Advertisement

1.1 Definition and Genesis

According to the power law, sensation magnitudes grow as power functions of stimulus intensities that produce them. The law was first proposed by S.S. Stevens for light and sound. It was announced in a 1953-paper presented before the National Academy of Sciences (USA) (cit. Stevens, 1975). Subsequently, Stevens suggested it as a general law describing quantitatively the relationships between human sensations as well as other subjective impressions and the physical stimuli that evoke them (rev. Stevens, 1975). According to the proposed law, the relationships approximate power functions of the form
$$\psi \, = \,k\phi ^\theta$$

Keywords

Power Function Sound Pressure Level Magnitude Estimation Line Length Sensation Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Atteneave, F. Perception and related areas. In S. Koch (Ed.), Psychology: A Study of a Science 4 (pp. 619–659). New York: McGraw-Hill, 1962.Google Scholar
  2. Barlow, R.B. Brightness sensation and pupil reflex in normals, rod monochromats, and patients with retinitis pigmentosa. Adv. Ophthalmol. 41: 149–216, 1980.Google Scholar
  3. Barlow, R.B., and Verrillo, R.T. Brightness sensation in a ganzfeld. Vision Res. 16: 1291–1297, 1975.CrossRefGoogle Scholar
  4. Bernoulli, D. Exposition of a new theory on the measurement of risk. Originally published in Latin in 1738. Translation in Econometrica 22, 23–35, 1954.Google Scholar
  5. Bolanowski, S.J., Jr., Zwislocki, J. J., and Gescheider, G.A. Ratio Scaling of Psychological Magnitude: In Honor of the Memory of S.S. Stevens. Hillsdale, NJ: Lawrence Erlbaum Associates, 1991.Google Scholar
  6. Borg, G., Diamant, H., Ström, L., and Zotterman, Y. The relation between neural and perceptual intensity: A comparative study on the neural and psychophysical response to taste stimuli. J. Physiol. 192: 13–20, 1967.PubMedGoogle Scholar
  7. Cain, W.S. Odor intensity: Differences in the exponent of the psychophysical function. Percept. Psychophys. 6(6a): 349–354, 1969.Google Scholar
  8. Chatterjee, M., and Zwislocki, J.J. Cochlear mechanisms of frequency and intensity coding. II. Dynamic range and the code for loudness. Hear. Res. 124: 170–181, 1998.CrossRefPubMedGoogle Scholar
  9. Churcher, B.G. A loudness scale for industrial noise measurement. J. Acoust. Soc. Am. 6: 216–226, 1935.CrossRefGoogle Scholar
  10. Collins, A.A., and Gescheider, G.A. The measurement of loudness in children and adults by absolute magnitude estimation and cross-modality matching. J. Acoust. Soc. Am. 85: 2012–2021, 1989.CrossRefPubMedGoogle Scholar
  11. Delboeuf, J. Etude psychologique. Recherches théoriques et expérimentales sur la mesure des sensations et spécialement des sensations de lumière et de fatigue. Brussels, 1873.Google Scholar
  12. Ekman, G. Is the power law a special case of Fechner’s law? Percept. Mot. Skills 19: 730, 1964.PubMedGoogle Scholar
  13. Fechner, G.T. Elemente der Psychophysik, 1860. Vol. I available in English translation as Elements of Psychophysics. New York: Holt, Rinehart and Winston, 1966.Google Scholar
  14. Fletcher, H. Auditory patterns. Rev. Mod. Physics 12: 47–65, 1940.CrossRefGoogle Scholar
  15. Fletcher, H., and Munson, W.A. Loudness, its definition, measurement and calculation. J. Acoust. Soc. Am. 5, 82–108, 1933.CrossRefGoogle Scholar
  16. Gescheider, G.A. Psychophysics: The Fundamentals (Third Edition). Mahwah, NJ: Lawrence Erlbaum Associates, 1997.Google Scholar
