Advertisement

Muscular Integrity—A Matter of Interlinking Distinct Structures via Plectin

  • Patryk Konieczny
  • Gerhard Wiche
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 642)

Abstract

Myocytes are characterized by the presence of highly specialized cytoskeletal structures that are part of regularly spaced functional units distributed over long distances. In this chapter we discuss previously published evidence as well as novel data showing that the proper positioning and architecture of Z-disks and of sarcolemma-associated costameric structures are largely dependent on the cytolinker protein plectin and its associated intermediate filament (desmin) cytoskeleton. Deficiency in either plectin or desmin lead to muscular dystrophies of similar pathology. However, while in the absence of plectin, desmin networks collapse and form aggregates, when desmin is missing, plectin retains its typical localization. This suggests that plectin recruits and anchors desmin filaments to both Z-disks and costameres and thus is a key element for maintaining and reinforcing myocyte cytoarchitecture. We hypothesize that as an essential link of the Z-disk-costamere axis, plectin is likely to play also a crucial role in myofiber signaling.

Keywords

Muscular Dystrophy Epidermolysis Bullosa Actin Binding Domain Epidermolysis Bullosa Simplex Skeletal Muscle Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berthier C, Blaineau S. Supramolecular organization of the subsarcolemmal cytoskeleton of adult skeletal muscle fibers. Biol Cell 1997; 89:413–434.PubMedCrossRefGoogle Scholar
  2. 2.
    Clark KA, McElhinny AS, Beckerle MC et al. Striated muscle cytoarchitecture: An intricate web of form and function. Annu Rev Cell Dev Biol 2002; 18:637–706.PubMedCrossRefGoogle Scholar
  3. 3.
    Leung CL, Green KJ, Liem RK. Plakins: A family of versatile cytolinker proteins. Trends Cell Biol 2002; 12:37–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Green KJ, Bohringer M, Gocken T et al. Intermediate filament associated proteins. Adv Protein Chem 2005; 70:143–202.PubMedCrossRefGoogle Scholar
  5. 5.
    Franke WW, Moll R, Schiller DL et al. Desmoplakins of epithelial and myocardial desmosomes are immunologically and biochemically related. Differentiation 1982; 23:115–127.PubMedCrossRefGoogle Scholar
  6. 6.
    Angst BD, Nilles LA, Green KJ. Desmoplakin II expression is not restricted to stratified epithelia. J Cell Sci 1990; 97:247–257.PubMedGoogle Scholar
  7. 7.
    Wiche G, Krepler R, Artlieb U et al. Occurrence and immunolocalization of plectin in tissues. J Cell Biol 1983; 97:887–901.PubMedCrossRefGoogle Scholar
  8. 8.
    Wiche G. Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 1998; 111:2477–2486.PubMedGoogle Scholar
  9. 9.
    Dalpe G, Mathieu M, Comtois A et al. Dystonin-deficient mice exhibit an intrinsic muscle weakness and an instability of skeletal muscle cytoarchitecture. Dev Biol 1999; 210:367–380.PubMedCrossRefGoogle Scholar
  10. 10.
    Leung CL, Zheng M, Prater SM et al. The BPAG1 locus: Alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J Cell Biol 2001; 154:691–697.PubMedCrossRefGoogle Scholar
  11. 11.
    Andrä K, Lassmann H, Bittner R et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle and heart cytoarchitecture. Genes Dev 1997; 11:3143–3156.PubMedCrossRefGoogle Scholar
  12. 12.
    Gallicano GI, Bauer C, Fuchs E. Rescuing desmoplakin function in extra-embryonic ectoderm reveals the importance of this protein in embryonic heart, neuroepithelium skin and vasculature. Development 2001; 128:929–941.PubMedGoogle Scholar
  13. 13.
    Smith FJ, Eady RA, Leigh IM et al. Plectin deficiency results in muscular dystrophy with epidermolysis bullosa. Nat Genet 1996; 13:450–457.PubMedCrossRefGoogle Scholar
  14. 14.
    Norgett EE, Hatsell SJ, Carvajal-Huerta L et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 2000; 9:2761–2766.PubMedCrossRefGoogle Scholar
  15. 15.
