Nebulin—A Giant Chameleon

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 642)


Nebulin is an enormous protein of the muscle sarcomere. It is a determinant of thin filament length, Z-disk structure and fiber contractility. The nebulin gene contains four regions of alternative splicing, providing a wealth of different isoforms of the protein. The precise function of these numerous isoforms in various types of muscle tissue remains to be elucidated, as does their role in the maintenance of normal muscle strength and activity. Understanding these basic mechanisms is a prerequisite for the development of specific therapies for the disorders caused by mutations in the nebulin gene. Such mutations are the main cause of autosomal recessive nemaline (rod) myopathy, especially of the typical form of this congenital myopathy. Further known disorders caused by nebulin mutations are several other subcategories of recessively inherited nemaline myopathy and a novel distal myopathy caused by homozygous missense mutations in the nebulin gene. Because of the giant size of the gene, molecular genetic testing methods are difficult to design for routine diagnostic use.


Nemaline Myopathy Distal Myopathy Pall Adin Skeletal Muscle Disease Muscle Sarcomere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang K, Williamson CL. Identification of an N2 line protein of striated muscle. Proc Natl Acad Sci USA 1980; 77:3254–3258.PubMedCrossRefGoogle Scholar
  2. 2.
    Kazmierski ST, Antin PB, Witt CC et al. The complete mouse nebulin gene sequence and the identification of cardiac nebulin. J Mol Biol 2003; 328:835–846.PubMedCrossRefGoogle Scholar
  3. 3.
    McElhinny AS, Schwach C, Valichnac M et al. Nebulin regulates the assembly and lengths of the thin filaments in striated muscle. J Cell Biol 2005; 170:947–957.PubMedCrossRefGoogle Scholar
  4. 4.
    Bang ML, Li X, Littlefield R et al. Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J Cell Biol 2006; 173:905–916.PubMedCrossRefGoogle Scholar
  5. 5.
    Witt CC, Burkart C, Labeit D et al. Nebulin regulates thin filament length, contractility and Z-disk structure in vivo. EMBO J 2006; 25:3843–3855.PubMedCrossRefGoogle Scholar
  6. 6.
    Lehtokari VL, Pelin K, Sandbacka M et al. Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Hum Mutat 2006; 27:946–956.PubMedCrossRefGoogle Scholar
  7. 7.
    Wallgren-Pettersson C, Lehtokari VL, Kalimo H et al. Distal myopathy caused by homozygous missense mutations in the nebulin gene. Brain 2007; 130:1465–1476.PubMedCrossRefGoogle Scholar
  8. 8.
    Moneman CL, Wang K. Nebulette: A 107 kD nebulin-like protein in cardiac muscle. Cell Motil Cytoskeleton 1995; 32:205–225.CrossRefGoogle Scholar
  9. 9.
    Chen MJ, Shih CL, Wang K. Nebulin as an actin zipper. A two-module nebulin fragment promotes actin nucleation and stabilizes actin filaments. J Biol Chem 1993; 268:20327–20334.PubMedGoogle Scholar
  10. 10.
    Yasuda K, Anazawa T, Ishiwata S. Microscopic analysis of the elastic properties of nebulin in skeletal myofibrils. Biophys J 1995; 68:598–608.PubMedCrossRefGoogle Scholar
  11. 11.
    Lin Z, Lu MH, Schultheiss T et al. Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: Evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil Cytoskeleton 1994; 29:1–19.PubMedCrossRefGoogle Scholar
  12. 12.
    Pfuhl M, Winder SJ, Castiglione Morelli MA et al. Correlation between conformational and binding properties of nebulin repeats. J Mol Biol 1996; 257:367–384.PubMedCrossRefGoogle Scholar
  13. 13.
    Lukoyanova N, VanLoock MS, Orlova A et al. Each actin subunit has three nebulin binding sites: Implications for steric blocking. Curr Biol 2002; 12:383–388.PubMedCrossRefGoogle Scholar
  14. 14.
    Labeit S, Kolmerer B. The complete primary structure of human nebulin and its correlation to muscle structure. J Mol Biol 1995; 248:308–315.PubMedGoogle Scholar
  15. 15.
    Donner K, Sandbacka M, Lehtokari VL et al. Complete genomic structure of the human nebulin gene and identification of alternatively spliced transcripts. Eur J Hum Genet 2004; 12:744–751.PubMedCrossRefGoogle Scholar
  16. 16.
    McElhinny AS, Kolmerer B, Fowler VM et al. The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J Biol Chem 2001; 276:583–592.PubMedCrossRefGoogle Scholar
  17. 17.
    Bang ML, Mudry RE, McElhinny AS et al. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 2001; 153:413–427.PubMedCrossRefGoogle Scholar
  18. 18.
    Politou AS, Spadaccini R, Joseph C et al. The SH3 domain of nebulin binds selectively to type II peptides: Theoretical prediction and experimental validation. J Mol Biol 2002; 316:305–315.PubMedCrossRefGoogle Scholar
  19. 19.
