expanded over the past 25 years in large part due to contributions made through the use of EPR spectroscopy. This review will outline the application of EPR to the study of antidiabetic vanadium(IV) compounds and highlight important studies of the in-vitro and in-vivo properties of these complexes in which EPR made a critical contribution. The role of EPR spectroscopy in the field of vanadium antidiabetic pharmaceuticals has led to major advances in the optimization of chemical structure, formulation, and descriptions of vanadium metabolism.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Electron Spin Echo Envelope Modulation Vanadium Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lyonnet B. 1899. L’emploi therapeutigue des derives du vanadium. Presse Med 1:191–192.Google Scholar
  2. 2.
    Lopez V, Stevens T, Lindquist RN. 1976. Vanadium ion inhibition of alkaline phosphatase- catalyzed phosphate ester hydrolysis. Arch Biochem Biophys 24:31–38.CrossRefGoogle Scholar
  3. 3.
    Cantley Jr LC, Josephson L, Warner R, Yanagihara N, Lechene C, Guidotti G. 1977. Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 252:7421–7423.PubMedGoogle Scholar
  4. 4.
    Shechter Y, Karlish SJD. 1980. Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl(IV) ions. Nature 284:556–558.PubMedCrossRefGoogle Scholar
  5. 5.
    Heyliger CE, Tahiliani AG, McNeill JH. 1985. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227:1474–1477.PubMedCrossRefGoogle Scholar
  6. 6.
    Brichard SM, Assimacopoulos-Jeannet F, Jeanrenaud B. 1992. Vanadate treatment markedly increases glucose utilization in muscle of insulin-resistant fa/fa rats without modifying glucose transporter expression. Endocrinology 131:311–317.PubMedCrossRefGoogle Scholar
  7. 7.
    Blondel O, Simon J, Chevalier B, Portha B. 1990. Impaired insulin action but normal insulin receptor activity in diabetic rat liver: effect of vanadate. Am J Physiol 258:E459–E467.PubMedGoogle Scholar
  8. 8.
    Gil J, Miralpeix M, Carreras J, Bartrons R. 1988. Insulin-like effects of vanadate on glucokinase acitivity and fructose 2,6-bisphosphate levels in the liver of diabetic rats. J Biol Chem 263:1868–1871.PubMedGoogle Scholar
  9. 9.
    Ramanadham S, Cros GH, Mongold JJ, Serrano JJ, McNeill JH. 1990. Enhanced in vivo sensitivity of vanadyl-treated diabetic rats to insulin. Can J Physiol Pharmacol 68:486–491.PubMedGoogle Scholar
  10. 10.
    Bendayan M, Gingras D. 1989. Effect of vanadate administration on blood glucose and insulin levels as well as on the exocrine pancreatic function in streptozotocin-diabetic rats. Diabetologia 32:561–567.PubMedCrossRefGoogle Scholar
  11. 11.
    McNeill JH, Yuen VG, Hoveyda HR, Orvig C. 1992. Bis(maltolato)oxovanadium(IV) is a potent insulin mimic. J Med Chem 35:1489–1491.PubMedCrossRefGoogle Scholar
  12. 12.
    Takino T, Yasui H, Yoshitake A, Hamajima Y, Matsushita R, Takada J, Sakurai H. 2001. A new halogenated antidiabetic vanadyl complex bis(5-iodopicalinato)oxovanadium(IV): in vitro and in vivo insulinomimetic evaluations and metallokinetic analysis. J Biol Inorg Chem 6:133–142.PubMedCrossRefGoogle Scholar
  13. 13.
    Yuen VG, Orvig C, McNeill JH. 1995. Comparison of the glucose-lowering properties of vanadyl sulfate and bis(maltolato)oxovanadium(IV) following acute and chronic administration. Can J Physiol Pharmacol 73:55–64.PubMedGoogle Scholar
  14. 14.
