Other Model Organisms for Sarcomeric Muscle Diseases

  • John Sparrow
  • Simon M. Hughes
  • Laurent Segalat
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 642)


Model organisms are vital to our understanding of human muscle biology and disease. The potential of the nematode Caenorhabditis elegans, the fruitfly, Drosophila melanogaster and the zebrafish, Danio rerio, as model genetic organisms for the study of human muscle disease is discussed by examining their muscle biology, muscle genetics and development. The powerful genetic tools available with each organism are outlined. It is concluded that these organisms have already demonstrated potential in facilitating the study of muscle disease and in screening for therapeutic agents.


Duchenne Muscular Dystrophy Myosin Heavy Chain Muscle Development Duchenne Muscular Dystrophy Muscle Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 1998; 282:2012–2018.Google Scholar
  2. 2.
    Sulston JE, Schierenberg E, White JG et al. The embryonic lineage of the nematode C. elegans. Dev Biol 1983; 100:64–119.PubMedCrossRefGoogle Scholar
  3. 3.
    Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nature Rev Genet 2007; 8:353–367.PubMedCrossRefGoogle Scholar
  4. 4.
    Hughes SM, Salinas PC. Control of muscle fibre and motoneuron diversification. Curr Opin Neurobiol 1999; 9:54–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Pownall ME, Gustafsson MK, Emerson CP. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Ann Rev Cell Dev Biol 2002; 18:747–783.CrossRefGoogle Scholar
  6. 6.
    Bate M. The embryonic development of larval muscles in Drosophila. Development 1990; 110:791–804.PubMedGoogle Scholar
  7. 7.
    Dietrich S, Schubert FR, Healy C. Specification of the hypaxial musculature. Development 1998; 125:2235–2249.PubMedGoogle Scholar
  8. 8.
    Dohrmann C, Azpiazu N, Frasch M. A new Drosophila homeo box gene is expressed in mesodermal precursor cells of distinct muscles during embryogenesis. Genes Dev 1990; 4:2098–2111.PubMedCrossRefGoogle Scholar
  9. 9.
    Kardon G. Muscle and tendon morphogenesis in the avian hind limb. Development 1998; 125:4019–4032.PubMedGoogle Scholar
  10. 10.
    Mankoo BS, Collins NS, Ashby P et al. Mox2 is a component of the genetic hierarchy controlling limb muscle development. Nature 1999; 400:69–73.PubMedCrossRefGoogle Scholar
  11. 11.
    Horsley V, Jansen KM, Mills ST et al. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 2003; 113:483–494.PubMedCrossRefGoogle Scholar
  12. 12.
    Srinivas BP, Woo J, Leong WY et al. A conserved molecular pathway mediates myoblast fusion in insects and vertebrates. Nat Genet 2007; 39:781–786.PubMedCrossRefGoogle Scholar
  13. 13.
    Hughes SM, Blau HM. Muscle fibre pattern is independent of cell lineage in postnatal rodent development. Cell 1992; 68:659–671.PubMedCrossRefGoogle Scholar
  14. 14.
    DiMario JX, Fernyak SE, Stockdale FE. Myoblasts transferred to the limbs of embryos are committed to specific fiber fates. Nature 1993; 362:165–167.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoh JFY, Hughes S. Basal lamina and superfast myosin expression in regenerating cat jaw muscle. Muscle Nerve 1991; 14:316.PubMedCrossRefGoogle Scholar
  16. 16.
    Robson LG, Hughes SM. Local signals in the chick limb bud can override myoblast lineage commitment: induction of slow myosin heavy chain in fast myoblasts. Mech Dev 1999; 85:59–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Seed J, Hauschka SD. Clonal analysis of vertebrate myogenesis. 8. Fibroblast growth factor (FGF) dependent and FGF-independent muscle colony types during chick wing development. Dev Biol 1988; 128:40–49.PubMedCrossRefGoogle Scholar
  18. 18.
    Quinn LS, Holtzer H, Nameroff M. Generation of chick skeletal muscle cells in groups of 16 from stem cells. Nature 1985; 313:692–694.PubMedCrossRefGoogle Scholar
  19. 19.
