Skip to main content

Mouse Models for Thin Filament Disease

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 642))

Abstract

Thin filament integrity is important for the ordered structure and function of skeletal muscles. Mutations within genes that encode thin filament and thin filament-associated proteins can cause muscle disruption, fiber atrophy and alter fiber type composition, leading to muscle weakness. Analyses of patient biopsy samples and tissue culture systems provide rapid methods for studying disease-causing mutations. However, there are limitations to these techniques. Although time consuming, many laboratories are generating and utilizing animal models, in particular the mouse, to study the disease process of various myopathies. This chapter reviews the use of mouse models for thin filament diseases of skeletal muscle and in particular, concentrates on what has been achieved through the generation and characterization of transgenic and knock-in mouse models for the congenital thin filament disease nemaline myopathy. We will review potential therapies that have been trialled on the nemaline models, providing indications for future directions for the treatment of nemaline myopathy patients and muscle weakness in general.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nowak KJ, Wattanasirichaigoon D, Goebel HH et al. Mutations in the skeletal alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 1999; 23(2):208–212.

    Article  PubMed  CAS  Google Scholar 

  2. Wallefeld W, Krause S, Nowak KJ et al. Severe nemaline myopathy caused by mutations of the stop codon of skeletal muscle alpha actin gene (ACTA1). Neuromuscul Disord 2006; 16:541–547.

    Article  PubMed  Google Scholar 

  3. D’Amico A, Graziano C, Pacileo G et al. Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuro muscul Disord 2006; 16:548–552.

    Article  Google Scholar 

  4. Nowak KJ, Sewry CA, Navarro C et al. Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol 2007; 61(2):175–184.

    Article  PubMed  CAS  Google Scholar 

  5. Laing NG, Wilton SD, Akkari PA et al. A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1. Nat Genet 1995; 9:75–79.

    Article  PubMed  CAS  Google Scholar 

  6. Tan P, Briner J, Boltshauser E et al. Homozygosity for the nonsense mutation in the alpha-tropomyosin slow gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul Disord 1999; 9(8):573–579.

    Article  PubMed  CAS  Google Scholar 

  7. Donner K, Ollikainen M, Ridanpaa M et al. Mutations in the beta-tropomyosin (TPM2) gene-a rare cause of nemaline myopathy. Neuromuscul Disord 2002; 12:151–158.

    Article  PubMed  Google Scholar 

  8. Johnston JJ, Kelley RI, Crawford TO et al. A novel in the Amish caused by mutation in troponin T1. Am J Hum Genet 2000; 67(4):814–821.

    Article  PubMed  CAS  Google Scholar 

  9. Pelin K, Hilpela P, Donner K et al. Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Nat Acad Sci USA 1999; 96:2305–2310.

    Article  PubMed  CAS  Google Scholar 

  10. Gurgel-Giannetti J, Bang ML, Reed U et al. Lack of the C-terminal domain of nebulin in a patient with nemaline myopathy. Muscle Nerve 2002; 25(5):747–752.

    Article  PubMed  CAS  Google Scholar 

  11. Agrawal PB, Greenleaf RS, Tomczak KK et al. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am J Hum Genet 2007; 80(1):162–167.

    Article  PubMed  CAS  Google Scholar 

  12. Lehtokari VL, Ceuterick-de Groote C, de Jonghe P et al. Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2. Neuromusc Disord 2007; 17(6):433–442.

    Article  PubMed  Google Scholar 

  13. Kaindl AM, Ruschendorf F, Krause S et al. Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J Med Genet 2004; 41:842–848.

    Article  PubMed  CAS  Google Scholar 

  14. Laing NG, Clarke NF, Dye DE et al. Actin mutations are one cause of congenital fiber type disproportion. Ann Neurol 2004; 56:689–694.

    Article  PubMed  CAS  Google Scholar 

  15. Clarke NF, Ilkovski B, Cooper S et al. The pathologenesis of ACTA1-related congenital fiber type disproportion, Ann Neirol 2007; 61:552–561.

