EPR Investigation of [NiFe] Hydrogenases

Part of the Biological Magnetic Resonance book series (BIMR, volume 28)

EPR studies of the [NiFe] hydrogenases are reviewed. These enzymes contain a heterobimetallic [NiFe] center as the active site. The nickel is ligated to four cysteine residues, two of which form a bridge to the iron. The iron carries additionally 3 small inorganic diatomic ligands (2CN, CO). A third small ligand X is situated in the bridge between Ni and Fe. In the catalytic cycle the enzyme passes through a number of redox states, several of which are paramagnetic. The iron remains in the divalent low-spin (FeII, S = 0) state, whereas the nickel changes its valence and spin state during this cycle. Nickel is believed to bind the hydrogen and to be directly involved in the catalytic process.


Spin Density Midpoint Potential Spin Density Distribution HYSCORE Spectrum Biol Inorg 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vignais PM, Billoud B, Meyer J. 2001. Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501.PubMedGoogle Scholar
  2. 2.
    Volbeda A, Charon M-H, Hatchikian EC, Frey M, Fontecilla-Camps JC. 1995. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587.PubMedCrossRefGoogle Scholar
  3. 3.
    Volbeda A, Garcin E, Piras C, De Lacey AL, Fernandez VM, Hatchikian EC, Frey M, Fontecilla-Camps JC. 1996. Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J Am Chem Soc 118:12989–12996.CrossRefGoogle Scholar
  4. 4.
    Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC. 1999. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7:557–566.PubMedCrossRefGoogle Scholar
  5. 5.
    Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SPJ, Garcin E, Rousset M, Fontecilla-Camps JC. 2005. Structural difference between the ready and unready oxidized states of [NiFe] hydrogenases. J Biol Inorg Chem 10:239–249.PubMedCrossRefGoogle Scholar
  6. 6.
    Higuchi Y, Yagi T, Yasuoka N. 1997. Unusual ligand structure in Ni–Fe active center and an additional Mg site in hydrogenase revealed by high resolution x-ray structure analysis. Structure 5:1671–1680.PubMedCrossRefGoogle Scholar
  7. 7.
    Higuchi Y, Ogata H, Miki K, Yasuoka N, Yagi T. 1999. Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 Å resolution. Structure 7:549–556.PubMedCrossRefGoogle Scholar
  8. 8.
    Ogata H, Mizogushi Y, Mizuno N, Miki K, Adachi S, Yasuoka N, Yagi T, Yamauchi O, Hirota S, Higuchi Y. 2002. Structural studies of the carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgarisMiyazaki F: suggestion for the initial activation site for dihydrogen. J Am Chem Soc 124:11628–11635.PubMedCrossRefGoogle Scholar
  9. 9.
    Ogata H, Hirota S, Nakahara A, Komori H, Shibata N, Kato T, Kano K, Higuchi Y. 2005. Activation process of [NiFe] hydrogenase elucidated by high resultion x-ray analysis: conversion of the ready to unready state. Structure 13:1635–1642.PubMedCrossRefGoogle Scholar
  10. 10.
    Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC. 1997. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat Struct Biol 4:523–526.PubMedCrossRefGoogle Scholar
  11. 11.
    Matias PM, Soares CM, Saraiva LM, Coelho R, Morais J, LeGall J, Carrando MA. 2001. [NiFe] hydrogenase form Desulfovibrio desulfuricansATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Å and modeling studies of its interaction with the tetrahaem cytochrome c3. J Biol Inorg Chem 6:63–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Bagley KA, Duin EC, Roseboom W, Albracht SPJ, Woodruff WH. 1995. Infrareddetectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum. Biochemistry 34:5527–5535.PubMedCrossRefGoogle Scholar
  13. 13.
    Bagley KA, van Garderen CJ, Chen M, Duin EC, Albracht SPJ, Woodruff WH. 1994. Infrared studies on the interaction of carbon monoxide with divalent nickel in hydrogenase from Chromatium vinosum. Biochemistry 33:9229–9236.PubMedCrossRefGoogle Scholar
  14. 14.