    Gussoni E, Soneoka Y, Strickland CD et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401:390–394.PubMedGoogle Scholar
  20. 20.
    LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fibre in response to injury. Cell 2002; 111:589–601.PubMedCrossRefGoogle Scholar
  21. 21.
    Felsenfeld AL, Curry M, Kimmel CB. The FUB-1 mutation blocks initial myofibril formation in zebrafish muscle pioneer cells. Dev Biol 1991; 148:23–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Schilling TF, Kimmel CB. Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development 1997; 124:2945–2960.PubMedGoogle Scholar
  23. 23.
    Neyt C, Jagla K, Thisse C et al. Evolutionary origins of vertebrate appendicular muscle. Nature 2000; 408:82–86.PubMedCrossRefGoogle Scholar
  24. 24.
    Holloway G, Currie P. Vertebrate myotome development. Birth Defects Res C Embryo Today 2005; 75:172–9.CrossRefGoogle Scholar
  25. 25.
    Devoto SH, Stoiber W, Hammond CL et al. Generality of vertebrate developmental patterns: evidence for a dermomyotome in fish. Evol Dev 2006; 8:101–110.PubMedCrossRefGoogle Scholar
  26. 26.
    Stellabotte F, Devoto SH. The teleost dermomyotome. Dev Dyn 2007; 236:2432–2443.PubMedCrossRefGoogle Scholar
  27. 27.
    Stickney HL, Barresi MJ, Devoto SH. Somite development in zebrafish. Dev Dyn 2000; 219:287–303.PubMedCrossRefGoogle Scholar
  28. 28.
    Sehnert JA, Huq A, Weinstein BM et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 2002; 31:106–110.PubMedCrossRefGoogle Scholar
  29. 29.
    Lambrechts D, Carmeliet P. Genetics in zebrafish, mice and humans to dissect congenital heart disease: insights in the role of VEGF. Curr Top Dev Biol 2004; 62:189–224.PubMedCrossRefGoogle Scholar
  30. 30.
    Pavlath GK, Thaloor D, Rando TA et al. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities. Dev Dyn 1998; 212:495–508.PubMedCrossRefGoogle Scholar
  31. 31.
    Roy S, VijayRaghavan K. Patterning muscles using organizers: larval muscle templates and adult myoblasts actively interact to pattern the dorsal longitudinal flight muscles of Drosophila. J Cell Biol 1998; 141:1135–1145.PubMedCrossRefGoogle Scholar
  32. 32.
    Yang JW, Kelly R, Daood M et al. Alteration in myosatellite cell commitment with muscle cell maturation. Dev Dyn 1998; 211:141–152.PubMedCrossRefGoogle Scholar
  33. 33.
    Heslop L, Beauchamp JR, Tajbakhsh S et al. Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the MYf5(nlacZ/+) mouse. Gen Ther 2001; 8:778–783.CrossRefGoogle Scholar
  34. 34.
    Rosenblatt JD; Parry DJ, Partridge TA. Phenotype of adult mouse muscle myoblasts reflects their fibre type of origin. Differentiation 1996; 60:39–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Beauchamp JR, Morgan JE, Pagel CN. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 1999; 144:1113–1121.PubMedCrossRefGoogle Scholar
  36. 36.
    Lee JY, Qu-Petersen Z, Cao BH et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 2000; 150:1085–1099.PubMedCrossRefGoogle Scholar
  37. 37.
    Asakura A, Seale P, Girgis-Gabardo A et al. Myogenic specification of side population cells in skeletal muscle. J Cell Biol 2002; 159:123–134.PubMedCrossRefGoogle Scholar
  38. 38.
    Rowlerson A, Mascarello F, Radaelli G et al. Differentiation and growth of muscle in the fish Sparus aurata (L). 2. Hyperplastic and hypertrophic growth of lateral muscle from hatching to adult. J Muscle Res Cell Motil 1995; 16:223–236.PubMedCrossRefGoogle Scholar
  39. 39.