    Reul BA, Amin SS, Buchet JP, Ongemba LN, Crans DC, Brichard SM. 1999. Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. Br J Pharmacol 126:467–477.PubMedCrossRefGoogle Scholar
  15. 15.
    Posner BI, Yang CR, Shaver A. 1998. Mechanism of insulin mimetic action of peroxovanadium compounds. In Vanadium compounds: chemistry, biochemistry and therapeutic applications, pp. 316–328. Ed AS Tracey, DC Crans. Washington, DC: American Chemical Society.Google Scholar
  16. 16.
    Chasteen ND, DeKoch RJ, Rogers BL, Hanna MW. 1973. Use of the vanadyl(IV) ion as a new spectroscopic probe of metal binding to proteins: vanadyl insulin. J Am Chem Soc 95:1301–1309.PubMedCrossRefGoogle Scholar
  17. 17.
    Domingo JL, Gomez M, Sanchez DJ, Llobet JM, Keen CL. 1995. Toxicology of vanadium compounds in diabetic rats: the action of chelating agents on vanadium accumulation. Mol Cell Biochem 153:233–240.PubMedCrossRefGoogle Scholar
  18. 18.
    Willsky GR, Goldfine AB, Kostyniak PJ. 1998. Pharmacology and toxicology of oxovanadium species: oxovanadium pharmacology. In Vanadium compounds: biochemistry, chemistry and therapeutic applications, pp. 278–296. Ed AS Tracey, DC Crans. Oxford: Oxford University Press.Google Scholar
  19. 19.
    Deligiannakis YG, Louloudi M, Hadjiliadis N. 2000. Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coord Chem Rev 204:1–112.CrossRefGoogle Scholar
  20. 20.
    Smith II TS, LoBrutto R, Pecoraro VL. 2002. Paramagnetic spectroscopy of vanadyl complexes and its applications to biological systems. Coord Chem Rev 228:1–18.CrossRefGoogle Scholar
  21. 21.
    Chasteen ND. 1981. Vanadyl(IV) EPR spin probes: inorganic and biochemical aspects. In Biological magnetic resonance, pp. 53–119. Ed LJ Berliner, J Reuben. New York: Plenum.Google Scholar
  22. 22.
    Kustin K. 1998. Perspectives on vanadium biochemistry. In Vanadium compounds: chemistry, biochemistry and therapeutic applications, pp. 170–185. Ed AS Tracey, DC Crans. Washington, DC: American Chemical Socieity.Google Scholar
  23. 23.
    Thompson KH, Liboiron BD, Hanson GR, Orvig C. 2005. In vivo coordination chemistry and biolocalization of bis(ligand)oxovanadium(IV) complexes for diabetes treatment. In Medicinal inorganic chemistry, pp. 384–399. Ed JL Sessler, SR Doctrow, TJ McMurry, SJ Lippard. Washington, DC: American Chemical Society.Google Scholar
  24. 24.
    Orvig C, Thompson KH, Battell M, McNeill JH. 1995. Vanadium compounds as insulin mimics. In Metal ions in biological systems. Ed H Sigel, A Sigel. New York: Marcel Dekker.Google Scholar
  25. 25.
    Thompson KH, McNeill JH, Orvig C. 1999. Vanadium compounds as insulin mimics. Chem Rev 99:2561–2571.PubMedCrossRefGoogle Scholar
  26. 26.
    Crans DC, Smee JJ, Gaidamauskas E, Yang Y. 2004. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902.PubMedCrossRefGoogle Scholar
  27. 27.
    Thompson KH, Orvig C. 2000. Design of vanadium compounds as insulin-enhancing agents. J Chem Soc Dalton Trans, pp. 2885–2892.Google Scholar
  28. 28.
    Sakurai H, Tamura A, Fugono J, Yasui H, Kiss T. 2003. New antidiabetic vanadyl– pyridone complexes: effect of equivalent transformation of coordinating atom in the ligand. Coord Chem Rev 245:31–37.CrossRefGoogle Scholar
  29. 29.