    Bleijlevens B, van Broekhuizen F, De Lacey AL, Roseboom W, Fernandez VM, Albracht SPJ. 2004. The activation of the [NiFe]-hydrogenase from Allochromatium vinosum: an infrared spectro-electrochemical study. J Biol Inorg Chem 9:743–752.PubMedCrossRefGoogle Scholar
  15. 15.
    Coremans JMCC, van Garderen CJ, Albracht SPJ. 1992. On the redox equilibrium between H2 and hydrogenase. Biochim Biophys Acta 1119:148–156.PubMedGoogle Scholar
  16. 16.
    Coremans JMCC, van der Zwaan JW, Albracht SPJ. 1992. Distinct redox behaviour of the prosthetic groups in ready and unready hydrogenase from Chromatium vinosum. Biochim Biophys Acta 1119:157–168.PubMedGoogle Scholar
  17. 17.
    George S.J., Kurkin S., Thorneley RNF, Albracht SPJ. 2004. Reactions of H2, CO, and O2 with active [NiFe]-hydrogenase from Allochromatium vinosum: a stopped-flow infrared study. Biochemistry 43:6808–6819.PubMedCrossRefGoogle Scholar
  18. 18.
    Kurkin S., George S.J., Thorneley RNF, Albracht SPJ. 2004. Hydrogen-induced activation of the [NiFe]-hydrogenase from Allochromatium vinosumas studied by stoppedflow infrared spectroscopy. Biochemistry 43:6820–6831.PubMedCrossRefGoogle Scholar
  19. 19.
    Happe RP, Roseboom W, Albracht SPJ. 1999. Pre-steady-state kinetics of the reactions of [NiFe]-hydrogenase from Chromatium vinosumwith H2 and CO. Eur J Biochem 259:602–608.PubMedCrossRefGoogle Scholar
  20. 20.
    Roseboom W, De Lacey AL, Fernandez VM, Hatchikian EC, Albracht SPJ. 2006. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans, II: redox prop erties, light sensitivity and CO-ligand exchange as observed via infrared spectroscopy. J Biol Inorg Chem 11:102–118.PubMedCrossRefGoogle Scholar
  21. 21.
    Bleijlevens B, Buhrke T, van der Linden E, Friedrich B, Albracht SPJ. 2004. The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of Ralstonia eutrophaH16 by way of a cyanide ligand to nickel. J Biol Chem 279:46686–46691.PubMedCrossRefGoogle Scholar
  22. 22.
    Buhrke T, Brecht M, Lubitz W, Friedrich B. 2002. The H2 sensor of Ralstonia eutropha: biochemical and spectroscopic analysis of mutant proteins modified at a conserved glutamine residue close to the [NiFe] active site. J Biol Inorg Chem 7:897–908.PubMedCrossRefGoogle Scholar
  23. 23.
    Brecht M, van Gastel M, Buhrke T, Friedrich B, Lubitz W. 2003. Direct detection of a hydride ligand in the [NiFe] center of the regulatory hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. J Am Chem Soc 125:13075–13083.PubMedCrossRefGoogle Scholar
  24. 24.
    Happe RP, Roseboom W, Egert G, Friedrich CG, Massanz C, Friedrich B, Albracht SPJ. 2000. Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha. FEBS Lett 466:259–263.PubMedCrossRefGoogle Scholar
  25. 25.
    Kleihues L, Lenz O, Bernhard M, Buhrke T, Friedrich B. 2000. The H2 sensor of Ralstonia eutrophais a member of the subclass of regulatory [NiFe] hydrogenase. J Bacteriol 182:2716–2724.PubMedCrossRefGoogle Scholar
  26. 26.
    Löscher S, Burgdorf T, Buhrke T, Friedrich B, Dau H, Haumann M. 2005. Non– standard structures of the Ni-Fe cofactor in the regulatory and the NAD-reducing hydrogenases from Ralstonia eutropha. Biochem Soc Trans 33:25–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Pierik AJ, Schmelz M, Lenz O, Friedrich B, Albracht SPJ. 1998. Characterization of the active site of a hydrogen sensor from Alcaligenes eutrophus. FEBS Lett 438:231–235.PubMedCrossRefGoogle Scholar
  28. 28.
    van der Linden E, Faber BW, Bleijlevens B, Burgdorf T, Bernhard M, Friedrich B, Albracht SPJ. 2004. Selective release and function of one of the two FMN groups in the cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha. Eur J Biochem 271:801–808.PubMedCrossRefGoogle Scholar
  29. 29.