    Barresi MJF, D’Angelo JA, Hernandez LP et al. Distinct mechanisms regulate slow muscle development. Curr Biol 2001; 11:1432–1438.PubMedCrossRefGoogle Scholar
  40. 40.
    Rowlerson A, Radaelli G, Mascarello F et al. Regeneration of skeletal muscle in two teleost fish: Spartus aurata and Brachydanio rerio. Cell Tiss Res 1997; 289:311–322.CrossRefGoogle Scholar
  41. 41.
    Haffter P, Granato M, Brand M et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996; 123:1–36.PubMedGoogle Scholar
  42. 42.
    Bate M. The mesoderm and its derivatives. In: Bate M, Martinez Arias A, eds. The Development of Drosophila melanogaster. Cold Spring Harbor: Cold Spring Harbor Press, 1993:1013–1090.Google Scholar
  43. 43.
    Taylor MV. Comparison of muscle development in Drosophila and vertebrates. In: Sink H, ed. Muscle Development in Drosophila. Georgetown: Landes Bioscience, 2006:169–203.CrossRefGoogle Scholar
  44. 44.
    Sink H. Muscle Development in Drosophila. Georgetown: Landes Bioscience, 2006:1–203.CrossRefGoogle Scholar
  45. 45.
    Peckham M, Molloy JE, Sparrow JC et al. Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle of Drosophila melanogaster. J Muscle Res Cell Motil 1990; 11:203–215.PubMedCrossRefGoogle Scholar
  46. 46.
    Sparrow JC, Geeves MA. Molecular assays for acto-myosin interactions. In: Vigoreaux JO, ed. Nature’s Versatile Engine: Insect Flight Muscle Inside and Out. Georgetown: Landes Bioscience, 2004:242–250.Google Scholar
  47. 47.
    Mogami K, Hotta Y. Isolation of Drosophila flightless mutants which affect myofibrillar proteins of indirect flight muscle. Mol Gen Genet 1981; 183:409–417.PubMedCrossRefGoogle Scholar
  48. 48.
    Cripps RM, Ball E, Stark M et al. Dominant flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function. Genetics 1994; 137:151–164.PubMedGoogle Scholar
  49. 49.
    Waterston RH. Muscle. In: Wood WB, ed. The Nematode Caenorhabditis elegans. Cold Spring Harbor: Cold Spring Harbor Laboratory, 1988:281–336.Google Scholar
  50. 50.
    Lecroisey C, Segalat L, Gieseler K. The C. elegans dense body: A dynamic anchoring point of the muscle. J Muscle Res Cell Motil 2007; 28:79–87.PubMedCrossRefGoogle Scholar
  51. 51.
    McArdle K, Allen TS, Bucher EA. Ca2+-dependent muscle dysfunction caused by mutation of the Caenorhabditis elegans troponin T-1 gene. J Cell Biol 1998; 143:1201–1213.PubMedCrossRefGoogle Scholar
  52. 52.
    Bessereau, J.-L. Transposons in C. elegans. The C. elegans Research Community, WormBook 2006, doi/10.1895/wormbook.1.70.1, http://www.wormbook.orgGoogle Scholar
  53. 53.
    Granger L, Martin E, Ségalat L. Mos as a tool for genome-wide insertional mutagenesis in Caenorhabditis elegans: results of a pilot study. Nucleic Acids Res 2004; 32:e117.PubMedCrossRefGoogle Scholar
  54. 54.
    Evans TC. Transformation and microinjection. The C. elegans Research Community WormBook 2006; doi/10.1895/wormbook.1.108.1, Scholar
  55. 55.
    Spradling AC, Stern D, Beaton A et al. The Berkeley Drosophila Genome Project Gene Disruption Project: single P-element insertions mutating 25% of vital Drosophila genes 1999; Genetics 153:135–177.Google Scholar
  56. 56.
    Clyne PJ, Brotman JS, Sweeney ST et al. Green fluorescent protein tagging Drosophila proteins at their native genomic loci with small P elements. Genetics 2003; 165:1433–1441.PubMedGoogle Scholar
  57. 57.