    Bang ML, Gregorio C, Labeit S. Molecular dissection of the interaction of desmin with the C-terminal region of nebulin. J Struct Biol 2002; 137:119–127.PubMedCrossRefGoogle Scholar
  20. 20.
    Moncman CL, Wang K. Architecture of the thin filament-Z-line junction: Lessons from nebulette and nebulin homologies. J Muscle Res Cell Motil 2000; 21:153–169.PubMedCrossRefGoogle Scholar
  21. 21.
    Labeit S, Gibson T, Lakey A et al. Evidence that nebulin is a protein-ruler in muscle thin filaments. FEBS Lett 1991; 282:313–316.PubMedCrossRefGoogle Scholar
  22. 22.
    Kruger M, Wright J, Wang K. Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: Correlation of thin filament length, nebulin size and epitope profile. J Cell Biol 1991; 115:97–107.PubMedCrossRefGoogle Scholar
  23. 23.
    Pelin K, Ridanpaa M, Donner K et al. Refined localisation of the genes for nebulin and titin on chromosome 2q allows the assignment of nebulin as a candidate gene for autosomal recessive nemaline myopathy. Eur J Hum Genet 1997; 5:229–234.PubMedGoogle Scholar
  24. 24.
    Donner K, Nowak KJ, Aro M et al. Developmental and muscle-type-specific expression of mouse nebulin exons 127 and 128. Genomics 2006; 88:489–495.PubMedCrossRefGoogle Scholar
  25. 25.
    Pelin K, Donner K, Holmberg M et al. Nebulin mutations in autosomal recessive nemaline myopathy: An update. Neuromuscul Disord 2002; 12:680–686.PubMedCrossRefGoogle Scholar
  26. 26.
    Pelin K, Hilpela P, Donner K et al. Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Natl Acad Sci USA 1999; 96:2305–2310.PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson SL, Ekstein J, Donnelly MC et al. Nemaline myopathy in the Ashkenazi Jewish population is caused by a deletion in the nebulin gene. Hum Genet 2004; 115:185–190.PubMedCrossRefGoogle Scholar
  28. 28.
    Sewry CA, Brown SC, Pelin K et al. Abnormalities in the expression of nebulin in chromosome-2 linked nemaline myopathy. Neuromuscul Disord 2001; 11:146–153.PubMedCrossRefGoogle Scholar
  29. 29.
    Schouten JP, McElgunn CJ, Waaijer R et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002; 30:e57.PubMedCrossRefGoogle Scholar
  30. 30.
    Conen PE, Murphy EG, Donohue WL. Light and electron microscopic studies of “myogranules” in a child with hypotonia and muscle weakness. Can Med Assoc J 1963; 89:983–986.PubMedGoogle Scholar
  31. 31.
    Shy GM, Engel WK, Somers JE et al. Nemaline myopathy. A new congenital myopathy. Brain 1963; 86:793–810.PubMedCrossRefGoogle Scholar
  32. 32.
    North KN, Laing NG, Wallgren-Pettersson C. Nemaline myopathy: Current concepts. the ENMC international consortium and nemaline myopathy. J Med Genet 1997; 34:705–713.PubMedCrossRefGoogle Scholar
  33. 33.
    Wallgren-Pettersson C, Jungbluth H. The congenital (structural) myopathies. In: Rimoin DL, Connor JM, Pyeritz RE, Korf BR, eds. Emery & Rimoin’s Principles and Practice of Medical Genetics, 5th ed. London: Churchill Livingstone, 2007:2963–3000.Google Scholar
  34. 34.
    Stromer MH, Tabatabai LB, Robson RM et al. Nemaline myopathy, an integrated study: Selective extraction. Exp Neurol 1976; 50:402–421.PubMedCrossRefGoogle Scholar
  35. 35.
    Jocksuch BM, Veldman H, Griffiths GW et al. Immunofluorescence microscopy of a myopathy. alpha-actinin is a major constituent of nemaline rods. Exp Cell Res 1980; 127:409–420.CrossRefGoogle Scholar
  36. 36.
    Thornell LE, Edstrom L, Eriksson A et al. The distribution of intermediate filament protein (skeletin) in normal and diseased human skeletal muscle—An immunohistochemical and electron-microscopic study. J Neurol Sci 1980; 47:153–170.PubMedCrossRefGoogle Scholar
  37. 37.
    Yamaguchi M, Robson RM, Stromer MH et al. Nemaline myopathy rod bodies. structure and composition. J Neurol Sci 1982; 56:35–56.PubMedCrossRefGoogle Scholar
  38. 38.
    Wallgren-Pettersson C, Jasani B, Newman GR et al. Alpha-actinin in nemaline bodies in congenital nemaline myopathy: Immunological confirmation by light and electron microscopy. Neuromuscul Disord 1995; 5:93–104.PubMedCrossRefGoogle Scholar
  39. 39.
    Vainzof M, Moreira ES, Suzuki OT et al. Telethonin protein expression in neuromuscular disorders. Biochim Biophys Acta 2002; 1588:33–40.PubMedGoogle Scholar
  40. 40.