  17. Gescheider, G.A., and Hughson, B.A. Stimulus context and absolute magnitude estimation: A study of individual differences. Percept. Psychophys. 50: 45–57, 1991.PubMedGoogle Scholar
  18. Hartline, H.K., and Graham, C.H. Nerve impulses from single receptors in the eye. J. Cell. Comp. Physiol. 1:277–295, 1932.CrossRefGoogle Scholar
  19. Hellman, R.P. On some factors affecting loudness as a function of intensity. Master’s thesis, Syracuse University, Syracuse, New York, 1960.Google Scholar
  20. Hellman, R.P., and Meiselman, C.H. Prediction of individual loudness functions from cross-modality matching. J. Speech Hear. Res. 31: 605–615, 1988.PubMedGoogle Scholar
  21. Hellman, R.P., and Meiselman, C.H. Loudness relations for individuals and groups in normal and impaired hearing. J. Acoust. Soc. Am. 88(6): 2596–2606, 1990.CrossRefPubMedGoogle Scholar
  22. Hellman, R.P., and Meiselman, C.H. Rate of loudness growth for pure tones in normal and impaired hearing. J. Acoust. Soc. Am. 93(2): 966–975, 1993.CrossRefPubMedGoogle Scholar
  23. Hellman, R.P., and Zwislocki, J.J. Some factors affecting the estimation of loudness. J. Acoust. Soc. Am. 33(5): 687–694, 1961.CrossRefGoogle Scholar
  24. Hellman, R.P., and Zwislocki, J.J. Monaural loudness function T 1000 cps and interaural summation. J. Acoust. Soc. Am. 35(6): 856–865, 1963.CrossRefGoogle Scholar
  25. Hellman, R.P., and Zwislocki, J.J. Loudness function of a 1000-cps tone in the presence of a masking noise. J. Acoust. Soc. Am. 36(9): 1618–1627, 1964.CrossRefGoogle Scholar
  26. Hellman, R.P., and Zwislocki, J.J. Loudness determination at low sound frequencies. J. Acoust. Soc. Am. 43(1): 60–64, 1968.CrossRefPubMedGoogle Scholar
  27. James, W. Principles of Psychology. New York: Holt, 1890.Google Scholar
  28. Jastrow, J. The psycho-physic law and star magnitude. Am. J. Psychol. 1: 112–127, 1887.CrossRefGoogle Scholar
  29. Levelt, W.J.M., Riemersma, J.B., and Bunt, A. Binaural additivity of loudness. Brit. J. Math. Stat. Psychol. 25: 51–68, 1972.Google Scholar
  30. Luce, R.D., and Tukey, J.W. Simultaneous conjoint measurement: A new Type of fundamental measurement. J. Math. Psychol. 1: 1–27, 1964.CrossRefGoogle Scholar
  31. MacKay, D.M. Psychophysics of perceived intensity: A theoretical basis for Fechner’s and Stevens’ laws. Science 139: 1213–1216, 1963.CrossRefGoogle Scholar
  32. Mansfield, R.J.W. Brightness function: Effects of area and duration. J. Opt. Soc. Am. 63: 913–920, 1973.CrossRefPubMedGoogle Scholar
  33. Marks, L.E. Sensory Processes: The New Psychophysics. New York: Academic Press, 1974.Google Scholar
  34. Marks, L.E. Binaural summation of the loudness of pure tones. J. Acoust. Soc. Am. 64: 107–113, 1978.CrossRefPubMedGoogle Scholar
  35. Marks, L.E. Magnitude estimation and sensory matching. Percept. Psychophys. 43(6): 511–525, 1988.PubMedGoogle Scholar
  36. Marks, L.E. Reliability of magnitude matching. Percept. Psychophys. 49: 31–37, 1991.PubMedGoogle Scholar
  37. Matthews, B.H.C. The response of a single end organ. J. Physiol. 71: 64–110, 1931.PubMedGoogle Scholar
  38. McKay, D.M. Psychophysics of perceived intensity: A theoretical basis for Fechner’s and Steven’s laws. Science 139: 1213–1216, 1963.CrossRefGoogle Scholar
  39. Moskowitz, H.R. Ratio scales of sugar sweetness. Percept. Psychophys. 7(5): 315–320, 1970.Google Scholar
  40. Moskowitz, H.R. Intensity scales for pure tastes and for taste mixtures. Percept. Psychophys. 9(1a): 51–56, 1971a.Google Scholar