    Parks AL, Cook KR, Belvin M et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 2004; 36:288–292.PubMedCrossRefGoogle Scholar
  58. 58.
    Duffy JB. GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 2002 34:1–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Amsterdam A, Burgess S, Golling G et al. A large scale insertional mutagenesis screen in zebrafish. Genes and Development 1999; 13:2713–2724.PubMedCrossRefGoogle Scholar
  60. 60.
    Ellingspen S, Laplante MA, Konig M et al. Large scale enhancer detection in the zebrafish genome. Development 2005; 132:3799–3811.CrossRefGoogle Scholar
  61. 61.
    Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391:806–811.PubMedCrossRefGoogle Scholar
  62. 62.
    Ahringer J. Reverse Genetics. The C. elegans Research Community Wormbook 2006; doi/10.1895/ wormbook.1.47.1, http://www.wormbook.orgGoogle Scholar
  63. 63.
    Kamath RS, Fraser AG, Dong Y et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003; 421:232–237.CrossRefGoogle Scholar
  64. 64.
    Dietz G, Chen D, Schnorrer F et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 2007; 448:51–56.Google Scholar
  65. 65.
    Nasevicius A, Ekker SC. Effective targeted gene ‘knockdown’ in zebrafish, Nat Genet 2000; 26:216–220.PubMedCrossRefGoogle Scholar
  66. 66.
    Dodd A, Chambers SP, Love DR. Short interfering RNA-mediated gene targeting in the zebrafish. FEBS Lett 2004; 561:89–93.PubMedCrossRefGoogle Scholar
  67. 67.
    Wolf MJ, Amrein H, Izatt JA et al. Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci USA 2006; 103:1394–1399.PubMedCrossRefGoogle Scholar
  68. 68.
    Tajsharghi H, Pilon M, Oldfors A. A Caenorhabditis elegans model of the myosin heavy chain IIa E706R mutation. Ann Neurol 2005; 58:442–448.PubMedCrossRefGoogle Scholar
  69. 69.
    Nongthomba U, Cummins M, Clark S et al. Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics 2003; 164:209–222.PubMedGoogle Scholar
  70. 70.
    Sung SS, Brassington A-M, Grannatt K. Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am J Human Genet 2003; 72:681–690.CrossRefGoogle Scholar
  71. 71.
    Myers, CD, Goh PY, Allen TS et al. Developmental genetic analysis of troponin T mutations in striated and nonstriated muscle cells of Caenorhabditis elegans. J Cell Biol 1996; 132:1061–1077.PubMedCrossRefGoogle Scholar
  72. 72.
    Nongthomba U, Clark S, Cummins M et al. Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle. J Cell Sci 2004; 117:1795–1805.PubMedCrossRefGoogle Scholar
  73. 73.
    Nongthomba U, Ansari MA, Stark M et al. Aberrant splicing of a jump and flight muscle-specific exon in the Drosophila troponin-T gene. Genetics 2007; 177:295–306.PubMedCrossRefGoogle Scholar
  74. 74.
    Naimi B, Harrison A, Cummins M et al. A tropomyosin-2 mutation suppresses a troponin-I myopathy in Drosophila. Mol Biol Cell 2001; 12:1529–1539.PubMedGoogle Scholar
  75. 75.
    Montana ES, Littleton JT. Characterization of a hypercontraction induced myopathy in Drosophila caused by mutants in Mhc. J Cell Biol 2004; 164:1045–1054.PubMedCrossRefGoogle Scholar
  76. 76.
    Kronert WA, O’Donnell PT, Fieck A et al. Defects in the Drosophila myosin rod permit sarcomere assembly but cause flight muscle degeneration. J Mol Biol 1995; 248:111–125.CrossRefGoogle Scholar
  77. 77.
    Prado A, Canal I, Barbas JA et al. Functional recovery of troponin-I in a Drosophila heldup mutant after a 2nd site mutation. Mol Biol Cell 1995; 6:1433–1441.PubMedGoogle Scholar
  78. 78.
    Kronert WA, Acebes A, Ferrus A et al. Specific myosin heavy chain mutations suppress TnI effects in Drosophila muscles. J Cell Biol 1999; 144:989–1000.PubMedCrossRefGoogle Scholar
  79. 79.
