Therapeutic Approaches for the Sarcomeric Protein Diseases

  • Kristen J. Nowak
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 642)


No curative treatment currently exists for patients with skeletal myopathies caused by defects in sarcomeric proteins though, symptomatic treatments including orthoses, night-time ventilation, or mechanical ventilation can provide major benefits. The molecular genetic discovery era has enabled many families to know which gene and precisely which gene defect their family, or in some cases only their affected child has. This knowledge has enormously increased the accuracy of genetic counselling and in some cases can enable prognosis, which helps families to make better-informed life decisions. However, symptomatic treatments and molecular genetics do not help the patient’s skeletal muscle problems. The patients with skeletal muscle sarcomeric protein diseases, (from severely affected patients with shortened lifespan, through to the more mildly affected patients), would all benefit from more effective or curative treatments, as would their parents and families. This chapter outlines the experimental therapeutic strategies that have been investigated for other muscle diseases (predominantly the muscular dystrophies, towards which the majority of research emphasis has been focussed) and those that are beginning to be investigated for sarcomeric diseases. It analyses which of these approaches might be applicable to the different skeletal muscle sarcomeric protein diseases.


Muscular Dystrophy Satellite Cell Duchenne Muscular Dystrophy Duchenne Muscular Dystrophy Duchenne Muscular Dystrophy Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Monaco AP, Neve RL, Colletti-Feener C et al. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 1986; 323(6089):646–650.PubMedCrossRefGoogle Scholar
  2. 2.
    Bushby K, Straub V. Nonmolecular treatment for muscular dystrophies. Curr Opin Neurol 2005; 18(5):511–518.PubMedCrossRefGoogle Scholar
  3. 3.
    Richard I, Broux O, Allamand V et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 1995; 81(1):27–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Laing NG, Wilton SD, Akkari PA et al. A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat Genet 1995; 9(1):75–79.PubMedCrossRefGoogle Scholar
  5. 5.
    Ryan MM, Sy C, Rudge S et al. Dietary L-Tyrosine Supplementation in Nemaline Myopathy. J Child Neurol 2007; E Pub ahead of press Dec 2007.Google Scholar
  6. 6.
    Joya JE, Kee AJ, Nair-Shalliker V et al. Muscle weakness in a mouse model of nemaline myopathy can be reversed with exercise and reveals a novel myofiber repair mechanism. Hum Mol Genet 2004; 13(21):2633–2645.PubMedCrossRefGoogle Scholar
  7. 7.
    Sapru MK, Yates JW, Hogan S et al. Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp Neurol 2006; 198(2):382–390.PubMedCrossRefGoogle Scholar
  8. 8.
    Xia X, Zhou H, Huang Y et al. Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo. Neurobiol Dis 2006; 23(3):578–586.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang G, Ludtke JJ, Thioudellet C et al. Intraarterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model of duchenne muscular dystrophy. Hum Gene Ther 2004; 15(8):770–782.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang G, Budker V, Williams P et al. Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates. Hum Gene Ther 2001; 12(4):427–438.PubMedCrossRefGoogle Scholar
  11. 11.
    Molnar MJ, Gilbert R, Lu Y et al. Factors influencing the efficacy, longevity and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol Ther 2004; 10(3):447–455.PubMedCrossRefGoogle Scholar
  12. 12.
    Bertoni C, Jarrahian S, Wheeler TM et al. Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc Natl Acad Sci USA 2006; 103(2):419–424.PubMedCrossRefGoogle Scholar
  13. 13.
    Romero NB, Braun S, Benveniste O et al. Phase I study of dystrophin plasmid-based gene therapy in Duchenne/Becker muscular dystrophy. Hum Gene Ther 2004; 15(11):1065–1076.PubMedCrossRefGoogle Scholar
  14. 14.
    Somia N, Verma IM. Gene therapy: Trials and tribulations. Nat Rev Genet 2000; 1(2):91–99.PubMedCrossRefGoogle Scholar
  15. 15.