    Pytela R, Wiche G. High molecular weight polypeptides (270,000–340,000) from cultured cells are related to hog brain microtubule-associated proteins but copurify with intermediate filaments. Proc Natl Acad Sci USA 1980; 77:4808–4812.PubMedCrossRefGoogle Scholar
  16. 16.
    Wiche G, Baker MA. Cytoplasmic network arrays demonstrated by immunolocalization using antibodies to a high molecular weight protein present in cytoskeletal preparations from cultured cells. Exp Cell Res 1982; 138:15–29.PubMedCrossRefGoogle Scholar
  17. 17.
    Wiche G, Herrmann H, Leichtfried F et al. Plectin: A high-molecular-weight cytoskeletal polypeptide component that copurifies with intermediate filaments of the vimentin type. Cold Spring Harb Symp Quant Biol 1982; 46:475–482.PubMedGoogle Scholar
  18. 18.
    Wiche G. Plectin: General overview and appraisal of its potential role as a subunit protein of the cytomatrix. Crit Rev Biochem Mol Biol 1989; 24:41–67.PubMedCrossRefGoogle Scholar
  19. 19.
    Wiche G, Krepler R, Artlieb U et al. Identification of plectin in different human cell types and immunolocalization at epithelial basal cell surface membranes. Exp Cell Res 1984; 155:43–49.PubMedCrossRefGoogle Scholar
  20. 20.
    Hijikata T, Murakami T, Imamura M et al. Plectin is a linker of intermediate filaments to Z-discs in skeletal muscle fibers. J Cell Sci 1999; 112:867–876.PubMedGoogle Scholar
  21. 21.
    Rezniczek GA, Konieczny P, Nikolic B et al. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J Cell Biol 2007; 176:965–977.PubMedCrossRefGoogle Scholar
  22. 22.
    Seifert GJ, Lawson D, Wiche G. Immunolocalization of the intermediate filament-associated protein plectin at focal contacts and actin stress fibers. Eur J Cell Biol 1992; 59:138–147.PubMedGoogle Scholar
  23. 23.
    Schröder R, Pacholsky D, Reimann J et al. Primary longitudinal adhesion structures: Plectin-containing precursors of costameres in differentiating human skeletal muscle cells. Histochem Cell Biol 2002; 118:301–310.PubMedGoogle Scholar
  24. 24.
    Zernig G, Wiche G. Morphological integrity of single adult cardiac myocytes isolated by collagenase treatment: Immunolocalization of tubulin, microtubule-associated proteins 1 and 2, plectin, vimentin and vinculin. Eur J Cell Biol 1985; 38:113–122.PubMedGoogle Scholar
  25. 25.
    Konieczny et al. Unpublished results.Google Scholar
  26. 26.
    Foisner R, Wiche G. Structure and hydrodynamic properties of plectin molecules. J Mol Biol 1987; 198:515–531.PubMedCrossRefGoogle Scholar
  27. 27.
    Wiche G, Becker B, Luber K et al. Cloning and sequencing of rat plectin indicates a 466-kD polypeptide chain with a three-domain structure based on a central alpha-helical coiled coil. J Cell Biol 1991; 114:83–99.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu CG, Maercker C, Castañón MJ et al. Human plectin: Organization of the gene, sequence analysis and chromosome localization (8q24). Proc Natl Acad Sci USA 1996; 93:4278–4283.PubMedCrossRefGoogle Scholar
  29. 29.
    McLean WH, Pulkkinen L, Smith FJ et al. Loss of plectin causes epidermolysis bullosa with muscular dystrophy: cDNA cloning and genomic organization. Genes Dev 1996; 10:1724–1735.PubMedCrossRefGoogle Scholar
  30. 30.
    Foisner R, Leichtfried FE, Herrmann H et al. Cytoskeleton-associated plectin: In situ localization, in vitro reconstitution and binding to immobilized intermediate filament proteins. j Cell Biol 1988; 106:723–733.PubMedCrossRefGoogle Scholar
  31. 31.
    Foisner R, Traub P, Wiche G. Protein kinase A-and protein kinase C-regulated interaction of plectin with lamin B and vimentin. Proc Natl Acad Sci USA 1991; 88:3812–3816.PubMedCrossRefGoogle Scholar
  32. 32.