    Sparrow JC, Nowak K, Durling HJ et al. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene, ACTA1. Neuromusc Disorders 2003; 13:519–531.PubMedCrossRefGoogle Scholar
  80. 80.
    Nongthomba U, Pasalodos-Sanchez S, Clark S et al. Expression and function of the Drosophila ACT88F actin isoform is not restricted to the indirect flight muscles. J Muscle Res Cell Motil 2001; 22:111–119.PubMedCrossRefGoogle Scholar
  81. 81.
    Sparrow JC Actin and arthrin. In: Vigoreaux JO, ed. Nature’s Versatile Engine: Insect Flight Muscle Inside and Out. Georgetown: Landes Bioscience, 2004:110–125.Google Scholar
  82. 82.
    Domazetovska A, Ilkovski B, Kumar V et al. Intranuclear rod myopathy: Molecular pathogenesis and mechanisms of weakness. Ann Neurol 2007; 62:597–608.PubMedCrossRefGoogle Scholar
  83. 83.
    Nowak KJ, Sewry CA, Navarro C et al. Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol 2007; 61:175–184.PubMedCrossRefGoogle Scholar
  84. 84.
    Laing NG, Clarke NF, Dye DE et al. Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol 2004; 56:689–694.PubMedCrossRefGoogle Scholar
  85. 85.
    Roberts RG, Bobrow M. Dystrophins in vertebrates and invertebrates. Human Mol Genet 1998; 7:589–595.CrossRefGoogle Scholar
  86. 86.
    Gieseler K, Bessou C, Segalat L. Dystrobrevin-and dystrophin-like mutants display similar phenotypes in the nematode Caenorhabditis elegans. Neurogenet 1999; 2:87–90.CrossRefGoogle Scholar
  87. 87.
    Grisoni K, Martin E, Gieseler K et al. Genetic evidence for a dystrophin-glycoprotein complex (DGC) in Caenorhabditis elegans. Gene 2002; 294:74–86.CrossRefGoogle Scholar
  88. 88.
    Bessou C, Giugia JB, Franks CJ et al. Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission. Neurogenetics 1998; 2:61–72.PubMedCrossRefGoogle Scholar
  89. 89.
    Grisoni K, Gieseler K, Mariol M et al. The stn-1 gene of C. elegans is functionally related to dystrophin and dystrobrevin. J Mol Biol 2003; 332:1037–1046.PubMedCrossRefGoogle Scholar
  90. 90.
    Megeney L, Kablar B, Garrett K et al. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Develop 1996; 10:1173–1183.PubMedCrossRefGoogle Scholar
  91. 91.
    Towers PR, Lescure P, Baban D et al. Gene expression profiling studies on Caenorhabditis elegans dystrophin mutants dys-1 (cx-35) and dys-1(cx18). Genomics 2006; 88:642–649.PubMedCrossRefGoogle Scholar
  92. 92.
    Mariol MC, Segalat L. Muscular degeneration in the absence of dystrophin is a calcium-dependent process. Curr Biol 2001; 11:1691–1694.PubMedCrossRefGoogle Scholar
  93. 93.
    Gaud A, Simon JT, Witzel T et al. Prednisone reduces muscle degeneration in dystrophin-deficient Caenorhabditis elegans. Neuromusc Disorders 2004; 427:451–457.Google Scholar
  94. 94.
    Carre-Pierrat M, Mariol M-C, Chambonnier L et al. Blocking of striated muscle degeneration by serotonin in C. elegans. J Muscle Res Cell Motil 2006; 27:253–258.PubMedCrossRefGoogle Scholar
  95. 95.
    Gieseler K, Grisoni K, Segalat L. Genetic suppression of phenotypes arising from mutations in dystrophin-related genes in Caenorhabditis elegans. Curr Biol 2000; 10:1092–1097.PubMedCrossRefGoogle Scholar
  96. 96.