    Rehder D, Costa Pessoa J, Geraldes CFGC, Castro MMCA, Kabanos TA, Kiss T, Meier B, Micera G, Pettersson L, Ranger M, Salifoglou A, Turel I, Wang D. 2002. In vitro study of the insulin-mimetic behaviour of vanadium(IV, V) coordination compounds. J Biol Inorg Chem 7:384–396.PubMedCrossRefGoogle Scholar
  30. 30.
    Matoso CMM, Pombeiro AJL, da Silva JJRF, da Silva MFCF, da Silva JAL, Baptista- Ferreira JL, Pinho-Almeida F. 1998. A possible role for amavadin in some Amanita fungi. In Vanadium compounds: chemistry, biochemistry and therapeutic applications, pp. 241–247. Ed AS Tracey, DC Crans. Washington, DC: American Chemical Society.Google Scholar
  31. 31.
    Chasteen ND, Francavilla J. 1976. Electron paramagnetic resonance study of vanadyl(IV)–serum albumin complexes. J Phys Chem 80:867–871.CrossRefGoogle Scholar
  32. 32.
    Albanese NF, Chasteen ND. 1978. Origin of the electron paramagnetic resonance line widths in frozen solutions of oxovanadium(IV). J Phys Chem 82:910–914.CrossRefGoogle Scholar
  33. 33.
    Telser J. 2003. Paramagnetic resonance of biomolecules. Washington, DC: American Chemical Society.Google Scholar
  34. 34.
    Wuthrich K. 1965. Elektronenspinresonanz-Untersuchungen Von VO2+-Komplexverbindungen in Wasseriger Losung 2. Helv Chim Acta 48:1012–1017.CrossRefGoogle Scholar
  35. 35.
    Cornman CR, Zovinka EP, Boyajian YD, Geiser-Bush KM, Boyle PD, Singh P. 1995. Structural and EPR studies of vanadium complexes of deprotonated amide ligands: effects on the V-51 hyperfine coupling constant. Inorg Chem 34:4213–4219.CrossRefGoogle Scholar
  36. 36.
    Hamstra BH, Houseman ALP, Colpas GJ, Kampf R, LoBrutto R, Frasch WD, Pecoraro VL. 1997. Structural and solution characterization of mononuclear vanadium(IV) complexes that help to elucidate the active site structure of the reduced vanadium haloperoxidases. Inorg Chem 36:4866–4874.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith II TS, Root CH, Kampf JW, Rasmussen PG, Pecoraro VL. 2000. Reevaluation of the additivity relationship for vanadyl–imidazole complexes: correlation of the EPR hyperfine constant with ring orientation. J Am Chem Soc 122:767–775.CrossRefGoogle Scholar
  38. 38.
    Tasiopoulos AJ, Troganis AN, Evangelou A, Raptopoulou CP, Terzis A, Deligiannakis YG, Kabanos TA. 1999. Synthetic analogues for oxovanadium(IV)-glutathione interaction: an EPR, synthetic and structural study of oxovanadium(IV) compounds with sulfhydryl- containing pseudopeptides and dipeptides. Chem Eur J 5:910–921.CrossRefGoogle Scholar
  39. 39.
    Houseman ALP, LoBrutto R, Frasch WD. 1995. Effects of nucleotides on the protein ligands to metals at the M2 and M3 metal binding sites of the spinach chloroplast F1- ATPase. Biochemistry 34:3277–3285.PubMedCrossRefGoogle Scholar
  40. 40.
    Sakurai H, Yasui H. 2003. Structure–activity relationship of insulinomimetic vanadyl– picolinate complexes in view of their clinical use. J Trace Elem Exper Med 16:269–280.CrossRefGoogle Scholar
  41. 41.
    Crans DC, Khan AR, Mahroof-Tahir M, Mondal S, Miller SM, la Cour A, Anderson OP, Jakusch T, Kiss T. 2001. Bis(acetylamido)oxovanadium(IV) complexes: solid state and solution studies. J Chem Soc Dalton Trans:3337–3345.Google Scholar
  42. 42.