    Fougerousse F, Bartoli M, Poupiot J et al. Phenotypic correction of alpha-sarcoglycan deficiency by intra-arterial injection of a muscle-specific serotype 1 rAAV vector. Mol Ther 2007; 15(1):53–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Chirmule N, Propert K, Magosin S et al. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 1999; 6(9):1574–1583.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang Z, Kuhr CS, Allen JM et al. Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 2007; 15(6):1160–1166.PubMedGoogle Scholar
  18. 18.
    Ghosh A, Yue Y, Long C et al. Efficient whole-body transduction with trans-splicing adeno-associated viral vectors. Mol Ther 2007; 15(4):750–755.PubMedGoogle Scholar
  19. 19.
    Chang AN, Potter JD. Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail Rev 2005; 10(3):225–235.PubMedCrossRefGoogle Scholar
  20. 20.
    Shavlakadze T, Davies M, White JD et al. Early regeneration of whole skeletal muscle grafts is unaffected by overexpression of IGF-1 in MLC/mIGF-1 transgenic mice. J Histochem Cytochem 2004; 52(7):873–883.PubMedCrossRefGoogle Scholar
  21. 21.
    Partridge TA, Morgan JE Coulton GR et al. Conversion of mdx myofibres from dystrophin-negative to-positive by injection of normal myoblasts. Nature 1989; 337(6203):176–179.PubMedCrossRefGoogle Scholar
  22. 22.
    Boldrin L, Morgan JE. Activating muscle stem cells: Therapeutic potential in muscle diseases. Curr Opin Neurol 2007; 20(5):577–582.PubMedCrossRefGoogle Scholar
  23. 23.
    Peault B, Rudnicki M, Torrente Y et al. Stem and progenitor cells in skeletal muscle development, maintenance and therapy. Mol Ther 2007; 15(5):867–877.PubMedCrossRefGoogle Scholar
  24. 24.
    Skuk D, Goulet M, Roy B et al. First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: Eighteen months follow-up. Neuromuscul Disord 2007; 17(1):38–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Collins CA, Zammit PS, Ruiz AP et al. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 2007; 25(4):885–894.PubMedCrossRefGoogle Scholar
  26. 26.
    Collins CA, Olsen I, Zammit PS et al. Stem cell function, self-renewal and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 2005; 122(2):289–301.PubMedCrossRefGoogle Scholar
  27. 27.
    Bachrach E, Perez AL, Choi YH et al. Muscle engraftment of myogenic progenitor cells following intraarterial transplantation. Muscle Nerve 2006; 34(1):44–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Torrente Y, Tremblay JP, Pisati F et al. Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol 2001; 152(2):335–348.PubMedCrossRefGoogle Scholar
  29. 29.
    Sampaolesi M, Torrente Y, Innocenzi A et al. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 2003; 301(5632):487–492.PubMedCrossRefGoogle Scholar
  30. 30.
    Sampaolesi M, Blot S, D’Antona G et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006; 444(7119):574–579.PubMedCrossRefGoogle Scholar
  31. 31.
    Davies KE, Grounds MD. Treating muscular dystrophy with stem cells? Cell 2006; 127(7):1304–1306.PubMedCrossRefGoogle Scholar
  32. 32.
    Berry SE, Liu J, Chaney EJ et al. Multipotential mesoangioblast stem cell therapy in the mdx/utrn−/− mouse model for Duchenne muscular dystrophy. Regen Med 2007; 2(3):275–288.PubMedCrossRefGoogle Scholar
  33. 33.
    Dellavalle A, Sampaolesi M, Tonlorenzi R et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 2007; 9(3):255–267.PubMedCrossRefGoogle Scholar
  34. 34.
    Dunant P, Walter MC, Karpati G et al. Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve 2003; 27(5):624–627.PubMedCrossRefGoogle Scholar
  35. 35.
    Welch EM, Barton ER, Zhuo J et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007; 447(7140):87–91.PubMedCrossRefGoogle Scholar
  36. 36.