    Schroder R, Reimann J, Salmikangas P et al. Beyond LGMD1A: Myotilin is a component of central core lesions and nemaline rods. Neuromuscul Disord 2003; 13:451–455.PubMedCrossRefGoogle Scholar
  41. 41.
    Wallgren-Pettersson C, Rapola J, Donner M. Pathology of congenital nemaline myopathy. A follow-up study. J Neurol Sci 1988; 83:243–257.PubMedCrossRefGoogle Scholar
  42. 42.
    Wallgren-Pettersson C, Laing NG. Report of the 70th ENMC international workshop: Nemaline myopathy, 1999, Naarden, the Netherlands. Neuromuscul Disord 2000; 10:299–306.PubMedCrossRefGoogle Scholar
  43. 43.
    Wallgren-Pettersson C, Avela K, Marchand S et al. A gene for autosomal recessive nemaline myopathy assigned to chromosome 2q by linkage analysis. Neuromuscul Disord 1995; 5:441–443.PubMedCrossRefGoogle Scholar
  44. 44.
    Nowak KJ, Wattanasirichaigoon D, Goebel HH et al. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 1999; 23:208–212.PubMedCrossRefGoogle Scholar
  45. 45.
    Laing NG, Majda BT, Akkari PA et al. Assignment of a gene (NEMI) for autosomal dominant nemaline myopathy to chromosome I. Am J Hum Genet 1992; 50:576–583.PubMedGoogle Scholar
  46. 46.
    Laing NG, Wilton SD, Akkari PA et al. A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat Genet 1995; 9:75–79.PubMedCrossRefGoogle Scholar
  47. 47.
    Donner K, Ollikainen M, Ridanpaa M et al. Mutations in the beta-tropomyosin (TPM2) gene—a rare cause of nemaline myopathy. Neuromuscul Disord 2002; 12:151–158.PubMedCrossRefGoogle Scholar
  48. 48.
    Johnston JJ, Kelley RI, Crawford TO et al. A novel nemaline myopathy in the amish caused by a mutation in troponin T1. Am J Hum Genet 2000; 67:814–821.PubMedCrossRefGoogle Scholar
  49. 49.
    Agrawal PB, Greenleaf RS, Tomczak KK et al. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am J Hum Genet 2007; 80:162–167.PubMedCrossRefGoogle Scholar
  50. 50.
    Wallgren-Pettersson C, Pelin K, Nowak KJ et al. Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin. Neuromuscul Disord 2004; 14:461–470.PubMedCrossRefGoogle Scholar
  51. 51.
    Wallgren-Pettersson C, Donner K, Sewry C et al. Mutations in the nebulin gene can cause severe congenital nemaline myopathy. Neuromuscul Disord 2002; 12:674–679.PubMedCrossRefGoogle Scholar
  52. 52.
    Wallgren-Pettersson C. Congenital nemaline myopathy. A clinical follow-up of twelve patients. J Neurol Sci 1989; 89:1–14.PubMedCrossRefGoogle Scholar
  53. 53.
    Wallgren-Pettersson C, Pelin K, Hilpela P et al. Clinical and genetic heterogeneity in autosomal recessive nemaline myopathy. Neuromuscul Disord 1999; 9:564–572.PubMedCrossRefGoogle Scholar
  54. 54.
    Jungbluth H, Sewry CA, Counsell S et al. Magnetic resonance imaging of muscle in nemaline myopathy. Neuromuscul Disord 2004; 14:779–784.PubMedCrossRefGoogle Scholar
  55. 55.
    Ryan MM, Schnell C, Strickland CD et al. Nemaline myopathy: A clinical study of 143 cases. Ann Neurol 2001; 50:312–320.PubMedCrossRefGoogle Scholar
  56. 56.
    Wallgren-Pettersson C, Bushby K, Mellies U et al. 117th ENMC workshop: Ventilatory support in congenital neuromuscular disorders—Congenital myopathies, congenital muscular dystrophies, congenital myotonic dystrophy and SMA (II) 2003, Naarden, The Netherlands: Neuromuscul Disord 2004; 14:56–69.PubMedCrossRefGoogle Scholar
  57. 57.
    Laing NG, Laing BA, Meredith C et al. Autosomal dominant distal myopathy: Linkage to chromosome 14. Am J Hum Genet 1995; 56:422–427.PubMedGoogle Scholar
  58. 58.
    Meredith C, Herrmann R, Parry C et al. Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause laing early-onset distal myopathy (MPD1). Am J Hum Genet 2004; 75:703–708.PubMedCrossRefGoogle Scholar
  59. 59.
    Lamont PJ, Udd B, Mastaglia FL et al. Laing early onset distal myopathy: Slow myosin defect with variable abnormalities on muscle biopsy. J Neurol Neurosurg Psychiatry 2006; 77:208–215.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Department of Biological and Environmental Sciences, Division of GeneticsUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Medical GeneticsUniversity of HelsinkiHelsinkiFinland
  3. 3.The Folkhälsan Institute of GeneticsHelsinkiFinland

Personalised recommendations