    Lenz O, Friedrich B. 1998. A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. Proc Natl Acad Sci USA 95:12474–12479.PubMedCrossRefGoogle Scholar
  30. 30.
    Happe RP, Roseboom W, Pierik AJ, Albracht SPJ, Bagley KA. 1997. Biological activation of hydrogen. Nature 385:126–126.PubMedCrossRefGoogle Scholar
  31. 31.
    Frey M, Fontecilla-Camps JC, Volbeda A. 2001. Nickel–iron hydrogenases. In Handbook of metalloproteins, Vol. 2, pp. 880–896. Ed A Messerschmidt, R Huber, T Poulos, K Wieghardt. Chichester: John Wiley & Sons.Google Scholar
  32. 32.
    Volbeda A, Fontecilla-Camps JC. 2005. Structure–function relationship of nickel–iron sites in hydrogenase and a comparison with the active site of other nickel–iron enzymes. Coord Chem Rev 249:1609–1619.CrossRefGoogle Scholar
  33. 33.
    Fernandez VM, Hatchikian EC, Cammack R. 1985. Properties and reactivation of two different deactivated forms of Desulfovibrio gigashydrogenase. Biochim Biophys Acta 832:69–79.Google Scholar
  34. 34.
    Cammack R, Patil DS, Hatchikian EC, Fernandez VM. 1987. Nickel and iron–sulphur centres in Desulfovibrio gigashydrogenase: ESR spectra, redox properties and interaction. Biochim Biophys Acta 912:98–109.Google Scholar
  35. 35.
    Medina M, Williams R, Cammack R. 1994. Studies of light-induced nickel EPR signals in Desulfovibrio gigashydrogenase. J Chem Soc Faraday Trans 90:2921–2924.CrossRefGoogle Scholar
  36. 36.
    van der Zwaan JW, Coremans JMCC, Bouwens ECM, Albracht SPJ. 1990. Effect of 17O2 and 13CO on EPR spectra of nickel in hydrogenase from Chromatium vinosum. Biochim Biophys Acta 1041:101–110.PubMedGoogle Scholar
  37. 37.
    van der Zwaan JW, Albracht SPJ, Fontijn RD, Roelofs YBM. 1986. Electronparamagnetic-resonance evidence for direct interaction of carbon-monoxide with nickel in hydrogenase from Chromatium vinosum. Biochim Biophys Acta 872:208–215.Google Scholar
  38. 38.
    Gu Z, Dong J, Allan CB, Choudhury SB, Franco R, Moura JJG, Moura I, LeGall J, Przybyla AE, Roseboom W, Albracht SPJ, Axley MJ, Scott RA, Maroney MJ. 1996. Structure of the Ni site in hydrogenases by X-ray absorption spectroscopy: species variation and the effects of redox poise. J Am Chem Soc 118:11155–11165.CrossRefGoogle Scholar
  39. 39.
    Gu WW, Jacquamet L, Patil DS, Wang HX, Evans DJ, Smith MC, Millar M, Koch S, Eichhorn DM, Latimer M, Cramer SP. 2003. Refinement of the nickel site structure in Desulfovibrio gigashydrogenase using range-extended EXAFS spectroscopy. J Inorg Biochem 93:41–51.PubMedCrossRefGoogle Scholar
  40. 40.
    Maroney MJ, Bryngelson PA. 2001. Spectroscopic and model studies of the Ni–Fe hydrogenase reaction mechanism. J Biol Inorg Chem 6:453–459.PubMedCrossRefGoogle Scholar
  41. 41.
    Davidson G, Choudhury SB, Gu Z, Bose K, Roseboom W, Albracht SPJ, Maroney MJ. 2000. Structural examination of the nickel site in Chromatium vinosumhydrogenase: redox state oscillation and structural changes accompanying reductive activation and CO binding. Biochemistry 39:7468–7479.PubMedCrossRefGoogle Scholar
  42. 42.