  41. Moskowitz, H.R. The sweetness and pleasantness of sugars. Am. J. Psychol. 84(3): 387–405, 1971b.CrossRefGoogle Scholar
  42. Newman, E.B. The validity of the just noticeable difference as a unit of psychological magnitude. Trans. Kans. Acad. Sci. 36: 172–175, 1933.CrossRefGoogle Scholar
  43. Richardson, L.E, and Ross, J.S. Loudness and telephone current. J. Gen. Psychol. 3: 288–306, 1930.CrossRefGoogle Scholar
  44. Ruggero, M.A., Rich, N.C., Recio, A., Narayan, S.S., and Robles, L. Basilar-membrane responses to tones at the base of the chinchilla cochlea. J. Acoust. Soc. Am. 101(4): 2151–2163, 1997.CrossRefPubMedGoogle Scholar
  45. Sato, M. Neural coding in taste as seen from recordings from peripheral receptors and nerves. In L. M. Beidler (Ed.), Handbook of Sensory Physiology: Chemical Senses, Taste (Vol. 2, pp. 116–147). Berlin: Springer-Verlag, 1971.Google Scholar
  46. Schmidt, J.M., and Smith, J.J.B. Short interval time measurement by a parasitoid wasp. Science, 237: 903–905, 1987.CrossRefPubMedGoogle Scholar
  47. Shepard, R.N. On the status of “direct” psychological measurement. In C.W. Savage (Ed.), Minnesota Studies in the Philosophy of Science (Vol. 9, pp. 441–490). Minneapolis: University of Minnesota Press, 1978.Google Scholar
  48. Stevens, J.C. A comparison of ratio scales for the loudness of white noise and the brightness of white light. Doctoral dissertation, Harvard University, 1957.Google Scholar
  49. Stevens, J.C., and Mack, J.D. Scales of apparent force. J. Exp. Psychol. 58: 405–413, 1959.CrossRefPubMedGoogle Scholar
  50. Stevens, J.C., and Marks, L.E. Spatial summation and the dynamics of warmth sensation. Percept. Psychophys. 9: 291–298, 1971.Google Scholar
  51. Stevens, J.C., Mack, J.D., and Stevens, S.S. Growth of sensation on seven continua as measured by force of handgrip. J. Exp. Psychol. 59: 60–67, 1960.CrossRefPubMedGoogle Scholar
  52. Stevens, S.S. A scale for the measurement of a psychological magnitude: Loudness. Psychol. Rev. 43: 405–416, 1936.CrossRefGoogle Scholar
  53. Stevens, S.S. On the theory of scales of measurement. Science 103: 677–680, 1946.CrossRefGoogle Scholar
  54. Stevens, S.S. Handbook of Experimental Psychology. New York: Wiley, 1951.Google Scholar
  55. Stevens, S.S. On the brightness of lights and the loudness of sounds [Abstract], Science 118: 576, 1953.Google Scholar
  56. Stevens, S.S. The measurement of loudness. J. Acoust. Soc. Am. 27: 815–820, 1955.CrossRefGoogle Scholar
  57. Stevens, S.S. The direct estimation of sensory magnitudes-loudness. Am. J. Psychol. 69:1–25, 1956.CrossRefPubMedGoogle Scholar
  58. Stevens, S.S. Problems and methods of psychophysics. Psychol. Bull. 55: 177–196, 1958.CrossRefPubMedGoogle Scholar
  59. Stevens, S.S. Cross-modality validations of subjective scales for loudness, vibrations, and electric shock. J. Exp. Psychol. 57: 201–209, 1959.CrossRefPubMedGoogle Scholar
  60. Stevens, S.S. On the new psychophysics. Scand. J. Psychol. 1: 27–35, 1960.CrossRefGoogle Scholar
  61. Stevens, S.S. Matching functions between loudness and ten other continua. Percept. Psychophys. 1:5–8, 1966.Google Scholar
  62. Stevens, S.S. Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects. New York: Wiley & Sons, 1975.Google Scholar
  63. Stevens, S.S., and Greenbaum, H.B. Regression effect in psychophysical judgment. Percept. Psychophys. 1: 439–446, 1966.Google Scholar
  64. Stevens, S.S., and Guirao, M. Loudness, reciprocity, and partition scales. J. Acoust. Soc. Am. 34: 1466–1471, 1962.CrossRefGoogle Scholar