    Reipert S, Steinböck F, Fischer I et al. Association of mitochondria with plectin and desmin intermediate filaments in striated muscle. Exp Cell Res 1999; 252:479–491.PubMedCrossRefGoogle Scholar
  33. 33.
    Tian R, Gregor M, Wiche G et al. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease. Am J Pathol 2006; 168:888–897.PubMedCrossRefGoogle Scholar
  34. 34.
    Wiche G, Gromov D, Donovan A et al. Expression of plectin mutant cDNA in cultured cells indicates a role of COOH-terminal domain in intermediate filament association. J Cell Biol 1993; 121:607–619.PubMedCrossRefGoogle Scholar
  35. 35.
    Nikolic B, Mac Nulty E, Mir B et al. Basic amino acid residue cluster within nuclear targeting sequence motif is essential for cytoplasmic plectin-vimentin network junctions. J Cell Biol 1996; 134:1455–1467.PubMedCrossRefGoogle Scholar
  36. 36.
    Sevcik J, Urbanikova L, Kost’an J et al. Actin-binding domain of mouse plectin. Crystal structure and binding to vimentin. Eur J Biochem 2004; 271:1873–1884.PubMedCrossRefGoogle Scholar
  37. 37.
    Koszka C, Leichtfried FE, Wiche G. Identification and spatial arrangement of high molecular weight proteins (Mr 300 000–330 000) co-assembling with microtubules from a cultured cell line (rat glioma C6). Eur J Cell Biol 1985; 38:149–156.PubMedGoogle Scholar
  38. 38.
    Foisner R, Bohn W, Mannweiler K et al. Distribution and ultrastructure of plectin arrays in subclones of rat glioma C6 cells differing in intermediate filament protein (vimentin) expression. J Struct Biol 1995; 115:304–317.PubMedCrossRefGoogle Scholar
  39. 39.
    Svitkina TM, Verkhovsky AB, Borisy GG. Plectin siderms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol 1996; 135:991–1007.PubMedCrossRefGoogle Scholar
  40. 40.
    Wilhelmsen K, Litjens SH, Kuikman I et al. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Biol 2005; 171:799–810.PubMedCrossRefGoogle Scholar
  41. 41.
    Herrmann H, Wiche G. Plectin and IFAP-300K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240-kilodalton subunit of spectrin. J Biol Chem 1987; 262:1320–1325.PubMedGoogle Scholar
  42. 42.
    Rezniczek GA, de Pereda JM, Reipert S et al. Linking integrin alpha6beta4-based cell adhesion to the intermediate filament cytoskeleton: Direct interaction between the beta4 subunit and plectin at multiple molecular sites. J Cell Biol 1998; 141:209–225.PubMedCrossRefGoogle Scholar
  43. 43.
    Andrä K, Nikolic B, Stöcher M et al. Not just scaffolding: Plectin regulates actin dynamics in cultured cells. Genes Dev 1998; 12:3442–3451.PubMedCrossRefGoogle Scholar
  44. 44.
    Lunter PC, Wiche G. Direct binding of plectin to Fer kinase and negative regulation of its catalytic activity. Biochem Biophys Res Commun 2002; 296:904–910.PubMedCrossRefGoogle Scholar
  45. 45.
    Osmanagic-Myers S, Wiche G. Plectin-RACK1 (receptor for activatedC kinase 1) scaffolding: A novel mechanism to regulate protein kinase C activity. J Biol Chem 2004; 279:18701–18710.PubMedCrossRefGoogle Scholar
  46. 46.
    Gregor M, Zeöld A, Oehler S et al. Plectin scaffolds recruit energy-controlling AMP-activated protein kinase (AMPK) in differentiated myofibres. J Cell Sci 2006; 119:1864–1875.PubMedCrossRefGoogle Scholar
  47. 47.
    Osmanagic-Myers S, Gregor M, Walko G et al. Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration. J Cell Biol 2006; 174:557–568.PubMedCrossRefGoogle Scholar
  48. 48.
    Spurny R, Abdoulrahman K, Janda L et al. Oxidation and nitrosylation of cysteines proximal to the IF-binding site of plectin: Effects on structure, vimentin-binding and involvement in IF collapse. J Biol Chem 2007; 282:8175–8187.PubMedCrossRefGoogle Scholar
  49. 49.