    Gatjens J, Meier B, Kiss T, Nagy EM, Buglyo P, Sakurai H, Kawabe K, Rehder D. 2003. A new family of insulin-mimetic vanadium complexes derived from 5- carboalkoxypicolinates. Chem Eur J 9:4924–4935.CrossRefGoogle Scholar
  43. 43.
    Caravan P, Gelmini L, Glover N, Herring FG, Li H, McNeill JH, Rettig SJ, Setyawati IA, Shuter E, Sun Y, Tracey AS, Yuen VG, Orvig C. 1995. Reaction chemistry of BMOV, bis(maltolato)oxovanadium(IV): a potent insulin mimetic agent. J Am Chem Soc 117:12759–12770.CrossRefGoogle Scholar
  44. 44.
    Kiss E, Garribba E, Micera G, Kiss T, Sakurai H. 2000. Ternary complex formation between VO(IV)–picolinic acid or VO(IV)-6-methylpicolinic acid and small blood serum bioligands. J Inorg Biochem 78:97–108.PubMedCrossRefGoogle Scholar
  45. 45.
    Kiss E, Kawabe K, Tamura A, Jakusch T, Sakurai H, Kiss T. 2003. Chemical speciation of insulinomimetic VO(IV) complexes of pyridine-N-oxide derivatives: binary and ternary systems. J Inorg Biochem 95:69–76.PubMedCrossRefGoogle Scholar
  46. 46.
    Amin SS, Cryer K, Zhang B, Dutta SK, Eaton SS, Anderson OP, Miller SM, Reul BA, Brichard SM, Crans DC. 2000. Chemistry and insulin-mimetic properties of bis(acetylacetonate)oxovanadium(IV) and derivatives. Inorg Chem 39:406–416.PubMedCrossRefGoogle Scholar
  47. 47.
    Costa Pessoa J, Gajda T, Gillard RD, Kiss T, Luz SM, Moura JJG, Tomaz I, Telo JP, Torok I. 1998. Oxovanadium(IV) complexes of the dipeptides glycyl-L-aspartic acid, L-aspartylglycine and related ligands: a spectroscopic and potentiometric study. J Chem Soc Dalton Trans 3587–3600.Google Scholar
  48. 48.
    Costa Pessoa J, Tomaz I, Kiss T, Kiss E, Buglyo P. 2002. The systems VO2+- glutathione and related ligands: a potentiometric and spectroscopic study. J Biol Inorg Chem 7:225–240.CrossRefGoogle Scholar
  49. 49.
    Jakusch T, Jin WZ, Yang LQ, Kiss T, Crans DC. 2003. Vanadium(IV/V) speciation of pyridine-2,6-dicarboxylic acid and 4-hydroxy plexes: potentiometry, EPR spectroscopy and comparison across oxidation states. J Inorg Biochem 95:1–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Castro MMCA, Avecilla F, Geraldes CFGC, de Castro B, Rangel M. 2003. Study of the oxidation products of the VO(dmpp)2 complex in aqueous solution under aerobic conditions: comparison with the vanadate–DMPP system. Inorg Chim Acta 356:142–154.CrossRefGoogle Scholar
  51. 51.
    Song B, Aebischer N, Orvig C. 2002. Reduction of [VO2(ma)2] and [VO2(ema)2] by ascorbic acid and glutathione: kinetic studies of pro-drugs for the enhancement of insulin action. Inorg Chem 41:1357–1364.PubMedCrossRefGoogle Scholar
  52. 52.
    Fujimoto S, Fujii K, Yasui H, Matsushita R, Takada J, Sakurai H. 1997. Long-term acting and orally active vanadyl–methylpicolinate complex with hypoglycemic activity in streptozotocin-induced diabetic rats. J Clin Biochem Nutr 23:113–129.Google Scholar
  53. 53.