    Carre-Pierrat M, Grisoni K, Giesler K et al. The SLO-1 BK channel of Caenorhabditis elegans is critical for muscle function and is involved in dystrophin dependent muscle dystrophy. J Mol Biol 2006; 358:387–395.PubMedCrossRefGoogle Scholar
  97. 97.
    Greener MJ, Roberts RG. Conservation of components of the dystrophin complex in Drosophila. FEBS lett 2000; 482:13–18.PubMedCrossRefGoogle Scholar
  98. 98.
    Neuman S, Kaban A, Volk T et al. The dystrophin/utrophin homologues in Drosophila and in sea urchin. Gene 2001; 263:17–29.PubMedCrossRefGoogle Scholar
  99. 99.
    Neuman S, Kovalio M, Yaffe D et al. The Drosophila homologue of the dystrophin gene—Introns containing promoters are the major contributors to the large size of the gene. FEBS Letts 2005; 579:5365–537.CrossRefGoogle Scholar
  100. 100.
    Van der Plas MC, Pilgram GSK, de Jon AWM et al. Drosophila dystrophin is required for integrity of the musculature. Mech Dev 2007; 124:617–630.PubMedCrossRefGoogle Scholar
  101. 101.
    Dekkers LC, van der Plas MC, van Loenen PB et al. Embryonic expression patterns of the Drosophila dystrophin-associated glycoprotein complex orthologs. Gene Expr Patterns 2004; 4:153–159.PubMedCrossRefGoogle Scholar
  102. 102.
    Van der Plas MC, Pilgram GSK, Plomp JJ et al. Dystrophin is required for appropriate retrograde control of neurotransmitter release at the Drosophila neuromuscular junction. J Neurosci 2006; 26:333–344.PubMedCrossRefGoogle Scholar
  103. 103.
    Steffen LS, Guyon JR, Vogel ED et al. Zebrafish orthologs of human muscular dystrophy genes. BMC Genomics 2007; 8 Art 79.PubMedCrossRefGoogle Scholar
  104. 104.
    Kunkel LM, Bachrach E, Bennett RR et al. Diagnosis and cell-based therapy for Duchenne muscular dystrophy in humans, mice and zebrafish. J. Human Genet 2007; 51:397–406.CrossRefGoogle Scholar
  105. 105.
    Guyon JR, Steffen LS, Howell MH et al. Modeling human muscle disease in zebrafish. Bioch Biophys Acta 2007; 1772:205–215.Google Scholar
  106. 106.
    Bassett DI, Bryson-Richardson RJ, Daggett DF et al. Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development 2003; 130:5851–5860.PubMedCrossRefGoogle Scholar
  107. 107.
    Law DJ, Tidball JG. Dystrophin deficiency is associated with myotendinous junction defects in prenecrotic and fully regenerated skeletal muscle. Am J Pathol 1993; 142:1513–1523.PubMedGoogle Scholar
  108. 108.
    Durbeej M, Campbell KP. Muscular dystrophies involving the dystroglycan complex. An overview of current mouse models. Curr Opin Gen Dev 2002; 12:349–361.CrossRefGoogle Scholar
  109. 109.
    Cohn RD. Dystroglycan: important player in skeletal muscle and beyond. Neuromusc Disorders 2005; 15:827–841.Google Scholar
  110. 110.
    Deng W-M, Schneider M, Frock R et al. Dystroglycan is required for polarizing the epithelial cells and oocyte in Drosophila. Development 2003; 130:173–184.PubMedCrossRefGoogle Scholar
  111. 111.
    Shcherbata HR, Yatsenko AS, Patterson L et al. Dissecting muscle and neuronal disorders in a Drosophila model of muscular dystrophy. EMBO J 2007; 26:481–493.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • John Sparrow
    • 1
  • Simon M. Hughes
    • 2
    • 3
  • Laurent Segalat
    • 4
  1. 1.Department of BiologyUniversity of YorkYorkUK
  2. 2.Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK
  3. 3.MRC Centre for Developmental NeurobiologyKing’s College LondonLondonUK
  4. 4.Batiment MendelUniversite Claude Bernard Lyon-1VilleurbanneFrance

Personalised recommendations