    Elliott CE, Becker B, Oehler S et al. Plectin transcript diversity: Identification and tissue distribution of variants with distinct first coding exons and rodless isoforms. Genomics 1997; 42:115–125.PubMedCrossRefGoogle Scholar
  50. 50.
    Fuchs P, Zörer M, Rezniczek GA et al. Unusual 5′ transcript complexity of plectin isoforms: Novel tissue-specific exons modulate actin binding activity. Hum Mol Genet 1999; 8:2461–2472.PubMedCrossRefGoogle Scholar
  51. 51.
    Schröder R, Fürst DO, Klasen C et al. Association of plectin with Z-discs is a prerequisite for the formation of the intermyofibrillar desmin cytoskeleton. Lab Invest 2000; 80:455–464.PubMedGoogle Scholar
  52. 52.
    Fuchs P, Spazierer D, Wiche G. Plectin rodless isoform expression and its detection in mouse brain. Cell Mol Neurobiol 2005; 25:1141–1150.PubMedCrossRefGoogle Scholar
  53. 53.
    Rezniczek GA, Abrahamsberg C, Fuchs P et al. Plectin 5′-transcript diversity: Short alternative sequences determine stability of gene products, initiation of translation and subcellular localization of isoforms. Hum Mol Genet 2003; 12:3181–3194.PubMedCrossRefGoogle Scholar
  54. 54.
    Chavanas S, Pulkkinen L, Gache Y et al. A homozygous nonsense mutation in the PLEC1 gene in patients with epidermolysis bullosa simplex with muscular dystrophy. J Clin Invest 1996; 98:2196–2200.PubMedCrossRefGoogle Scholar
  55. 55.
    Gache Y, Chavanas S, Lacour JP et al. Defective expression of plectin/HD1 in epidermolysis bullosa simplex with muscular dystrophy. J Clin Invest 1996; 97:2289–2298.PubMedCrossRefGoogle Scholar
  56. 56.
    Pulkkinen L, Smith FJ, Shimizu H et al. Homozygous deletion mutations in the plectin gene (PLEC1) in patients with epidermolysis bullosa simplex associated with late-onset muscular dystrophy. Hum Mol Genet 1996; 5:1539–1546.PubMedCrossRefGoogle Scholar
  57. 57.
    Koss-Harnes D, Jahnsen FL, Wiche G et al. Plectin abnormality in epidermolysis bullosa simplex Ogna: nonresponsiveness of basal keratinocytes to some anti-rat plectin antibodies. Exp Dermatol 1997; 6:41–48.PubMedCrossRefGoogle Scholar
  58. 58.
    Koss-Harnes D, Hoyheim B, Anton-Lamprecht I et al. A site-specific plectin mutation causes dominant epidermolysis bullosa simplex Ogna: Two identical de novo mutations. J Invest Dermatol 2002; 118:87–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Pfendner E, Uitto J. Plectin gene mutations can cause epidermolysis bullosa with pyloric atresia. J Invest Dermatol 2005; 124:111–115.PubMedCrossRefGoogle Scholar
  60. 60.
    Uitto J, Richard G. Progress in epidermolysis bullosa: Genetic classification and clinical implications. Am J Med Genet C Sem in Med Genet 2004; 131:61–74.CrossRefGoogle Scholar
  61. 61.
    Pfendner E, Rouan F, Uitto J. Progress in epidermolysis bullosa: The phenotypic spectrum of plectin mutations. Exp Dermatol 2005; 14:241–249.PubMedCrossRefGoogle Scholar
  62. 62.
    Shimizu H, Masunaga T, Kurihara Y et al. Expression of plectin and HD1 epitopes in patients with epidermolysis bullosa simplex associated with muscular dystrophy. Arch Dermatol Res 1999; 291:531–537.PubMedCrossRefGoogle Scholar
  63. 63.
    Bauer JW, Rouan F, Kofler B et al. A compound heterozygous one amino-acid insertion/nonsense mutation in the plectin gene causes epidermolysis bullosa simplex with plectin deficiency. Am J Pathol 2001; 158:617–625.PubMedGoogle Scholar
  64. 64.