    Nakai M, Watanabe H, Fujiwara C, Kakegawa H, Satoh T, Takada J, Matsushita R, Sakurai H. 1995. Mechanism of insulin-like action of vanadyl sulfate: studies on interaction between rat adipocytes and vanadium compounds. Biol Pharm Bull 18:719–725.PubMedGoogle Scholar
  54. 54.
    Sakurai H, Tsuchiya K, Nukatsuka M, Sofue M, Kawada J. 1990. Insulin-like effect of vanadyl ion on streptozotocin-induced diabetic rats. J Endocrinol 126:451–459.PubMedCrossRefGoogle Scholar
  55. 55.
    Sakurai H, Yojima Y, Yoshikawa Y, Kawabe K, Yasui H. 2002. Antidiabetic vanadium(IV) and zinc(II) complexes. Coord Chem Rev 226:187–198.CrossRefGoogle Scholar
  56. 56.
    Sakurai H, Watanabe H, Tamura H, Yasui H, Matsushita R, Takada J. 1998. Insulinmimetic vanadyl–dithiocarbamate complexes. Inorg Chim Acta 283:175–183.CrossRefGoogle Scholar
  57. 57.
    Hanson GR, Sun Y, Orvig C. 1996. Characterization of the potent insulin mimetic agent bis(maltolato)oxovanadium(IV) (BMOV) in solution by EPR spectroscopy. Inorg Chem 35:6507–6512.PubMedCrossRefGoogle Scholar
  58. 58.
    Sun Y, James BR, Rettig SJ, Orvig C. 1996. Oxidation kinetics of the potent insulin mimetic agent bis(maltolato)oxovanadium(IV) (BMOV) in water and in methanol. Inorg Chem 35:1667–1673.PubMedCrossRefGoogle Scholar
  59. 59.
    Makinen MW, Brady MJ. 2002. Structural origins of the insulin-mimetic activity of bis(acetylacetonato)oxovanadium(IV). J Biol Chem 277:12215–12220.PubMedCrossRefGoogle Scholar
  60. 60.
    Linert W, Herlinger E, Margl P, Boca R. 1993. Spectroscopic, electrochemical and quantum mechanical investigations of vanadyl(IV)-acetylacetonate in nonaqueous solutions. J Coord Chem 28:1–16.CrossRefGoogle Scholar
  61. 61.
    Van Willigen H. 1979. Proton ENDOR on VO(acac)2 in frozen solution. Chem Phys Lett 65:490–493.CrossRefGoogle Scholar
  62. 62.
    Cantley Jr. LC, Aisen P. 1979. The fate of cytoplasmic vanadium: implications of (Na,K)-ATPase inhibition. J Biol Chem 254:1781–1784.PubMedGoogle Scholar
  63. 63.
    Degani H, Gochin M, D. KSJ, Shechter Y. 1981. Electron paramagnetic resonance studies and insulin-like effects of vanadium in rat adipocytes. Biochemistry 20:5795–5799.PubMedCrossRefGoogle Scholar
  64. 64.
    Macara IG, Kustin K, Cantley LC. 1980. Glutathione reduces cytoplasmic vanadate: mechanism and physiological implications. Biochim Biophys Acta 629:95–106.PubMedGoogle Scholar
  65. 65.
    Lu B, Ennis D, Lai R, Bogdanovic E, Nikolov R, Salamon L, Fantus C, Le-Tien H, Fantus IG. 2001. Enhanced sensitivity of insulin-resistant adipocytes to vanadate is associated with oxidative stress and decreased reduction of vanadate(+5) to vanadyl(+4). J Biol Chem 276:35589–35598.PubMedCrossRefGoogle Scholar
  66. 66.
    Goda T, Sakurai H, Yashimura T. 1988. Structures of oxovanadium(IV)-glutathione complexes and reductive complex formation between glutathione and vanadate (+5 oxidation state). Nippon Kagaku Kaishi 654–661.Google Scholar
  67. 67.