    Article  CAS  Google Scholar 

  16. Bamshad M, Watkins WS, Zenger RK et al. A gene for distal arthrogryposis type I maps to the pericentrimeric region of chromosome 9. Am J Hum Genet 1994; 55:1153–1158.

    PubMed  CAS  Google Scholar 

  17. Sung SS, Brassington AM, Grannatt K et al. Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am J Hum Genet 2003; 72:681–690.

    Article  PubMed  CAS  Google Scholar 

  18. Sung SS, Brassington AM, Krakowiak PA et al. Mutations in TNNT3 cause multiple congenital contractures: A second locus for distal arthogryposis type 2B. Am J Hum Genet 2003; 73:212–214.

    Article  PubMed  Google Scholar 

  19. Wallgren-Pettersson C, Lehtokari VL, Kalimo H et al. Distal myopathy caused by homozygous missense mutations in the nebulin gene. Brain 2007; 130:1465–1476.

    Article  PubMed  Google Scholar 

  20. Mogensen J, Klausen IC, Pedersen AK et al. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 1999; 103:R39–R43.

    Article  PubMed  CAS  Google Scholar 

  21. Olson et al. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 2001; 33:723–732.

    Article  PubMed  CAS  Google Scholar 

  22. Kimura A, Harada H, Park JE et al. Mutation in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet 2001; 16(4):379–382.

    Article  Google Scholar 

  23. Drera B, Zoppi N, Barlati et al. Recurrence of the p.R156X TNNI2 mutation in distal arthrogryposis type 2B. Clin Genet 2006; 70(6):532–534.

    Article  PubMed  CAS  Google Scholar 

  24. Davis J, Wen H, Edwards T et al. Thin filament disinhibition by restrictive cardiomyopathy mutatnt R193 troponin I induces Ca2+-independent mechanical tone and acute myocyte remodeling. Cir Res 2007; 100(10):1494–1502.

    Article  CAS  Google Scholar 

  25. Chang AN, Potter JD. Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail Rev 2005; 10:225–235.

    Article  PubMed  CAS  Google Scholar 

  26. Thierfelder L, Watkins H, MacRae C et al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere. Cell 1994; 77:701–712.

    Article  PubMed  Google Scholar 

  27. Venkatraman G, Harada K, Gomes AV et al. Different functional properties of troponin T mutants that cause dilated cardiomyopathy. J Biol Chem 2003; 278(43):41670–41676.

    Article  PubMed  CAS  Google Scholar 

  28. Harada K, Morimoto S. Inherited cardiomyopathies as a troponin disease. Jpn J Physiol 2004; 54:307–318.

    Article  PubMed  CAS  Google Scholar 

  29. Lammens M, Moerman P, Fryns JP et al. Fetal alkinesia sequence caused by nemaline myopathy. Neuropediatrics 1997; 28(2):116–119.

    Article  PubMed  CAS  Google Scholar 

  30. McComb RD, Markesbery WR, O’Connor WN. Fatal neonatal nemaline myopathy with multiple congenital anomalies. J Pediatr 1979; 94(1):47–51.

    Article  PubMed  CAS  Google Scholar 

  31. Shahar E, Tervo RC, Murthy EG. Heterogeneity of nemaline myopathy. A follow up of 13 cases. Pediatr Neurosci 1988; 14(5):236–240.

    Article  PubMed  CAS  Google Scholar 

  32. Davies MJ, Ballantine S, Darracott S et al. Nemaline bodies in the heart: Anomalous Z bands with a periodic structure suggesting tropomyosin in human cardiac muscle biopsies. Cardiovasc Res 1973; 7(3):408–711.

    Article  PubMed  CAS  Google Scholar 

  33. Ishibashi-Ueda H, Imakita M, Yutani C et al. Congenital nemaline myopathy with dilated cardiomyopathy: An autopsy study. Hum Pathol 1990; 21:77–82.

    Article  PubMed  CAS  Google Scholar 

  34. Muller-Hocker J, Schafer S, Mendel B et al. Nemaline cardiomyopathy in a young adult: An ultraimmuno histochemical study and review of the literature. Ultrastruct Pathol 2000; 24:407–416.