    Johnston JJ, Kelley RI, Crawford TO et al. A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am J Hum Genet 2000; 67(4):814–821.PubMedCrossRefGoogle Scholar
  37. 37.
    Wells DJ, Wells KE, Asante EA et al. Expression of human full-length and minidystrophin in transgenic mdx mice: Implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 1995; 4(8):1245–1250.PubMedCrossRefGoogle Scholar
  38. 38.
    Kapsa R, Quigley A, Lynch GS et al. In vivo and in vitro correction of the mdx dystrophin gene nonsense mutation by short-fragment homologous replacement. Hum Gene Ther 2001; 12(6):629–642.PubMedCrossRefGoogle Scholar
  39. 39.
    Bertoni C. Oligonucleotide-mediated gene editing for neuromuscular disorders. Acta Myol 2005; 24(3):194–201.PubMedGoogle Scholar
  40. 40.
    van Deutekom JC, van, Ommen GJ. Advances in Duchenne muscular dystrophy gene therapy. Nat Rev Genet 2003; 4(10):774–783.PubMedCrossRefGoogle Scholar
  41. 41.
    Wilton SD, Lloyd F, Carville K et al. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul Disord 1999; 9(5):330–338.PubMedCrossRefGoogle Scholar
  42. 42.
    Lu QL, Mann CJ, Lou F et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 2003; 9(8):1009–1014.PubMedCrossRefGoogle Scholar
  43. 43.
    McClorey G, Moulton HM, Iversen PL et al. Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther 2006; 13(19):1373–1381.PubMedCrossRefGoogle Scholar
  44. 44.
    Aartsma-Rus A, Janson AA, Kaman WE et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 2003; 12(8):907–914.PubMedCrossRefGoogle Scholar
  45. 45.
    McClorey G, Fall AM, Moulton HM et al. Induced dystrophin exon skipping in human muscle explants. Neuromuscul Disord 2006; 16(9–10):583–590.PubMedCrossRefGoogle Scholar
  46. 46.
    Beroud C, Tuffery-Giraud S, Matsuo M et al. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 2007; 28(2):196–202.PubMedCrossRefGoogle Scholar
  47. 47.
    Wilton SD, Fall AM, Harding PL et al. Antisense Oligonucleotide-induced exon skipping across the human dystrophin gene transcript. Mol Ther 2007; 15(7):1288–1296.PubMedCrossRefGoogle Scholar
  48. 48.
    Arechavala-Gomeza V, Graham IR, Popplewell LJ et al. Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin premRNA splicing in human muscle. Hum Gene Ther 2007; 18(9):798–810.PubMedCrossRefGoogle Scholar
  49. 49.
    van Deutekom JC Janson AA, Ginjaar IB et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357(26):2677–2686.PubMedCrossRefGoogle Scholar
  50. 50.
    Bonuccelli G, Sotgia F, Schubert W et al. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. Am J Pathol 2003; 163(4):1663–1675.PubMedGoogle Scholar
  51. 51.
    Assereto S, Stringara S, Sotgia F et al. Pharmacological rescue of the dystrophin-glycoprotein complex in Duchenne and Becker skeletal muscle explants by proteasome inhibitor treatment. Am J Physiol Cell Physiol 2006; 290(2):C577–582.PubMedCrossRefGoogle Scholar
  52. 52.
    Bonuccelli G, Sotgia F, Capozza F et al. Localized treatment with a novel FDA-approved proteasome inhibitor blocks the degradation of dystrophin and dystrophin-associated proteins in mdx mice. Cell Cycle 2007; 6(10):1242–1248.PubMedGoogle Scholar
  53. 53.
    Perkins KJ, Davies KE. The role of utrophin in the potential therapy of Duchenne muscular dystrophy. Neuromuscul Disord 2002; 12 Suppl 1:S78–89.CrossRefGoogle Scholar
  54. 54.