    Dessi A, Micera G, Sanna D. 1993. EPR investigation of the oxovanadium(IV) complexes formed by the tripeptide glutathione and some related ligands in aqueous solution. J Inorg Biochem 52:275–286.PubMedCrossRefGoogle Scholar
  68. 68.
    Williams PAM, Baran EJ. 1994. The interaction of the VO2+ cation with S-methylglutathione. J Inorg Biochem 54:75–78.CrossRefGoogle Scholar
  69. 69.
    Fukui K, Ohya-Nishiguchi H, Nakai M, Sakurai H, Kamada H. 1995. Detection of vanadyl-nitrogen interaction in organs of the vanadyl-treated rat: electron spin echo envelope modulation study. FEBS Lett 368:31–35.PubMedCrossRefGoogle Scholar
  70. 70.
    Tasiopoulos AJ, Troganis AN, Deligiannakis YG, Evangelou A, Raptopoulou CP, Terzis A, Kabanos TA, Woolins JD, Slavin A. 2000. Synthetic analogs for oxovanadium(IV/V)-glutathione interaction: an NMR, EPR, synthetic and structural study of oxovanadium(IV/V) compounds with sulfhydryl-containing pseudopeptides and dipeptides. J Inorg Biochem 79:159–166.PubMedCrossRefGoogle Scholar
  71. 71.
    Fukui K, Fujisawa Y, Ohya-Nishiguchi H, Kamada H, Sakurai H. 1999. In vivo coordination structural changes of a potent insulin-mimetic agent, bis(picolinato)oxovanadium(IV), studied by electron spin echo envelope modulation spectroscopy. J Inorg Biochem 77:215–224.PubMedCrossRefGoogle Scholar
  72. 72.
    Dikanov SA, Liboiron BD, Thompson KH, Vera E, Yuen VG, McNeill JH, Orvig C. 2003. One and two dimensional pulsed electron paramagnetic resonance studies of in vivo vanadyl coordination in rat kidney. Bioinorg Chem Appl 1:69–83.CrossRefGoogle Scholar
  73. 73.
    Setyawati IA, Thompson KH, Sun Y, Lyster DM, Vo C, Yuen VG, Battell M, McNeill JH, Ruth TJ, Zeisler S, Orvig C. 1998. Kinetic analysis and comparison of uptake, distribution, and excretion of V-48-labeled compounds in rats. J Appl Physiol 84:569–575.PubMedGoogle Scholar
  74. 74.
    Cannon JC, Chasteen ND. 1975. Nonequivalence of metal binding sites in vanadyllabeled human serum transferrin. Biochemistry 14:4573–4577.PubMedCrossRefGoogle Scholar
  75. 75.
    Campbell R, Chasteen ND. 1977. Anion binding study of vanadyl(IV) human serotransferrin: evidence for direct linkage to metal. J Biol Chem 252:5996–6001.PubMedGoogle Scholar
  76. 76.
    Chasteen ND, Lord EM, Thompson HJ, Grady JK. 1986. Vanadium complexes of transferrin and albumin in the rat. Biochem Biophys Acta 884:84–92.PubMedGoogle Scholar
  77. 77.
    White LK, Chasteen ND. 1979. Q-band electron paramagnetic resonance study of vanadyl(IV)-labeled human serotransferrin. J Phys Chem 14:279–284.CrossRefGoogle Scholar
  78. 78.
    Chasteen ND, Lord EM, Thompson HJ. 1985. Vanadium metabolism: vanadyl(IV) electron paramagnetic resonance spectroscopy of selected rat tissues in the rat. In Frontiers in bioinorganic chemistry, pp. 133–141. Ed A Xavier. Weinheim, Germany: VCH.Google Scholar
  79. 79.
    Willsky GR, Goldfine AB, Kostyniak PJ, McNeill JH, Yang LQ, Khan HR, Crans DC. 2001. Effect of vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovandium(IV). J Inorg Biochem 85:33–34.PubMedCrossRefGoogle Scholar
  80. 80.