    De Lacey AL, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC, Fernandez VM. 1997. Infrared-spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio gigas. J Am Chem Soc 119:7181–7189.CrossRefGoogle Scholar
  43. 43.
    Fichtner C, Laurich C, Bothe E, Lubitz W. 2006. Spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio vulgarisMiyazaki F. Biochemistry 45:9706–9716.PubMedCrossRefGoogle Scholar
  44. 44.
    Solomon EI, Pavel EG, Loeb KE, Campochiaro C. 1995. Magnetic circular-dichroism spectroscopy as a probe of the geometric of the geometric and electronic structure of nonheme ferrous enzymes. Coord Chem Rev 144:369–460.CrossRefGoogle Scholar
  45. 45.
    Abragam A, Bleaney B. 1970. Electron paramagnetic resonance of transition ions. Oxford: Clarendon Press.Google Scholar
  46. 46.
    Lubitz W, Brecht M, Foerster S, van Gastel M, Stein M. 2003. EPR and ENDOR studies of [NiFe] hydrogenase: contributions to understanding the mechanism of biological hydrogen conversion. ACS Symp Ser 858:128–150.CrossRefGoogle Scholar
  47. 47.
    LeGall J, Ljungdahl PO, Moura I, Peck HD, Xavier AV, Moura JJG, Teixeira M, Huynh BH, DerVartanian DV. 1982. The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibrio gigas. Biochem Biophys Res Comm 106:610–616.PubMedCrossRefGoogle Scholar
  48. 48.
    Geßner C, Trofanchuk O, Kawagoe K, Higuchi Y, Yasuoka N, Lubitz W. 1996. Single crystal EPR study of the Ni center of NiFe hydrogenase. Chem Phys Lett 256:518–524.CrossRefGoogle Scholar
  49. 49.
    Cammack R, Patil DS, Aguirre R, Hatchikian EC. 1982. Redox properties of the ESRdetectable nickel in hydrogenase from Desulfovibrio gigas. FEBS Lett 142:289–292.CrossRefGoogle Scholar
  50. 50.
    Trofanchuk O, Stein M, Gessner Ch, Lendzian F, Higuchi Y, Lubitz W. 2000. Single crystal EPR studies of the oxidized active site of [NiFe] hydrogenase from Desulfovibrio vulgarisMiyazaki F. J Biol Inorg Chem 5:36–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Foerster S, Stein M, Brecht M, Ogata H, Higuchi Y, Lubitz W. 2003. Single crystal EPR studies of the reduced active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Am Chem Soc 125:83–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Guigliarelli B, More C, Fournel A, Asso M, Hatchikian EC, Williams R, Cammack R, Bertrand P. 1995. Structural organization of the Ni and the (4Fe–4S) centers in the active form of Desulfovibrio gigashydrogenase: analysis of the magnetic interactions by electron paramagnetic resonance spectroscopy. Biochemistry 34:4781–4790.PubMedCrossRefGoogle Scholar
  53. 53.
    Dole F, Medina M, More C, Cammack R, Bertrand P, Guigliarelli B. 1996. Spin–Spin interactions between the Ni site and the [4Fe–4S] centers as a probe of light-induced structural changes in active Desulfovibrio gigashydrogenase. Biochemistry 35:16399–16406.PubMedCrossRefGoogle Scholar
  54. 54.
    Müller A, Tscherny I, Kappl R, Hatchikian EC, Hüttermann J, Cammack R. 2002. Hydrogenase in the “active” state: determination of g-matrix axes and electron spin distribution at the active site by 1H ENDOR spectroscopy. J Biol Inorg Chem 7:177–194.PubMedCrossRefGoogle Scholar
  55. 55.
    Cammack R, Fernandez VM, Schneider K. 1988. Nickel in hydrogenases from sulfatereducing, photosynthetic, and hydrogen-oxidizing bacteria. In The bioinorganic chemistry of nickel, pp. 167–190. Ed CRD Lancaster. New York: VCH Publishers.Google Scholar
  56. 56.
    Medina M, Hatchikian EC, Cammack R. 1996. Studies of light-induced nickel EPR signals in hydrogenase: comparison of enzymes with and without selenium. Biochim Biophys Acta 1275:227–236.CrossRefGoogle Scholar
  57. 57.