    Khurana TS, Davies KE. Pharmacological strategies for muscular dystrophy. Nat Rev Drug Discov 2003; 2(5):379–390.PubMedCrossRefGoogle Scholar
  55. 55.
    Clerk A, Morris GE, Dubowitz V et al. Dystrophin-related protein, utrophin, in normal and dystrophic human fetal skeletal muscle. Histochem J 1993; 25(8):554–561.PubMedGoogle Scholar
  56. 56.
    Deconinck N, Tinsley J, De Backer F et al. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nat Med 1997; 3(11):1216–1221.PubMedCrossRefGoogle Scholar
  57. 57.
    Rybakova IN, Patel JR, Davies KE et al. Utrophin binds laterally along actin filaments and can couple costameric actin with sarcolemma when overexpressed in dystrophin-deficient muscle. Mol Biol Cell 2002; 13(5):1512–1521.PubMedCrossRefGoogle Scholar
  58. 58.
    Squire S, Raymackers JM, Vandebrouck C et al. Prevention of pathology in mdx mice by expression of utrophin: Analysis using an inducible transgenic expression system. Hum Mol Genet 2002; 11(26):3333–3344.PubMedCrossRefGoogle Scholar
  59. 59.
    Wakefield PM, Tinsley JM, Wood MJ et al. Prevention of the dystrophic phenotype in dystrophin/utrophin-deficient muscle following adenovirus-mediated transfer of a utrophin minigene. Gene Ther 2000; 7(3):201–204.PubMedCrossRefGoogle Scholar
  60. 60.
    Cerletti M, Negri T, Cozzi F et al. Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer. Gene Ther 2003; 10(9):750–757.PubMedCrossRefGoogle Scholar
  61. 61.
    Nowak KJ, Sewry CA, Navarro C et al. Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol 2007; 61(2):175–184.PubMedCrossRefGoogle Scholar
  62. 62.
    Ilkovski B, Clement S, Sewry C et al. Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscul Disord 2005; 15(12):829–835.PubMedCrossRefGoogle Scholar
  63. 63.
    Nowak K, Ravenscroft G, Jackaman C et al. Transgenic expression of cardiac actin rescues skeletal actin-null mice. Neuromuscul Disord 2007; 17(9–10):899.CrossRefGoogle Scholar
  64. 64.
    Jorgensen LH, Jensen CH, Wewer UM et al. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice. Am J Pathol 2007; 171(5):1599–1607.PubMedCrossRefGoogle Scholar
  65. 65.
    Burkin DJ, Wallace GQ, Milner DJ et al. Transgenic expression of α7β1 integrin maintains muscle integrity, increases regenerative capacity, promotes hypertrophy and reduces cardiomyopathy in dystrophic mice. Am J Pathol 2005; 166(1):253–263.PubMedGoogle Scholar
  66. 66.
    Wehling M, Spencer MJ, Tidball JG. A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 2001; 155(1):123–131.PubMedCrossRefGoogle Scholar
  67. 67.
    Schertzer JD, Gehrig SM, Ryall JG et al. Modulation of insulin-like growth factor (IGF)-I and IGF-binding protein interactions enhances skeletal muscle regeneration and ameliorates the dystrophic pathology in mdx mice. Am J Pathol 2007; 171(4):1180–1188.PubMedCrossRefGoogle Scholar
  68. 68.
    Nguyen HH, Jayasinha V, Xia B et al. Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc Natl Acad Sci USA 2002; 99(8):5616–5621.PubMedCrossRefGoogle Scholar
  69. 69.
    Spencer MJ, Mellgren RL. Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Hum Mol Genet 2002; 11(21):2645–2655.PubMedCrossRefGoogle Scholar
  70. 70.
    Chaubourt E, Voisin V, Fossier P et al. Muscular nitric oxide synthase (muNOS) and utrophin. J Physiol Paris 2002; 96(1–2):43–52.PubMedCrossRefGoogle Scholar
  71. 71.
    Hodgetts S, Radley H, Davies M et al. Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 2006; 16(9–10):591–602.PubMedCrossRefGoogle Scholar
  72. 72.