    Liboiron BD, Thompson KH, Hanson GR, Lam E, Aebischer N, Orvig C. 2005. New insights into the interactions of serum proteins with bis(maltolato)oxovanadium(IV): transport and biotransformation of insulin-enhancing vanadium pharmaceuticals. J Am Chem Soc 127:5104–5115.PubMedCrossRefGoogle Scholar
  81. 81.
    Cantley Jr. LC, Resh MD, Guidotti G. 1978. Vanadate inhibits red cell (Na+,K+) ATPase from cytoplasmic side. Nature 272:552–554.PubMedCrossRefGoogle Scholar
  82. 82.
    Yang XG, Wang K, Lu JF, Crans DC. 2003. Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. Coord Chem Rev 237:103–111.CrossRefGoogle Scholar
  83. 83.
    Yasui H, Takechi K, Sakurai H. 2000. Metallokinetic analysis of disposition of vanadyl complexes as insulin-mimetics in rats using BCM-ESR method. J Inorg Biochem 78:185–196.PubMedCrossRefGoogle Scholar
  84. 84.
    Yasui H, Tamura A, Takino T, Sakurai H. 2002. Structure-dependent, metallokinetics of antidiabetic vanadyl–picolinate complexes in rats: studies on solution structure, insulinomimetic activity, and metallokinetics. J Inorg Biochem 91:327–338.PubMedCrossRefGoogle Scholar
  85. 85.
    Yuen VG, Caravan P, Gelmini L, Glover N, McNeill JH, Setyawati IA, Zhou Y, Orvig C. 1997. Glucose-lowering properties of vanadium compounds: comparison of coordination complexes with maltol or kojic acid as ligands. J Inorg Biochem 68:109–116.PubMedCrossRefGoogle Scholar
  86. 86.
    Fugono J, Yasui H, Sakurai H. 2001. Pharmacokinetic study on gastrointestinal absorption of insulinomimetic vanadyl complexes in rats by ESR spectroscopy. J Pharm Pharmacol 53:1247–1255.PubMedCrossRefGoogle Scholar
  87. 87.
    Sakurai H, Fugono J, Yasui H. 2004. Pharmacokinetic study and trial for preparation of enteric-coated capsule containing insulinomimetic vanadyl compounds: implications for clinical use. Mini Rev Med Chem 4:41–48.PubMedCrossRefGoogle Scholar
  88. 88.
    Thompson KH, Liboiron BD, Sun Y, Bellman KDD, Setyawati IA, Patrick BO, Karunaratne V, Rawji G, Wheeler J, Sutton K, Bhanot S, Cassidy C, McNeill JH, Yuen VG, Orvig C. 2003. Preparation and characterization of vanadyl complexes with bidentate maltol-type ligands: in vivo comparisons of anti-diabetic therapeutic potential. J Biol Inorg Chem 8:66–74.PubMedCrossRefGoogle Scholar
  89. 89.
    Takechi K, Tamura H, Yamaoka K, Sakurai H. 1997. Pharmacokinetic analysis of free radicals by in vivo BCM (blood circulation monitoring) ESR method. Free Rad Res 26:483–496.CrossRefGoogle Scholar
  90. 90.
    Sakurai H, Takechi K, Tsuboi H, Yasui H. 1999. ESR characterization and metallokinetic analysis of Cr(V) in the blood of rats given carcinogen chromate(VI) compounds. J Inorg Biochem 76:71–80.PubMedCrossRefGoogle Scholar
  91. 91.
    Sakurai H, Yasui H, Adachi Y. 2003. The therapeutic potential of insulin-mimetic vanadium complexes. Exp Op Invest Drugs 12:1189–1203.CrossRefGoogle Scholar
  92. 92.
    Sakurai H, Shimomura S, Fukuzawa K, Ishizu K. 1980. Detection of oxovanadium(IV) and characterization of its ligand environment in subcellular fractions of the liver of rats treatd with pentavalent vanadium(V). Biochim Biophys Res Comm 96:293–298.CrossRefGoogle Scholar
  93. 93.