    Whitehead JP, Gurbiel RJ, Bagyinka C, Hoffman BM, Maroney MJ. 1993. The hydrogen binding site in hydorgenase: 35-GHz ENDOR and XAS studies of the Ni–C active form and the Ni–L photoproduct. J Am Chem Soc 115:5629–5635.CrossRefGoogle Scholar
  58. 58.
    Foerster S. 2003. EPR spectroscopic investigation of the active site of [NiFe]- hydrogenase: a contribution to the elucidation of the reaction mechanism. PhD dissertation, Technische Universität Berlin.Google Scholar
  59. 59.
    van der Zwaan JW, Albracht SPJ, Fontijn RD, Slater EC. 1985. Monovalent nickel in hydrogenase from Chromatium vinosum. FEBS Lett 2:271–277.Google Scholar
  60. 60.
    Sorgenfrei O, Klein A, Albracht SPJ. 1993. Influence of illumination on the electronic interaction between 77Se and nickel in active F420-non-reducing hydrogenase from Methanococcus voltae. FEBS Lett 332:291–297.PubMedCrossRefGoogle Scholar
  61. 61.
    Gewirth AA, Cohen SL, Schugar HJ, Solomon EI. 1987. Spectroscopic and theoretical studies of the unusual EPR parameters of distored tetrahedral cupric sites: correlations to X-ray spectral features of core levels. Inorg Chem 26:1133–1146.CrossRefGoogle Scholar
  62. 62.
    Fichtner C, van Gastel M, Lubitz W. 2003. Wavelength dependence of the photoinduced conversion of the Ni–C to the Ni–L redox state in the [NiFe] Hydrogenase of Desulfovibrio vulgarisMiyazaki F. Phys Chem Chem Phys 5:5507–5513.CrossRefGoogle Scholar
  63. 63.
    Stein M, Lubitz W. 2001. DFT calculations of the electronic structure of the paramagnetic states Ni–A, Ni–B and Ni–C of [NiFe] hydrogenase. Phys Chem Chem Phys 3:2668–2675.CrossRefGoogle Scholar
  64. 64.
    Huyett JE, Carepo M, Pamplona A, Franco R, Moura I, Moura JJG, Hoffman BM. 1997. 57Fe Q-band pulsed ENDOR of the hetero-dinuclear site of nickel hydrogenase: comparison of the NiA, NiB, and NiC states. J Am Chem Soc 119:9291–9292.CrossRefGoogle Scholar
  65. 65.
    Albracht SPJ, Graf E-G, Thauer RK. 1982. The EPR properties of nickel in hydrogenase from Methanobacterium thermoautotrophicum. FEBS Lett 140:311–313.PubMedCrossRefGoogle Scholar
  66. 66.
    Moura JJG, Moura I, Huynh BH, Krüger H-J, Teixeira M, DuVarney RC, DerVartanian DV, Xavier AV, Peck Jr HD, LeGall J. 1982. Unambigous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigashydrogenase. Biochem Biophys Res Comm 108:1388–1393.PubMedCrossRefGoogle Scholar
  67. 67.
    Neese F. 2003. Metal and ligand hyperfine couplings in transition metal complexes: the effect of spin-orbit coupling as studied by coupled perturbed Kohn-Sham theory. J Chem Phys 118:3939–3948.CrossRefGoogle Scholar
  68. 68.
    Stein M, Lubitz W. 2004. Relativistic DFT calculations of the reaction cycle intermediates of [NiFe] hydrogenase: a model for the enzymatic mechanism. J Inorg Biochem 98:862–877.PubMedCrossRefGoogle Scholar
  69. 69.
    Neese F. 2001. Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory. J Chem Phys 115:11080–11096.CrossRefGoogle Scholar
  70. 70.
    Pavlov M, Siegbahn PEM, Blomberg MRA, Crabtree RH. 1998. Mechanism of H–H activation by nickel-iron hydrogenase. J Am Chem Soc 120:548–555.CrossRefGoogle Scholar
  71. 71.
    De Gioia L, Fantucci P, Guigliarelli B, Bertrand P. 1999. Ni–Fe hydrogenases: a density functional theory study of active site models. Inorg Chem 38:2658–2662.CrossRefGoogle Scholar
  72. 72.