    McMillan JR, Akiyama M, Rouan F et al. Plectin defects in epidermolysis bullosa simplex with muscular dystrophy. Muscle Nerve 2007; 35:24–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Schröder R, Kunz WS, Rouan F et al. Disorganization of the desmin cytoskeleton and mitochondrial dysfunction in plectin-related epidermolysis bullosa simplex with muscular dystrophy. J Neuropathol Exp Neurol 2002; 61:520–530.PubMedGoogle Scholar
  66. 66.
    Banwell BL, Russel J, Fukudome T et al. Myopathy, myasthenic syndrome and epidermolysis bullosa simplex due to plectin deficiency. J Neuropathol Exp Neurol 1999; 58:832–846.PubMedCrossRefGoogle Scholar
  67. 67.
    Capetanaki Y, Bloch RJ, Kouloumenta A et al. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 2007; 313:2063–2076.PubMedCrossRefGoogle Scholar
  68. 68.
    Li D, Tapscoft T, Gonzalez O et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 1999; 100:461–464.PubMedGoogle Scholar
  69. 69.
    Goldfarb LG, Park KY, Cervenakova L et al. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet 1998; 19:402–403.PubMedCrossRefGoogle Scholar
  70. 70.
    Munoz-Marmol AM, Strasser G, Isamat M et al. A dysfunctional desmin mutation in a patient with severe generalized myopathy. Proc Natl Acad Sci USA 1998; 95:11312–11317.PubMedCrossRefGoogle Scholar
  71. 71.
    Li Z, Colucci-Guyon E, Pincon-Raymond M et al. Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev Biol 1996; 175:362–366.PubMedCrossRefGoogle Scholar
  72. 72.
    Milner DJ, Weitzer G, Tran D et al. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 1996; 134:1255–1270.PubMedCrossRefGoogle Scholar
  73. 73.
    Li Z, Mericskay M, Agbulut O et al. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation and fusion of skeletal muscle. J Cell Biol 1997; 139:129–144.PubMedCrossRefGoogle Scholar
  74. 74.
    Milner DJ, Mavroidis M, Weisleder N et al. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 2000; 150:1283–1298.PubMedCrossRefGoogle Scholar
  75. 75.
    Haubold KW, Allen DL, Capetanaki Y et al. Loss of desmin leads to impaired voluntary wheel running and treadmill exercise performance. J Appl Physiol 2003; 95:1617–1622.PubMedGoogle Scholar
  76. 76.
    O’Neill A, Williams MW, Resneck WG et al. Sarcolemmal organization in skeletal muscle lacking desmin: Evidence for cytokeratins associated with the membrane skeleton at costameres. Mol Biol Cell 2002; 13:2347–2359.PubMedCrossRefGoogle Scholar
  77. 77.
    Agbulut O, Li Z, Perie S et al. Lack of desmin results in abortive muscle regeneration and modifications in synaptic structure. Cell Motil Cytoskeleton 2001; 49:51–66.PubMedCrossRefGoogle Scholar
  78. 78.
    Thornell L, Carlsson L, Li Z et al. Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol 1997; 29:2107–2124.PubMedCrossRefGoogle Scholar
  79. 79.
    Milner DJ, Taffet GE, Wang X et al. The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Mol Cell Cardiol 1999; 31:2063–2076.PubMedCrossRefGoogle Scholar
  80. 80.
    Perriard JC, Hirschy A, Ehler E. Dilated cardiomyopathy: A disease of the intercalated disc? Trends Cardiovasc Med 2003; 13;30–38.PubMedCrossRefGoogle Scholar
  81. 81.
    Yang Z, Bowles NE, Scherer SE et al. Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Res 2006; 99:646–655.PubMedCrossRefGoogle Scholar
  82. 82.
    Granger BL, Lazarides E. Synemin: A new high molecular weight protein associated with desmin and vimentin filaments in muscle. Cell 1980; 22:727–738.PubMedCrossRefGoogle Scholar
  83. 83.
    Price MG, Lazarides E. Expression of intermediate filament-associated proteins paranemin and synemin in chicken development. J Cell Biol 1983; 97:1860–1874.PubMedCrossRefGoogle Scholar
  84. 84.
    Schweitzer SC, Klymkowsky MW, Bellin RM et al. Paranemin and the organization of desmin filament networks. J Cell Sci 2001; 114:1079–1089.PubMedGoogle Scholar
  85. 85.