    Article  PubMed  CAS  Google Scholar 

  35. Jockusch BM, Veldman H, Griffiths GW et al. Immuno fluorescence microscopy of a myopathy. alpha-Actinin is a major constituent of nemaline rods. Exp Cell Res 1980; 127:409–420.

    Article  PubMed  CAS  Google Scholar 

  36. Yamaguchi M, Robson RM, Stromer MH et al. Actin filaments form the backbone of nemaline myopathy rods. Nature 1978; 271:265–267.

    Article  PubMed  CAS  Google Scholar 

  37. Schroder R, Reimann J, Salmikangas P et al. Beyond LGMDIA: Myotilin is a component of central core lesions and nemaline rods. Neuromuscul Disord 2003; 13:451–455.

    Article  PubMed  CAS  Google Scholar 

  38. Morris EP, Nneji G, Squire JM. The three-dimensional structure of the nemaline rod Z-band. J Cell Biol 1990; 111:2961–2978.

    Article  PubMed  CAS  Google Scholar 

  39. Volpe P, Damiani E, Margreth A et al. Fast to slow change of myosin in nemaline myopathy: Electrophoretic and immunologic evidence. Neurology 1982; 32(1):37–41.

    PubMed  CAS  Google Scholar 

  40. Kinoshita M, Satoyoshi E. Type 1 fiber atrophy and nemaline bodies. Arch Neurol 1974; 31(6):423–425.

    PubMed  CAS  Google Scholar 

  41. Shimomura C, Noaka I. Nemaline myopathy: Comparative muscle histochemistry in the severe neonatal. moderate congenital and adult-onset forms. Pediatr Neurol 1989; 5:25–31.

    Article  PubMed  CAS  Google Scholar 

  42. Wallgren-Pettersson C. Congenital nemaline myopathy. A clinical follow-up of twelve patients. J Neurol Sci 1989; 89:1–14.

    Article  PubMed  CAS  Google Scholar 

  43. Ilkovski B, Cooper ST, Nowak K et al. Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene. Am J Hum Genet 2001; 68(6):1333–1343.

    Article  PubMed  CAS  Google Scholar 

  44. Miike T, Ohtani Y, Tamari H et al. Muscle fiber type transformation in nemaline myopathy and congenital fiber type disproportion. Brain Dev 1986; 8(5):526–532.

    PubMed  CAS  Google Scholar 

  45. Meredith C, Herrmann R, Parry C et al. Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause Laing early distal myopathy (MPD1). Am J Hum Genet 2004; 75:703–708.

    Article  PubMed  CAS  Google Scholar 

  46. Goebel HH. Cap disease uncapped. Neuromusc Disord 2007; 17:429–432.

    Article  PubMed  Google Scholar 

  47. Tajsharghi H, Ohlsson M, Linberg C et al. Congenital myopathy with nemaline rods and cap structures caused by a mutation in the β-tropomyosin gene (TPM2) 2007; 64(9):1334–1338.

    Google Scholar 

  48. Corbett MA, Robinson CS, Dunglison GF et al. A mutation in alpha-tropomyosin(slow) affects muscle strength, maturation and hypertrophy in a mouse model for nemaline myopathy. Hum Mol Genet 2001; 10:317–328.

    Article  PubMed  CAS  Google Scholar 

  49. Joya JE, Kee AJ, Nair-Shalliker V et al. Muscle weakness in a mouse model of nemaline myopathy can be reversed with exercise and reveals a novel myofiber repair mechanism. Hum Mol Genet 2007; 13(21):2633–2645.

    Article  Google Scholar 

  50. Sanoudou D, Corbett MA, Han M et al. Skeletal muscle repair in a mouse model of nemaline myopathy. Hum Mol Genet 2006; 15(17):2603–2612.

    Article  PubMed  CAS  Google Scholar 

  51. de Haan A, van der Viet MR, Gommans IMP et al. Skeletal muscle of mice with a mutation in slow α-tropomyosin is weaker at lower lengths. Neuromusc Dis 2002; 952–957.