    Pavlov M, Blomberg MRA, Siegbahn PEM. 1999. New aspects of H2 activation by nickel–iron hydrogenase. Int J Quantum Chem 73:197–207.CrossRefGoogle Scholar
  73. 73.
    Stein M, van Lenthe E, Baerends EJ, Lubitz W. 2001. g- and A-tensor calculations in the zero-order approximation for relativistic effects of Ni complexes (Ni(mnt) 2 and Ni(CO)3H as model complexes for the active center of [NiFe]-hydrogenase. J Phys Chem A 105:416–425.CrossRefGoogle Scholar
  74. 74.
    Stein M, van Lenthe E, Baerends EJ, Lubitz W. 2001. Relativistic DFT calculations of the paramagnetic intermediates of the [NiFe] hydrogenase: implications for the enzymatic mechanism. J Am Chem Soc 123:5839–5840.PubMedCrossRefGoogle Scholar
  75. 75.
    Stein M, Lubitz W. 2001. The electronic structure of the catalytic intermediate Ni–C in [NiFe] and [NiFeSe] hydrogenases. Phys Chem Chem Phys 3:5115–5120.CrossRefGoogle Scholar
  76. 76.
    Stein M. 2001. Insight into the mechanism of [NiFe] hydrogenase by means of magnetic resonance experiments and DFT calculations. PhD dissertation, Technische Unversität, Berlin.Google Scholar
  77. 77.
    Stadler C, De Lacey AL, Montet Y, Volbeda A, Fontecilla-Camps JC, Conesa JC, Fernandez VM. 2002. Density functional calculations for modeling the active site of nickel-iron hydrogenases, 2: predictions for the unready and ready states and the corresponding activation processes. Inorg Chem 41:4424–4434.PubMedCrossRefGoogle Scholar
  78. 78.
    Amara P, Volbeda A, Fontecilla-Camps JC, Field MJ. 1999. A hybrid density functional theory/molecular mechanics study of nickel–iron hydrognease: investigation of the active site redox states. J Am Chem Soc 121:4468–4477.CrossRefGoogle Scholar
  79. 79.
    Bruschi M, Zampella G, Fantucci P, De Gioia L. 2005. DFT investigations of models related to the active site of [NiFe] and [Fe] hydrogenases. Coord Chem Rev 249:1620–1640.CrossRefGoogle Scholar
  80. 80.
    van Gastel M, Fichtner C, Neese F, Lubitz W. 2005. EPR experiments to elucidate the structure of the ready and unready states of the [NiFe] hydrogenase of Desulfovibrio vulgarisMiyazaki F. Biochem Soc Trans 33:7–11.PubMedCrossRefGoogle Scholar
  81. 81.
    Goenka Agrawal A, van Gastel M, Gärtner W, Lubitz W. 2006. Hydrogen-bonding affects the [NiFe] active site of Desulfovibrio vulgarisMiyazaki F hydrogenase: a hyperfine sublevel correlation spectroscopy and density functional theory study. J Phys Chem B 110:8142–8150.CrossRefGoogle Scholar
  82. 82.
    Albracht SPJ, Kröger A, van der Zwaan JW, Unden G, Böcher R, Mell H, Fontijn RD. 1986. Direct evidence for sulfur as a ligand to nickel in hydrogenase: an EPR study of the enzyme from Wolinella-succinogenesenriched in 33S. Biochim Biophys Acta 874:116–127.Google Scholar
  83. 83.
    van Gastel M, Stein M, Brecht M, Schröder O, Lendzian F, Bittl R, Ogata H, Higuchi Y, Lubitz W. 2006. A single-crystal ENDOR and density functional theory study of the oxidized states of the [NiFe] hydrogenase from Desulfovibrio vulgarisMiyazaki F. J Biol Inorg Chem 11:41–51.PubMedCrossRefGoogle Scholar
  84. 84.
    Geßner C, Stein M, Albracht SPJ, Lubitz W. 1999. Orientation-selected ENDOR of the active center in Chromatium vinosum[NiFe] hydrogenase in the oxidized “ready” state. J Biol Inorg Chem 4:379–389.PubMedCrossRefGoogle Scholar
  85. 85.