    Bellin RM, Huiatt TW, Critchley DR et al. Synemin may function to directly link muscle cell intermediate filaments to both myofibrillar Z-lines and costameres. J Biol Chem 2001; 276:32330–32337.PubMedCrossRefGoogle Scholar
  86. 86.
    Mizuno Y, Thompson TG, Guyon JR et al. Desmuslin, an intermediate filament protein that interacts with alpha-dystrobrevin and desmin. Proc Natl Acad Sci USA 2001; 98:6156–6161.PubMedCrossRefGoogle Scholar
  87. 87.
    Bhosle RC, Michele DE, Campbell KP et al. Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem Biophys Res Commun 2006; 346:768–777.PubMedCrossRefGoogle Scholar
  88. 88.
    Newey SE, Howman EV, Ponting CP et al. Syncoilin, a novel member of the intermediate filament superfamily that interacts with alpha-dystrobrevin in skeletal muscle. J Biol Chem 2001; 276:6645–6655.PubMedCrossRefGoogle Scholar
  89. 89.
    Poon E, Howman EV, Newey SE et al. Association of syncoilin and desmin: Linking intermediate filament proteins to the dystrophin-associated protein complex. J Biol Chem 2002; 277:3433–3439.PubMedCrossRefGoogle Scholar
  90. 90.
    Stone MR, O’Neill A, Catino D et al. Specific interaction of the actin-binding domain of dystrophin with intermediate filaments containing keratin 19. Mol Biol Cell 2005; 16:4280–4293.PubMedCrossRefGoogle Scholar
  91. 91.
    Spence HJ, Chen YJ, Winder SJ. Muscular dystrophies, the cytoskeleton and cell adhesion. Bioessays 2002; 24:542–552.PubMedCrossRefGoogle Scholar
  92. 92.
    Ervasti JM. Costameres: The Achilles’ heel of Herculean muscle. J Biol Chem 2003; 278:13591–13594.PubMedCrossRefGoogle Scholar
  93. 93.
    Frank D, Kuhn C, Katus HA et al. The sarcomeric Z-disc: A nodal point in signalling and disease. J Mol Med 2006; 84:446–468.PubMedCrossRefGoogle Scholar
  94. 94.
    Rouan F, Pulkkinen L, Meneguzzi G et al. Epidermolysis bullosa: Novel and de novo premature termination codon and deletion mutations in the plectin gene predict late-onset muscular dystrophy. J Invest Dermatol 2000; 114:381–387.PubMedCrossRefGoogle Scholar
  95. 95.
    Takizawa Y, Shimizu H, Rouan F et al. Four novel plectin gene mutations in Japanese patients with epidermolysis bullosa with muscular dystrophy disclosed by hetero duplex scanning and protein truncation tests. J Invest Dermatol 1999; 112:109–112.PubMedCrossRefGoogle Scholar
  96. 96.
    Dang M, Pulkkinen L, Smith FJ et al. Novel compound heterozygous mutations in the plectin gene in epidermolysis bullosa with muscular dystrophy and the use of protein truncation test for detection of premature termination codon mutations. Lab Invest 1998; 78:195–204.PubMedGoogle Scholar
  97. 97.
    Mellerio JE, Smith FJ, McMillan JR et al. Recessive epidermolysis bullosa simplex associated with plectin mutations: Infantile respiratory complications in two unrelated cases. Br J Dermatol 1997; 137:898–906.PubMedCrossRefGoogle Scholar
  98. 98.
    Kunz M, Rouan F, Pulkkinen L et al. Mutation reports: Epidermolysis bullosa simplex associated with severe mucous membrane involvement and novel mutations in the plectin gene. J Invest Dermatol 2000; 114:376–380.PubMedCrossRefGoogle Scholar
  99. 99.
    Schara U, Tucke J, Mortier W et al. Severe mucous membrane involvement in epidermolysis bullosa simplex with muscular dystrophy due to a novel plectin gene mutation. Eur J Pediatr 2004; 163:218–222.PubMedCrossRefGoogle Scholar
  100. 100.
    Takahashi Y, Rouan F, Uitto J et al. Plectin deficient epidermolysis bullosa simplex with 27-year-history of muscular dystrophy. J Dermatol Sci 2005; 37:87–93.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Max F. Perutz Laboratories, Department of Molecular Cell BiologyUniversity of ViennaViennaAustria

Personalised recommendations