  65. Teas, D.C., Eldredge, D.H., and Davis, H. Cochlear responses to acoustic transients: An interpretation of whole-nerve action potentials. J. Acoust. Soc. Am. 34: 1438–1459, 1962.CrossRefGoogle Scholar
  66. Teghtsoonian, M., and Beckwith, J.B. Children’s size judgments when size and distance vary. Is there a developmental trend to overconsistency? J. Exp. Child Psychol. 22: 23–39, 1976.CrossRefPubMedGoogle Scholar
  67. Treisman, M. Sensory scaling and the psychophysical law. Q. J. Exp. Psychol. 16: 11–22, 1964.CrossRefGoogle Scholar
  68. Verrillo, R.T. Effect of contractor area in the vibrotactile threshold. J. Acoust. Soc. Am. 35: 1962–1966, 1963.CrossRefGoogle Scholar
  69. Verrillo, R.T. Comparison of vibrotactile threshold and suprathreshold responses in men and women. Percept. Psychophys. 26: 20–24, 1979a.Google Scholar
  70. Verrillo, R.T. Change in vibrotactile thresholds as a function of age. Sens. Processes 3: 49–59, 1979b.Google Scholar
  71. Verrillo, R.T. Absolute estimation of line length in three age groups. J. Gerontol. 36:625–627, 1981.PubMedGoogle Scholar
  72. Verrillo, R.T. Stability of line-length estimates using the method of absolute magnitude estimation. Percept. Psychophys. 33: 261–265, 1983.PubMedGoogle Scholar
  73. Verrillo, R.T., Fraioli, A., and Smith, R.L. Sensory magnitude of vibrotactile stimuli. Percept. Psychophys. 6: 366–372, 1969.Google Scholar
  74. Verrillo, R.T., and Irvin, G. Absolute estimation of line length as a function of orientation and contrast polarity. Sens. Processes 3: 261–274, 1979.PubMedGoogle Scholar
  75. Weber, E.H. De pulsu, resorptione, audita et tactu: Annotationes anatomicae et physiologicae. Leipzig: Koehler, 1834.Google Scholar
  76. Zinnes, J.L. Scaling. Annu. Rev. Psychol. 20: 447–478, 1969.CrossRefGoogle Scholar
  77. Zotterman, Y. The recording of the neural response from human taste nerves. In L.M. Beidler (Ed.), Handbook of Sensory Physiology: Chemical Senses, Taste (Vol. 2, pp. 102–115). Berlin: Springer-Verlag, 1971.Google Scholar
  78. Zwislocki, J.J. A power function for sensory receptors. In H.R. Moskowitz, B. Scharf, & J.C. Stevens (Eds.), Sensation and Measurements. Dordrecht, Holland: Reidel, 1974.Google Scholar
  79. Zwislocki, J.J. Group and individual relations between sensation magnitudes and their numerical estimates. Percept. Psychophys. 33: 460–468, 1983.PubMedGoogle Scholar
  80. Zwislocki, J.J. Natural Measurement. In S.J. Bolanowski, Jr. & G.A. Gescheider (Eds.), Ratio Scaling of Psychological Magnitude: In Honor of the Memory of S.S. Stevens (pp. 19–26). Hillsdale, NJ: Lawrence Erlbaum Associates, 1991.Google Scholar
  81. Zwislocki, J.J. Auditory system: Peripheral nonlinearity and central additivity, as revealed in the human stapedius-muscle reflex. Proc. Natl. Acad. Sci. USA 99(22): 14601–14606, 2002.CrossRefPubMedGoogle Scholar
  82. Zwislocki, J.J. A look at neural integration in the human auditory system through the stapedius muscle reflex. Proc. Nat. Acad. Sci. USA 100(5): 9073–9078, 2003.CrossRefPubMedGoogle Scholar
  83. Zwislocki, J.J., and Goodman, D.A. Absolute scaling of sensory magnitudes: A validation. Percept. Psychophys. 28(1): 28–38, 1980.PubMedGoogle Scholar
  84. Zwislocki, J.J., Damianopoulos, E.N., Buining, E., and Glantz, J. Central masking: Some steady states and transient effects. Percept. Psychophys. 2: 59–64, 1967.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2009

Personalised recommendations