    Ogata H, et.al. 2006. unpublished data.Google Scholar
  86. 86.
    Foerster S, van Gastel M, Brecht M, Lubitz W. 2005. An orientation-selected ENDOR and HYSCORE study of the Ni–C active state of Desulfovibrio vulgarisMiyazaki F hydrogenase. J Biol Inorg Chem 10:51–62.PubMedCrossRefGoogle Scholar
  87. 87.
    Carepo M, Tierney DL, Brondino CD, Yang TC, Pamplona A, Telser J, Moura I, Moura JJG, Hoffman BM. 2002. 17O ENDOR detection of a solvent-derived Ni– (OHx)–Fe bridge that is lost upon activation of the Hydrogenase from Desulfovibrio gigas. J Am Chem Soc 124:281–286.PubMedCrossRefGoogle Scholar
  88. 88.
    Vincent KA, Belsey NA, Lubitz W, Armstrong FA. 2006. Rapid and reversible reactions of [NiFe] hydrogenases with sulfide. J Am Chem Soc 128:7448–7449.PubMedCrossRefGoogle Scholar
  89. 89.
    Fan C, Teixeira M, Moura JJG, Moura I, Huynh BH, LeGall J, Peck Jr HD, Hoffman BM. 1991. Detection and characterisation of exchangable protons bound to the hydrogen-activation nickel site of desulfovibrio gigashydrogenase: a 1H and 2H Q-Band ENDOR study. J Am Chem Soc 113:20–24.CrossRefGoogle Scholar
  90. 90.
    Chapman A, Cammack R, Hatchikian EC, McCracken J, Peisach J. 1988. A pulsed EPR study of redox-dependent hyperfine interactions for nickel centre of Desulfovibrio gigashydrogenase. FEBS Lett 242:134–138.PubMedCrossRefGoogle Scholar
  91. 91.
    Bleijlevens B, Faber BW, Albracht SPJ. 2001. The [NiFe] hydrogenase from Allochromatium vinosumstudied in EPR-detectable states: H/D exchange experiments that yield new information about the structure of the active site. J Biol Inorg Chem 6:763–769.PubMedCrossRefGoogle Scholar
  92. 92.
    Stadler C, De Lacey AL, Hernandez B, Fernandez VM, Conesa JC. 2002. Density functional calculations for modeling the oxidized states of the active site of nickel-iron hydrogenases, 1: verification of the Method with Paramagnetic Ni and CO complexes. Inorg Chem 41:4417–4423.PubMedCrossRefGoogle Scholar
  93. 93.
    Brecht M. 2001. Hochfeld- und Puls-EPR-Untersuchungen an den Kofaktoren von [NiFe]-Hydrogenasen: Beiträge zur Klärung des Mechanismusses der biologischen Wasserspaltung. PhD dissertation, Technische Universität, Berlin.Google Scholar
  94. 94.
    Elsässer C, Brecht M, Bittl R. 2002. Pulsed electron-electron double resonance on multinuclear metal centers: assignement of spin projection factors based on the dipolar interaction. J Am Chem Soc 124:12606–12611.PubMedCrossRefGoogle Scholar
  95. 95.
    Wang H, Patil DS, Gu W, Jacquamet L, Friedrich S, Funk T, Cramer SP. 2001. L-edge X-ray absorption spectroscopy of some Ni enzymes: probe of Ni electronic structure. J Elec Spec Rel Phen 114–116:855–863.CrossRefGoogle Scholar
  96. 96.
    Lubitz W, van Gastel M, Gärtner W. 2007. Nickel iron hydrogenases. In Metal ions in life sciences. Ed A Sigel, H Sigel, RKO Sigel. Chichester: John Wiley & Sons. In press.Google Scholar
  97. 97.
    Morris RH. 2006. Hydrogenase and model complexes. In Concepts and models in bioinorganic chemistry, pp. 331–362. Ed H-B Kraatz, N Metzler-Nolte. Weinheim: Wiley-VCH.Google Scholar
  98. 98.
    Lubitz W, Reijerse E, van Gastel M. 2007. [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der RuhrMülheim an der RuhrGermany

Personalised recommendations