    Google Scholar 

  52. Corbett MA, Akkari PA, Domazetovska A et al. An alpha-tropomyosin mutation alters dimer preference in nemaline myopathy. Ann Neurol 2004; 57(1):42–49.

    Article  Google Scholar 

  53. Witt CC, Burkat C, Labeit D et al. Nebulin regulates thin filament length, contractility and Z-disk structure in vivo. EMBO J 2006; 25:3843–3855.

    Article  PubMed  CAS  Google Scholar 

  54. Bang ML, Li X, Littlefield R et al. Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J Cell Biol 2006; 173:905–916.

    Article  PubMed  CAS  Google Scholar 

  55. Gurgel-Gianneti J, Reed U, Bang ML et al. Nebulin expression in patient with nemaline myopathy. Neuromuscul Disord 2001; 11(2):154–162.

    Article  Google Scholar 

  56. Crawford K, Flick R, Close L et al. Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Mol Cell Biol 2002; 22(16):5887–5896.

    Article  PubMed  CAS  Google Scholar 

  57. Muthuchamy M, Pieples K, Rethinasamy P et al. Mouse model of a familial hypertrophic cardiomyopathy mutation in alpha-tropomyosin manifests cardiac dysfunction. Circ Res 1999; 85:47–56.

    PubMed  CAS  Google Scholar 

  58. Prabhakar R, Boivin GP, Grupp IL et al. A familial hypertrophic cardiomyopathy alpha-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J Mol Cell Cardiol 2001; 33:1815–1828.

    Article  PubMed  CAS  Google Scholar 

  59. Rajan S, Ahmad RPH, Jagatheesan G et al. Dilated cardiomyopathy mutant tropomyosin mice develop cardiac dysfunction with significantly decreased fractional shortening and myofilament calcium sensitivity. Circ Research 2007; 101:205–214.

    Article  CAS  Google Scholar 

  60. Tsoutsman T, Chung J, Doolan A et al. Molecular insights from a novel cardiac troponin I mouse model of familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 2006; 41(4):623–632.

    Article  PubMed  CAS  Google Scholar 

  61. James J, Zhang Y, Osinska H et al. Transgenic modelling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ Res 2000; 87(9):805–811.

    PubMed  CAS  Google Scholar 

  62. Rogers MA, Evans WJ. Changes in skeletal muscle with aging: effects of exercise training. Exerc Sport Sci Rev 1993; 21:65–102.

    Article  PubMed  CAS  Google Scholar 

  63. Wanke T, Toifl K, Merkle et al. Inspiratory muscle training in patients with Duchenne muscular dystrophy. Chest 1994; 105(2):475–482.

    Article  PubMed  CAS  Google Scholar 

  64. Vignos PJ. Physical models of rehabilitation in neuromuscular disease. Musc Nerve 1983; 6(5):323–338.

    Article  Google Scholar 

  65. Nair-Shalliker V, Kee AJ, Joya JE et al. Myofiber adaptational response to exercise in a mouse model of nemaline myopathy. Musc Nerve 2004; 30:470–480.

    Article  CAS  Google Scholar 

  66. Dupler TL, Cortes C. Effects of whole-body resistance training regimen in the elderly. Gerontology 1993; 39(6):314–319.

    Article  PubMed  CAS  Google Scholar 

  67. Lindeman E, Spaans F, Reulen J et al. Progressive resistance training in neuromuscular patients. Effects on force and surface EMG. J Electromyogr Kinesiol 1999; 9(6):379–384.

    Article  PubMed  CAS  Google Scholar 

  68. Ryan MM Sy C, Rudge S et al. Dietary L-Tyrosine supplementation in nemaline myopathy. J Child Neurol 2007; Ahead of print.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna C. Hardeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Nguyen, MA.T., Hardeman, E.C. (2008). Mouse Models for Thin Filament Disease. In: Laing, N.G. (eds) The Sarcomere and Skeletal Muscle Disease. Advances in Experimental Medicine and Biology, vol 642. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84847-1_6

Download citation

Publish with us

Policies and ethics