    Bogdanovich S, McNally EM, Khurana TS. Myostatin blockade improves function but not histopathology in a murine model of limb-girdle muscular dystrophy 2C. Muscle Nerve. 2008;37(3):308–16.PubMedCrossRefGoogle Scholar
  73. 73.
    Messina S, Bitto A, Aguennouz M et al. Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol 2006; 198(1):234–241.PubMedCrossRefGoogle Scholar
  74. 74.
    Ilkovski B, Cooper ST, Nowak K et al. Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene. Am J Hum Genet 2001; 68(6):1333–1343.PubMedCrossRefGoogle Scholar
  75. 75.
    Sveen ML, Jeppesen TD, Hauerslev S et al. Endurance training: An effective and safe treatment for patients with LGMD2I. Neurology 2007; 68(1):59–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Nair-Shalliker V, Kee AJ, Joya JE et al. Myofiber adaptational response to exercise in a mouse model of nemaline myopathy. Muscle Nerve 2004; 30(4):470–480.PubMedCrossRefGoogle Scholar
  77. 77.
    Ross JS, Carlson JA, Brock G. miRNA: The new gene silencer. Am J Clin Pathol 2007; 128(5):830–836.PubMedCrossRefGoogle Scholar
  78. 78.
    Peek AS, Behlke MA. Design of active small interfering RNAs. Curr Opin Mol Ther 2007; 9(2):110–118.PubMedGoogle Scholar
  79. 79.
    Orlacchio A, Bernardi G, Martino S. RNA interference as a tool for Alzheimer’s disease therapy. Mini Rev Med Chem 2007; 7(11):1166–1176.PubMedCrossRefGoogle Scholar
  80. 80.
    Koutsilieri E, Rethwilm A, Scheller C. The therapeutic potential of siRNA in gene therapy of neurodegenerative disorders. J Neural Transm Suppl 2007; (72):43–49.PubMedCrossRefGoogle Scholar
  81. 81.
    Farah MH. RNAi silencing in mouse models of neurodegenerative diseases. Curr Drug Deliv 2007; 4(2):161–167.PubMedCrossRefGoogle Scholar
  82. 82.
    Morris KV, Rossi JJ. Antiviral applications of RNAi. Curr Opin Mol ther 2006; 8(2):115–121.PubMedGoogle Scholar
  83. 83.
    Herweijer H, Wolff JA. Gene therapy progress and prospects: Hydrodynamic gene delivery. Gene Ther 2007; 14(2):99–107.PubMedGoogle Scholar
  84. 84.
    Wolff JA, Rozema DB. Breaking the Bonds: Non-viral vectors become chemically dynamic. Mol Ther 2008; 16(1):8–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Westerhout EM, Berkhout B. A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res 2007; 35(13):4322–4330.PubMedCrossRefGoogle Scholar
  86. 86.
    Denti MA, Rosa A, D’Antona G et al. Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proc Natl Acad Sci USA 2006; 103(10):3758–3763.PubMedCrossRefGoogle Scholar
  87. 87.
    Quenneville SP, Chapdelaine P, Rousseau J et al. Dystrophin expression in host muscle following transplantation of muscle precursor cells modified with the phiC31 integrase. Gene Ther 2007; 14(6):514–522.PubMedCrossRefGoogle Scholar
  88. 88.
    Quenneville SP, Chapdelaine P, Skuk D et al. Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: Human cells and primate models. Mol Ther 2007; 15(2):431–438.PubMedCrossRefGoogle Scholar
  89. 89.
    Xiong F, Xiao S, Yu M et al. Enhanced effect of microdystrophin gene transfection by HSV-VP22 mediated intercellular protein transport. BMC Neurosci 2007; 8:50.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Kristen J. Nowak
    • 1
  1. 1.Centre for Medical ResearchUniversity of Western Australia, Western Australian Institute for Medical Research, B Block, QEII Medical CentreNedlandsAustralia

Personalised recommendations