    Chasteen ND, Thiel EC. 1982. Iron binding by horse spleen apoferritin: a vanadyl(IV) electron paramagnetic resonance spin probe study. J Biol Chem 257:7672–7677.PubMedGoogle Scholar
  94. 94.
    Eaton SS, Dubach J, More KM, Eaton GR, Thurman G, Ambruso DR. 1989. Comparison of the electron spin echo envelope modulation (ESEEM) for human lactoferrin and transferrin complexes of copper(II) and vanadyl ion. J Biol Chem 264:4776–4781.PubMedGoogle Scholar
  95. 95.
    Dikanov SA, Liboiron BD, Thompson KH, Vera E, Yuen VG, McNeill JH, Orvig C. 1999. In vivo electron spin-echo envelope modulation (ESEEM) spectroscopy: first observation of vanadyl coordination to phosphate in bone. J Am Chem Soc 121:11004–11005.CrossRefGoogle Scholar
  96. 96.
    Dikanov SA, Liboiron BD, Orvig C. 2002. Two-dimensional (2D) pulsed electron paramagnetic resonance study of VO2+-triphosphate interactions: evidence for tridentate triphosphate coordination, and relevance to bone uptake and insulin enhancement by vanadium pharmaceuticals. J Am Chem Soc 124:2969–2978.PubMedCrossRefGoogle Scholar
  97. 97.
    Dikanov SA, Samoilova RI, Smieja JA, Bowman MK. 1995. 2-dimensional ESEEM study of VO2+ complexes with imidazole and histidine: histidine is a polydentate ligand. J Am Chem Soc 117:10579–10580.CrossRefGoogle Scholar
  98. 98.
    Sakurai H, Fujii K, Watanabe H, Tamura H. 1995. Orally active and long term acting insulin-mimetic vanadyl complex: bis(picolinato)oxovanadium(IV). Biochem Biophys Res Commun 214:1095–1101.PubMedCrossRefGoogle Scholar
  99. 99.
    Dikanov SA, Bowman MK. 1995. Cross-peak lineshape of 2-dimensional ESEEM spectra in disordered S = 1/2, I = 1/2 spin systems. J Magn Reson Ser A 116:125–128.CrossRefGoogle Scholar
  100. 100.
    Dikanov SA, Bowman MK. 1998. Determination of ligand conformation in reduced [2Fe–2S] ferredoxin from cysteine b-proton hyperfine couplings. J Biol Inorg Chem 3:18–29.CrossRefGoogle Scholar
  101. 101.
    Atherton NM, Shackleton JF. 1980. Proton ENDOR of VO(H2O)5 2+ in Mg(NH4)2 (SO4)2·6H2O. Mol Phys 39:1471–1485.CrossRefGoogle Scholar
  102. 102.
    Buy C, Matsui T, Andrianambinintsoa S, Sigalat C, Girault G, Zimmerman J-L. 1996. Binding sites for Mg(II) in H+-ATPase from Bacillus PS3 and in the a3b3g subcomplex studied by one-dimensional ESEEM and two-dimensional HYSCORE spectroscopy of oxovanadium(IV) complexes: a possible role for b-His-324. Biochemistry 35:14281–14293.PubMedCrossRefGoogle Scholar
  103. 103.
    Mustafi D, Telser J, Makinen MW. 1992. Molecular geometry of vanadyl adenine nucleotide complexes determined by EPR, ENDOR and molecular modeling. J Am Chem Soc 114:6219–6226.CrossRefGoogle Scholar
  104. 104.
    Monga V, Thompson KH, Yuen VG, Sharma V, Patrick BO, McNeill JH, Orvig C. 2005. Vanadium complexes with mixed O,S anionic ligands derived from maltol: synthesis, characterization, and biological studies. Inorg Chem 44:2678–2688.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Centre for Blood Research, Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations