Advertisement

Animal models for the assessment of acute renal dysfunction and injury

  • Zoltan H. Endre
  • Charles L. Edelstein

There are a variety of experimental models of acute renal dysfunction and injury for the study of nephrotoxicity. These models include whole animals, isolated perfused kidneys, preparations for the study of the renal microcirculation (including juxtamedullary nephron preparation, hydronephrotic kidney, isolated perfused afferent arteriole, isolated perfused juxtaglomerular apparatus), isolated proximal tubules and cultured tubular cells. In this chapter, three commonly used animal models: whole animals, isolated perfused kidneys, and preparations for the study of the renal microcirculation, will be reviewed. Because the functional effect of a nephrotoxin can include vascular, intraluminal, and direct tubular cell effects, no single experimental model is ideally suited to study the pathophysiology of nephrotoxic injury. Also, each technique also has major limitations which must be appreci ated when interpreting the results. However certain models are useful for studying specific types of neprotoxic injury. For example, techniques for study of the microcirculation are ideal to study drugs that cause acute renal dysfunction on a vascular basis. These drugs include prostaglandin inhibitors e.g non steroidal anti-inflammatory drugs (NSAIDs)., direct vasoconstrictors e.g cyclosporine and angiotensin II blockers e.g. angioten sin converting enzyme (ACE) inhibitors. Each model, when appropriately applied and interpreted, produces useful information. However, it should be emphasized that complementary models and approaches need to be used to study a particular nephrotoxin. For example, tubular damage caused by intramuscular injection of glycerol is caused by heme toxicity and is due to a combination of factors that include severe intrarenal vasoconstriction, heme-mediated oxidant injury to tubular cells and obstruction of distal tubules by casts of acid hematin.

Keywords

Acute Kidney Injury Afferent Arteriole Efferent Arteriole Tubuloglomerular Feedback Macula Densa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Racusen LC: Renal histopathology and urine cytology and cytopathology in acute renal failure., chap. 9, in Acute renal failure. New concepts and therapeutic strategies, edited by Goligorsky MS, Stein JH, New York, Churchill Livingstone, 1995, p 194Google Scholar
  2. 2.
    Edelstein CL, Ling H, Schrier RW: The nature of renal cell injury. Kidney Int 51:1341-1351, 1997PubMedGoogle Scholar
  3. 3.
    Iwata M, Myerson D, Torok-Storb B, Zager RA: An evaluation of renal tubular DNA laddering in response to oxygen deprivation and oxidant injury. J.Am.Soc.Nephrol. 5:1307-1313, 1994PubMedGoogle Scholar
  4. 4.
    Nogae S, Miyazaki M, Kobayashi N, Saito T, Abe K, Saito H, Nakane PK, Nakanishi Y, Koji T: Induction of apoptosis in ischemia-reperfusion model of mouse kidney: possible involvement of Fas. J.Am.Soc.Nephrol. 9:620-631, 1998PubMedGoogle Scholar
  5. 5.
    Schumer M, Colombel MC, Sawczuk IS, Gobe G, Conner J, O’Toole KT, Olsson CA, Wise GJ, Buttyan R: Morphologic, biochemical and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am.J.Path. 140:831-838, 1992PubMedGoogle Scholar
  6. 6.
    Basile DP, Liapis H, Hammerman MR: Expression of bcl-2 and bax in regenerating rat tubules following ischemic injury. Am.J.Physiol. 272:640-647, 1997Google Scholar
  7. 7.
    Lieberthal W, Nigam SK: Acute renal failure:II.Experimental models of acute renal failure; imperfect but indispensable. Am J Physiol 278:F1-F12, 2000Google Scholar
  8. 8.
    Gobe G, Willgoss D, Hogg N, Schoch E, Endre Z: Cell survival or death in renal tubular epithelium after ischemia-reperfusion injury. Kidney Int 56:1299-1304, 1999PubMedGoogle Scholar
  9. 9.
    Gobe G, Zhang XJ, Cuttle L, Pat B, Willgoss D, Hancock J, Barnard R, Endre RB: Bcl-2 genes and growth factors in the pathology of ischaemic acute renal failure. Immunol.Cell Biol. 77:279-286, 1999PubMedGoogle Scholar
  10. 10.
    Gobe G, Zhang XJ, Willgoss DA, Schoch E, Hogg NA, Endre ZH: Relationship between expression of Bcl-2 genes and growth factors in ischemic acute renal failure in the rat. J Am Soc Nephrol. 11:454-467, 2000PubMedGoogle Scholar
  11. 11.
    Safirstein RL: Renal disease induced by anti-neoplastic agents., chap. 43, in Diseases of the Kidney and Urinary Tract., 8th ed., edited by Schrier RW, Philadelphia, Lippincott, Williams and Wilkins, 2007, pp 1068-1081Google Scholar
  12. 12.
    Andrade L, Vieira JM, Safirstein R: How Cells Die Counts. Am J Kidney Dis. 36:662-668, 2000PubMedGoogle Scholar
  13. 13.
    Kroemer G, Dallaporta B, Resche-Rigon M: The mitochondrial death/life regulator in apoptosis and necrosis. Annu.Rev.Physiol 60:619-642, 1998PubMedGoogle Scholar
  14. 14.
    Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R: In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21:1465-1468, 1995PubMedGoogle Scholar
  15. 15.
    De Broe ME: Apoptosis in acute renal failure. Nephrol.Dial.Transplant. 16 Suppl 6:23-26, 2001PubMedGoogle Scholar
  16. 16.
    Hagar H, Ueda N, Shah SV: Endonuclease induced DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. Kidney Int 49:355-361, 1996PubMedGoogle Scholar
  17. 17.
    Better OS: Josep Trueta (1897-1977): military surgeon and pioneer investigator of acute renal failure. AM.J.Nephrol. 19:343-345, 1999PubMedGoogle Scholar
  18. 18.
    Humes HD, Fissell WH, Weitzel WF, Buffington DA, Westover AJ, MacKay SM, Gutierrez JM: Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells. American Journal of Kidney Diseases 39:1078-1087, 2002PubMedGoogle Scholar
  19. 19.
    jayle C, Favreau F, Zhang K, Doucet C, Goujon JM, Hebrard W, Carretier M, Eugene M, Mauco G, Tillement JP, Hauet T: Comparison of protective effects of trimetazidine against experimental warm ischemia of different durations: early and long-term effects in a pig kidney model. Am.J.Physiol Renal Physiol 292:F1082-F1093, 2007PubMedGoogle Scholar
  20. 20.
    Netea MG, Fantuzzi G, Kullberg BJ, Stuyt RJ, Pulido EJ, McIntyre RC, Jr., Joosten LA, Van der Meer JW, Dinarello CA: Neutralization of IL-18 reduces neutrophil tissue accumulation and protects mice against lethal Escherichia coli and Salmonella typhimurium endotoxemia. J.Immunol. 164:2644-2649, 2000PubMedGoogle Scholar
  21. 21.
    Sakao Y, Takeda K, Tsutsui H, Kaisho T, Nomura F, Okamura H, Nakanishi K, Akira S: IL-18-deficient mice are resistant to endotoxin-induced liver injury but highly susceptible to endotoxin shock. Int Immunol. 11:471-480, 1999PubMedGoogle Scholar
  22. 22.
    Siegmund B, Rieder F, Lehr HA, Eigler A, Endres S, Dinarello CA: Neutralization of IL-18 exerts anti-inflammatory activity in ex-perimental colitis in mice. Eur Cytokine Netw 11: 2000Google Scholar
  23. 23.
    Pizarro T. Differential role of IL-18 in acute versus chronic experimental colitis. 2001. Immunogenetic mechanisms of intestinal inflammation: role of cytokines and chemokines. Univ. of Virginia Health System. Ref Type: Conference ProceedingGoogle Scholar
  24. 24.
    Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, Fowler KJ, Basu S, Zhan YF, Dunn AR: Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84:1737-1746, 1994PubMedGoogle Scholar
  25. 25.
    Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, Maher DW, Cebon J, Sinickas V, Dunn AR: Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc.Natl.Acad.Sci.U.S.A 91:5592-5596, 1994PubMedGoogle Scholar
  26. 26.
    Burne MJ, Haq M, Matsuse H, Mohapatra S, Rabb H: Genetic susceptibility to renal ischemia reperfusion injury revealed in a murine model. Transplantation 69:1023-1025, 2000PubMedGoogle Scholar
  27. 27.
    Markel P, Shu P, Ebeling C, Carlson GA, Nagle DL, Smutko JS, Moore KJ: Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 17:280-284, 1997PubMedGoogle Scholar
  28. 28.
    Wakeland E, Morel L, Achey K, Yui M, Longmate J: Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol Today 18:472-477, 1997PubMedGoogle Scholar
  29. 29.
    Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV: Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. Journal of Biological Chemistry 279:52282-52292, 2004PubMedGoogle Scholar
  30. 30.
    Igarashi: Kidney-specific gene targeting. J.Am.Soc.Nephrol. 15:2237-2239, 2004PubMedGoogle Scholar
  31. 31.
    Nagy A: Cre recombinase: the universal reagent for genome tailoring. Genesis: the Journal of Genetics & Development 26:99-109, 2000Google Scholar
  32. 32.
    Conger JD, Robinette JB, Hammond WS: Differences in vascular reactivity in models of ischemic acute renal failure. Kidney Int. 39:1087-1097, 1991PubMedGoogle Scholar
  33. 33.
    Malis CD, Cheung JY, Leaf A, Bonventre JV: Effects of verapamil in models of ischemic acute renal failure in the rat. Am.J.Physiol. 245:F735-F742, 1983PubMedGoogle Scholar
  34. 34.
    Burke TJ, Arnold PE, Gordon JA, Bulger RE, Dobyan DC, Schrier RW: Protective effect of intrarenal calcium membrane blockers before or after renal ischemia. Functional, morphological, and mitochondrial studies. J Clin Invest 74:1830-1841, 1984PubMedGoogle Scholar
  35. 35.
    Fried TA, Hishida A, Barnes JL, Stein JH: Ischemic acute renal failure in the rat: protective effect of uninephrectomy. Am.J.Physiol 247:F568-F574, 1984PubMedGoogle Scholar
  36. 36.
    Nakajima T, Miyaji T, Kato A, Ikegaya N, Yamamoto T, Hishida A: Uninephrectomy reduces apoptotic cell death and enhances renal tubular cell regeneration in ischemic ARF in rats. Am J Physiol 271:F846-F853, 1996PubMedGoogle Scholar
  37. 37.
    Tsukamoto T, Nigam SK: Tight junction proteins form large complexes and associate with the cytoskeleton in an ATP depletion model for reversible junction assembly. J Biol.Chem. 272:16133-16139, 1997PubMedGoogle Scholar
  38. 38.
    Endre ZH, Ratcliffe PJ, Tange JD, Ferguson DJ, Radda GK, Ledingham JG: Erythrocytes alter the pattern of renal hypoxic injury: predominance of proximal tubular injury with moderate hypoxia. Clin.Sci. 76:19-29, 1989PubMedGoogle Scholar
  39. 39.
    Donohoe JF, Venkatachalam MA, Bernard DB, Levinsky NG: Tubular leakage and obstruction after renal ischemia: structural-functional correlations. Kidney Int. 13:208-222, 1978PubMedGoogle Scholar
  40. 40.
    Lieberthal W, Nigam SK: Acute renal failure. Relative importance of proximal vs. distal tubular injury. Am.J.Physiol. 275:F623-F632, 1998PubMedGoogle Scholar
  41. 41.
    Thadhani R, Pascual M, Bonventre JV: Medical progress-acute renal failure. N Engl J Med 334:1448-1460, 1996PubMedGoogle Scholar
  42. 42.
    Shanley PF, Rosen MD, Brezis M, Silva P, Epstein FH, Rosen S: Topography of focal proximal tubular necrosis after ischemia with reflow in the rat kidney. Am.J.Pathol. 122:462-468, 1986PubMedGoogle Scholar
  43. 43.
    Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, De Broe ME: Identification and kinetics of leuko-cytes after severe ischaemia/reperfusion renal injury. Nephrol.Dial.Transplant. 15:1562-1574, 2000PubMedGoogle Scholar
  44. 44.
    Jones DB: Ultrastructure of human acute renal failure. Lab Invest 46:254-264, 1982PubMedGoogle Scholar
  45. 45.
    Olsen TS, Hansen HE: Ultrastructure of medullary tubules in ischemic acute tubular necrosis and acute interstitial nephritis in man. APMIS 98:1139-1148, 1990PubMedGoogle Scholar
  46. 46.
    Lieberthal W, Levine JS: Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am.J.Physiol 271: F477-F488, 1996PubMedGoogle Scholar
  47. 47.
    Daemen MARC, Van t’Veer C, Denecker G, Heemskerk VH, Wolfs TGAM, Clauss M, Vandenabeele P, Buurman W: Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J.Clin.Invest. 104:541-549, 1999PubMedGoogle Scholar
  48. 48.
    Edelstein CL: Editorial Comment: Calcium-mediated proximal tubular injury-what is the role of cysteine proteases? Nephrol.Dial. Transplant. 15:141-144, 2000Google Scholar
  49. 49.
    Lieberthal W, Koh JS, Levine JS: Necrosis and apoptosis in acute renal failure. Semin Nephrol 18:505-518, 1998PubMedGoogle Scholar
  50. 50.
    Lieberthal W: Biology of acute renal failure: Therapeutic implications. Kidney Int 52:1102-1115, 1997Google Scholar
  51. 51.
    Lau AH: Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int 56:1295-1298, 1999PubMedGoogle Scholar
  52. 52.
    Kaushal GP, Singh AB, Shah SV: Identification of gene family of caspases in rat kidney and altered expression in ischemia reperfusion injury. Am.J.Physiol. 274:F587-F595, 1998PubMedGoogle Scholar
  53. 53.
    Shimizu A, Yamanaka N: Apoptosis and cell desquamation in repair process of ischemic tubular necrosis. Virchows Arch.B Cell Pathol.Incl.Mol.Pathol. 64:171-180, 1993PubMedGoogle Scholar
  54. 54.
    Molitoris BA, Geerdes A, McIntosh JR: Dissociation and redistribution of Na+, K+ -ATPase from its surface membrane cytoskeletal complex during cellular ATP depletion. J Clin Invest 88:462-469, 1991PubMedGoogle Scholar
  55. 55.
    Van Why SK, Mann AS, Ardito T, Siegel NJ, Kashgarian M: Expression and molecular regulation of NaK-ATPase after renal ischemia. Am.J.Physiol. 267:F75-F85, 1994PubMedGoogle Scholar
  56. 56.
    Molitoris BA: Ischemia-induced loss of epithelial polarity: potential role of the actin cytoskeleton [editorial]. Am J Physiol 260: F769-F778, 1991PubMedGoogle Scholar
  57. 57.
    Molitoris BA, Wilson PD, Schrier RW, Simon FR: Ischemia induces partial loss of surface membrane polarity and accumulation of putative calcium ionophores. J.Clin.Invest 76:2097-2105, 1985PubMedGoogle Scholar
  58. 58.
    Molitoris BA: New insights into the cell biology of ischemic acute renal failure. J Am Soc Nephrol 1:1263-1270, 1991PubMedGoogle Scholar
  59. 59.
    Alejandro VSJ, Nelson WJ, Huie P, Sibley RK, Dafoe D, Kuo P, Scandling JDJr, Myers BD: Postischemic injury, delayed function and NaK-ATPase distribution in the transplanted kidney. Kidney Int. 48:1308-1315, 1995PubMedGoogle Scholar
  60. 60.
    Racusen LC, Fivush BA, LI YL, Slatnic I, Solez K: Dissociation of tubular cell detachment and tubular cell death in clinical and experimental “acute renal failure”. Lab.Invest. 64:546-556, 1991PubMedGoogle Scholar
  61. 61.
    Harlan JM: Neutrophil-mediated vascular injury. Acta Med.Scand.Suppl 715:123-129, 1987PubMedGoogle Scholar
  62. 62.
    Weiss SJ: Tissue destruction by neutrophils. N.Engl.J.Med. 320:365-376, 1989PubMedCrossRefGoogle Scholar
  63. 63.
    Horl WH, Schafer RM, Horl M, Heidland A: Neutrophil activation in acute renal failure and sepsis. Arch.Surg. 125:651-654, 1990PubMedGoogle Scholar
  64. 64.
    Jennette JC, Falk RJ: Acute renal failure secondary to leukocyte-mediated acute glomerular injury. Ren Fail. 14:395-399, 1992PubMedGoogle Scholar
  65. 65.
    Goode HF, Webster NR: Free radicals and antioxidants in sepsis. Crit Care Med. 21:1770-1776, 1993PubMedGoogle Scholar
  66. 66.
    Lauriat S, Linas SL: The role of neutrophils in acute renal failure. Semin.Nephrol. 18:498-504, 1998PubMedGoogle Scholar
  67. 67.
    Melnikov VY, Faubel SG, Siegmund B, Lucia MS, Ljubanovic D, Edelstein CL: Neutrophil-independent mechanisms of caspase-1-and IL-18-mediated ischemic acute tubular necrosis in mice. J.Clin Invest 110:1083-1091, 2002PubMedGoogle Scholar
  68. 68.
    Bonventre JV, Zuk A: Ischemic acute renal failure: an inflammatory disease? Kidney Int. 66:480-485, 2004PubMedGoogle Scholar
  69. 69.
    Friedwald JJ, Rabb H: Inflammatory cells in ischemic acute renal failure. Kidney Int. 66:486-491, 2004Google Scholar
  70. 70.
    Ysebaert DK, De Greef KE, De Beuf A, Van Rompay AR, Vercauteren SR, Persy VP, De Broe ME: T cells as mediators in renal ischemia/reperfusion injury. Kidney Int. 66:491-495, 2004PubMedGoogle Scholar
  71. 71.
    Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, O’Donnell MP, Rabb H: Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin.Invest 108:1283-1290, 2001PubMedGoogle Scholar
  72. 72.
    Jose MD, Ikezumi Y, Van Rooijen N, Atkins RC, Chadban SJ: Macrophages act as effectors of tissue damage in acute renal allograft rejection. Transplantation 76:1015-1022, 2003PubMedGoogle Scholar
  73. 73.
    Day YJ, Huang L, Ye H, Linden J, Okusa MD: Renal Ischemia-Reperfusion Injury and Adenosine 2A Receptor-Mediated Tissue Protection: The Role of Macrophages. Am J Physiol Renal Physiol 288:F722-F731, 2004PubMedGoogle Scholar
  74. 74.
    Jo SK, Sung SA, Cho WY, Go KJ, Kim HK: Macrophages contribute to the initiation of ischemic acute renal failure in rats. Nephrol. Dial.Transplant. 21:1231-1239, 2006PubMedGoogle Scholar
  75. 75.
    Furuichi K, Wada T, Iwata Y, Kitagawa K, Kobayashi K, Hashimoto H, Ishiwata Y, Tomosugi N, Mukaida N, Matsushima K, Egashira K, Yokoyama H: Gene therapy expressing amino-terminal truncated monocyte chemoattractant protein-1 prevents renal ischemiareperfusion injury. Journal of the American Society of Nephrology 14:1066-1071, 2003PubMedGoogle Scholar
  76. 76.
    American Society of Nephrology Renal Research Report. J.Am.Soc.Nephrol. 16, 1886-1903. 2005. Ref Type: ReportGoogle Scholar
  77. 77.
    Ronco C, Zanella M, Brendolan A, Milan M, Canato G, Zamperetti N, Bellomo R: Management of severe acute renal failure in critically ill patients: an international survey in 345 centres. Nephrol.Dial.Transplant. 16:230-237, 2001PubMedGoogle Scholar
  78. 78.
    Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ: Acute renal failure in intensive care units--causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med. 24:192-198, 1996PubMedGoogle Scholar
  79. 79.
    Liano F, Junco E, Pascual J, Madero R, Verde E: The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. The Madrid Acute Renal Failure Study Group. Kidney Int Suppl 66:S16-S24, 1998PubMedGoogle Scholar
  80. 80.
    Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP: The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 273:117-123, 1995PubMedGoogle Scholar
  81. 81.
    Knotek M, Esson M, Gengaro P, Edelstein CL, Schrier RW: Desensitization of soluble guanylate cyclase in renal cortex during endotoxemia in mice. J.Am.Soc.Nephrol. 11:2133-2137, 2000PubMedGoogle Scholar
  82. 82.
    Remick DG, Newcomb DE, Bolgos GL, Call DR: Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock 13:110-116, 2000PubMedGoogle Scholar
  83. 83.
    Thijs A, Thijs LG: Pathogenesis of renal failure in sepsis. Kidney Int.Suppl 66:S34-S37, 1998PubMedGoogle Scholar
  84. 84.
    Ortiz-Arduan A, Danoff TM, Kalluri R, Gonzalez-Cuadrado S, Karp SL, Elkon K, Egido J, Neilson EG: Regulation of Fas and Fas ligand expression in cultured murine renal cells and in the kidney during endotoxemia. Am.J.Physiol 271:F1193-F1201, 1996PubMedGoogle Scholar
  85. 85.
    Richman AV, Gerber LI, Balis JU: Peritubular capillaries. A major target site of endotoxin-induced vascular injury in the primate kidney. Lab Invest 43:327-332, 1980PubMedGoogle Scholar
  86. 86.
    Hickey MJ, Sharkey KA, Sihota EG, Reinhardt PH, MacMicking JD, Nathan C, Kubes P: Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia. FASEB J. 11:955-964, 1997PubMedGoogle Scholar
  87. 87.
    Schrier RW, Abraham WT: Hormones and hemodynamics in heart failure. N.Engl.J.Med. 341:577-585, 1999PubMedGoogle Scholar
  88. 88.
    Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodes J: Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 8:1151-1157, 1988PubMedGoogle Scholar
  89. 89.
    Schrier RW: Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (2). N.Engl.J.Med. 319:1127-1134, 1988PubMedGoogle Scholar
  90. 90.
    Khan RZ, Badr KF: Endotoxin and renal function: perspectives to the understanding of septic acute renal failure and toxic shock. Nephrol.Dial.Transplant. 14:814-818, 1999PubMedGoogle Scholar
  91. 91.
    Leach M, Frank S, Olbrich A, Pfeilschifter J, Thiemermann C: Decline in the expression of copper/zinc superoxide dismutase in the kidney of rats with endotoxic shock: effects of the superoxide anion radical scavenger, tempol, on organ injury. Br.J.Pharmacol. 125:817-825, 1998PubMedGoogle Scholar
  92. 92.
    Zacharowski K, Olbrich A, Cuzzocrea S, Foster SJ, Thiemermann C: Membrane-permeable radical scavenger, tempol, reduces multiple organ injury in a rodent model of gram-positive shock. Crit Care Med. 28:1953-1961, 2000PubMedGoogle Scholar
  93. 93.
    Zhang C, Walker LM, Mayeux PR: Role of nitric oxide in lipopolysaccharide-induced oxidant stress in the rat kidney. Biochem. Pharmacol. 59:203-209, 2000PubMedGoogle Scholar
  94. 94.
    Holly MK, Dear JW, Hu X, Schechter AN, Gladwin MT, Hewitt SM, Yuen PS, Star RA: Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal failure. Kidney International 70:496-506, 2006PubMedGoogle Scholar
  95. 95.
    O’Donnel P, Burne M, Nemoto T, Keane WF, RabbH: Direct measurement of renal function in mice with ischemia-reperfusion injury; comparison of inulin clearance with serum creatinine. (abstract) J Am Soc Nephrol 11:606A, 2001Google Scholar
  96. 96.
    Chiao H, Kohda Y, McLeroy P, Craig L, Linas S, Star RA: Alpha-melanocyte-stimulating hormone inhibits renal injury in the absence of neutrophils. Kidney Int 54:765-774, 1998PubMedGoogle Scholar
  97. 97.
    Lorenz JN, Gruenstein E: A simple, nonradioactive method for evaluating single-nephron filtration rate using FITC-inulin. Am.J.Physiol 276:F172-F177, 1999PubMedGoogle Scholar
  98. 98.
    Wang W, Mitra A, Poole B, Falk S, Lucia MS, Tayal S, Schrier R: Endothelial nitric oxide synthase-deficient mice exhibit increased susceptibility to endotoxin-induced acute renal failure. American Journal of Physiology -Renal Fluid & Electrolyte Physiology 287:F1044-F1048, 2004Google Scholar
  99. 99.
    Wang W, Zolty E, Falk S, Basava V, Reznikov L, Schrier R: Pentoxifylline protects against endotoxin-induced acute renal failure in mice. American Journal of Physiology -Renal Physiology 291:F1090-F1095, 2006PubMedGoogle Scholar
  100. 100.
    Wang W, Faubel SG, Ljubanovic D, Mitra A, Kim J, Tao Y, Soloviev A, Reznikov L, Dinarello CA, Schrier RW, Edelstein CL: Endotoxemic acute renal failure is attenuated in caspase-1 deficient mice. Am.J.Physiol Renal Physiol 288:F997-F1004, 2005PubMedGoogle Scholar
  101. 101.
    Gulati S, Ainol L, Orak J, Singh AK, Singh I: Alterations of peroxisomal function in ischemia-reperfusion injury of rat kidney. Bio-chim.Biophys.Acta 1182:291-298, 1993Google Scholar
  102. 102.
    Gulati S, Singh AK, Irazu C, Orak J, Rajagopalan PR, Fitts CT, Singh I: Ischemia-reperfusion injury: biochemical alterations in per-oxisomes of rat kidney. Arch.Biochem.Biophys. 295:90-100, 1992PubMedGoogle Scholar
  103. 103.
    Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG: Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int. 14:31-49, 1978PubMedGoogle Scholar
  104. 104.
    Bagnasco S, Good D, Balaban R, Burg M: Lactate production in isolated segments of the rat nephron. Am.J.Physiol 248:F522-F526, 1985PubMedGoogle Scholar
  105. 105.
    Witzgall R, Brown D, Schwarz C, Bonventre JV: Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitoti-cally active and dedifferentiated cells. J Clin.Invest 93:2175-2188, 1994PubMedGoogle Scholar
  106. 106.
    Safirstein R: Gene expression in nephrotoxic and ischemic acute renal failure [editorial]. J Am Soc Nephrol. 4:1387-1395, 1994PubMedGoogle Scholar
  107. 107.
    Megyesi J, Di Mari J, Udvarhelyi N, Price PM, Safirstein R: DNA synthesis is dissociated from the immediate-early gene response in the post-ischemic kidney. Kidney Int 48:1451-1458, 1995PubMedGoogle Scholar
  108. 108.
    Safirstein R, Price PM, Saggi SJ, Harris RC: Changes in gene expression after temporary renal ischemia. Kidney Int 37:1515-1521, 1990PubMedGoogle Scholar
  109. 109.
    Dimari J, Megyesi J, Udvarhelyi N, Price P, Davis R, Safirstein R: N-acetyl cysteine ameliorates ischemic renal failure. Am.J.Physiol 272:F292-F298, 1997PubMedGoogle Scholar
  110. 110.
    Pombo CM, Bonventre JV, Avruch J, Woodgett JR, Kyriakis JM, Force T: The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J Biol.Chem. 269:26546-26551, 1994PubMedGoogle Scholar
  111. 111.
    di Mari JF, Davis R, Safirstein RL: MAPK activation determines renal epithelial cell survival during oxidative injury. Am.J.Physiol 277:F195-F203, 1999PubMedGoogle Scholar
  112. 112.
    Yaqoob M, Alkhunaizi AM, Edelstein CL, Conger JD, Schrier RW: ARF: Pathogenesis, diagnosis and management., in Renal and Electrolyte Disorders., 5 th ed., edited by Schrier RW, Philadelphia, New York, Lippincott-Raven, 1997, pp 449-506Google Scholar
  113. 113.
    Kribben A, Edelstein CL, Schrier RW: Pathophysiology of acute renal failure. J.Nephrol. 12 Suppl 2:S142-S151, 1999PubMedGoogle Scholar
  114. 114.
    Edelstein CL, Ling H, Wangsiripaisan A, Schrier RW: Emerging therapies for acute renal failure. Am.J.Kid.Dis. 30:S89-S95, 1997PubMedGoogle Scholar
  115. 115.
    Rossert J: Drug-induced acute interstitial nephritis. Kidney Int 60:804-817, 2001PubMedGoogle Scholar
  116. 116.
    Conger JD, Weil JU: Abnormal vascular function following ischemia-reperfusion injury. J.Invest.Med. 43:431-442, 1995Google Scholar
  117. 117.
    Harris RJ, Branston NM, Symon L, Bayhan M, Watson A: The effects of a calcium antagonist, nimodipine, upon physiological responses of the cerebral vasculature and its possible influence upon focal cerebral ischaemia. Stroke 13:759-766, 1982PubMedGoogle Scholar
  118. 118.
    Bevan JA, Laher I: Pressure and flow-dependent vascular tone. FASEB J. 5:2267-2273, 1991PubMedGoogle Scholar
  119. 119.
    Tolins JP, Palmer RM, Moncada S, Raij L: Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses. Am.J.Physiol 258:H655-H662, 1990PubMedGoogle Scholar
  120. 120.
    Pohl U, Holtz J, Busse R, Bassenge E: Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hyperten-sion 8:37-44, 1986Google Scholar
  121. 121.
    Cases A, Haas J, Burnett JC, Romero JC: Hemodynamic and renal effects of acute and progressive nitric oxide synthesis inhibition in anesthetized dogs. Am.J.Physiol Regul.Integr.Comp Physiol 280:R143-R148, 2001PubMedGoogle Scholar
  122. 122.
    Goetz KL, Wang BC, Madwed JB, Zhu JL, Leadley RJ, Jr.: Cardiovascular, renal, and endocrine responses to intravenous endothelin in conscious dogs. Am.J.Physiol 255:R1064-R1068, 1988PubMedGoogle Scholar
  123. 123.
    Blantz RC: Dynamics of glomerular ultrafiltration in the rat. Fed.Proc. 36:2602-2608, 1977PubMedGoogle Scholar
  124. 124.
    Casellas D, Navar LG: In vitro perfusion of juxtamedullary nephrons in rats. Am.J.Physiol 246:F349-F358, 1984PubMedGoogle Scholar
  125. 125.
    Casellas D, Carmines PK, Navar LG: Microvascular reactivity of in vitro blood perfused juxtamedullary nephrons from rats. Kidney Int 28:752-759, 1985PubMedGoogle Scholar
  126. 126.
    Ichihara A, Inscho EW, Imig JD, Navar LG: Neuronal nitric oxide synthase modulates rat renal microvascular function. Am.J.Physiol 274:F516-F524, 1998PubMedGoogle Scholar
  127. 127.
    Ichihara A, Hayashi M, Hirota N, Saruta T: Superoxide inhibits neuronal nitric oxide synthase influences on afferent arterioles in spontaneously hypertensive rats. Hypertension 37:630-634, 2001PubMedGoogle Scholar
  128. 128.
    Ichihara A, Navar LG: Neuronal NOS contributes to biphasic autoregulatory response during enhanced TGF activity. Am.J.Physiol 277:F113-F120, 1999PubMedGoogle Scholar
  129. 129.
    Ichihara A, Imig JD, Navar LG: Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension. Hypertension 33:462-466, 1999PubMedGoogle Scholar
  130. 130.
    Ikenaga H, Ishii N, Didion SP, Zhang K, Cornish KG, Patel KP, Mayhan WG, Carmines PK: Suppressed impact of nitric oxide on renal arteriolar function in rats with chronic heart failure. Am.J.Physiol 276:F79-F87, 1999PubMedGoogle Scholar
  131. 131.
    Inscho EW, Cook AK, Mui V, Miller J: Direct assessment of renal microvascular responses to P2-purinoceptor agonists. Am.J.Physiol 274:F718-F727, 1998PubMedGoogle Scholar
  132. 132.
    Nishiyama A, Inscho EW, Navar LG: Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am.J.Physiol Renal Physiol 280:F406-F414, 2001PubMedGoogle Scholar
  133. 133.
    Ichihara A, Imig JD, Inscho EW, Navar LG: Cyclooxygenase-2 participates in tubular flow-dependent afferent arteriolar tone: interaction with neuronal NOS. Am.J.Physiol 275:F605-F612, 1998PubMedGoogle Scholar
  134. 134.
    Imig JD, Deichmann PC: Afferent arteriolar responses to ANG II involve activation of PLA2 and modulation by lipoxygenase and P-450 pathways. Am.J.Physiol 273:F274-F282, 1997PubMedGoogle Scholar
  135. 135.
    Carmines PK, Fallet RW, Che Q, Fujiwara K: Tyrosine kinase involvement in renal arteriolar constrictor responses to angiotensin II. Hypertension 37:569-573, 2001PubMedGoogle Scholar
  136. 136.
    Inscho EW, Cook AK, Mui V, Imig JD: Calcium mobilization contributes to pressure-mediated afferent arteriolar vasoconstriction. Hypertension 31:421-428, 1998PubMedGoogle Scholar
  137. 137.
    Tonshoff B, Kaskel FJ, Moore LC: Effects of insulin-like growth factor I on the renal juxtamedullary microvasculature. Am.J.Physiol 274:F120-F128, 1998PubMedGoogle Scholar
  138. 138.
    Steinhausen M, Snoei H, Parekh N, Baker R, Johnson PC: Hydronephrosis: a new method to visualize vas afferens, efferens, and glomerular network. Kidney Int 23:794-806, 1983PubMedGoogle Scholar
  139. 139.
    De Vriese AS, Verbeuren TJ, Vallez MO, Lameire NH, De Buyzere M, Vanhoutte PM: Off-line analysis of red blood cell velocity in renal arterioles. J.Vasc.Res. 37:26-31, 2000PubMedGoogle Scholar
  140. 140.
    Edwards RM: Response of isolated renal arterioles to acetylcholine, dopamine, and bradykinin. Am.J.Physiol 248:F183-F189, 1985PubMedGoogle Scholar
  141. 141.
    Edwards RM: Response of isolated renal arterioles to acetylcholine, dopamine, and bradykinin. Am.J.Physiol 248:F183-F189, 1985PubMedGoogle Scholar
  142. 142.
    Yuan BH, Robinette JB, Conger JD: Effect of angiotensin II and norepinephrine on isolated rat afferent and efferent arterioles. Am.J.Physiol 258:F741-F750, 1990PubMedGoogle Scholar
  143. 143.
    Conger JD, Falk SA, Robinette JB: Angiotensin II-induced changes in smooth muscle calcium in rat renal arterioles. J.Am.Soc. Nephrol. 3:1792-1803, 1993Google Scholar
  144. 144.
    Loutzenhiser K, Loutzenhiser R: Angiotensin II-induced Ca(2+) influx in renal afferent and efferent arterioles: differing roles of voltage-gated and store-operated Ca(2+) entry. Circ.Res. 87:551-557, 2000PubMedGoogle Scholar
  145. 145.
    Li N, Teggatz EG, Li PL, Allaire R, Zou AP: Formation and actions of cyclic ADP-ribose in renal microvessels. Microvasc.Res. 60:149-159, 2000PubMedGoogle Scholar
  146. 146.
    Purdy KE, Arendshorst WJ: EP(1) and EP(4) receptors mediate prostaglandin E(2) actions in the microcirculation of rat kidney. Am.J.Physiol Renal Physiol 279:F755-F764, 2000PubMedGoogle Scholar
  147. 147.
    Edwards RM, Weidley EF: Lack of effect of atriopeptin II on rabbit glomerular arterioles in vitro. Am.J.Physiol 252:F317-F321, 1987PubMedGoogle Scholar
  148. 148.
    Lanese DM, Yuan BH, Falk SA, Conger JD: Effects of atriopeptin III on isolated rat afferent and efferent arterioles. Am.J.Physiol 261:F1102-F1109, 1991PubMedGoogle Scholar
  149. 149.
    Edwards RM, Trizna W: Characterization of alpha-adrenoceptors on isolated rabbit renal arterioles. Am.J.Physiol 254:F178-F183, 1988PubMedGoogle Scholar
  150. 150.
    Munger KA, Takahashi K, Awazu M, Frazer M, Falk SA, Conger JD, Badr KF: Maintenance of endothelin-induced renal arteriolar constriction in rats is cyclooxygenase dependent. Am.J.Physiol 264:F637-F644, 1993PubMedGoogle Scholar
  151. 151.
    Liu J, Hutzler M, Li C, Pechet L: Thrombotic thrombocytopenic purpura (ttp) and hemolytic uremic syndrome (hus): the new thinking. J Thromb.Thrombolysis. 11:261-272, 2001PubMedGoogle Scholar
  152. 152.
    Chatziantoniou C, Dussaule JC, Arendshorst WJ, Ardaillou R: Angiotensin II receptors and renin release in rat glomerular afferent arterioles. Kidney Int 46:1570-1573, 1994PubMedGoogle Scholar
  153. 153.
    De Leon H, Garcia R: Characterization of endothelin receptor subtypes in isolated rat renal preglomerular microvessels. Regul. Pept. 60:1-8, 1995PubMedGoogle Scholar
  154. 154.
    Park F, Mattson DL, Skelton MM, Cowley AW, Jr.: Localization of the vasopressin V1a and V2 receptors within the renal cortical and medullary circulation. Am.J.Physiol 273:R243-R251, 1997PubMedGoogle Scholar
  155. 155.
    Yoshida H, Tamaki T, Aki Y, Kimura S, Takenaka I, Abe Y: Effects of angiotensin II on isolated rabbit afferent arterioles. Jpn.J.Pharmacol. 66:457-464, 1994PubMedGoogle Scholar
  156. 156.
    Kornfeld M, Gutierrez AM, Persson AE, Salomonsson M: Angiotensin II induces a tachyphylactic calcium response in the rabbit afferent arteriole. Acta Physiol Scand. 160:165-173, 1997PubMedGoogle Scholar
  157. 157.
    Ito S, Amin J, Ren Y, Arima S, Abe K, Carretero OA: Heterogeneity of angiotensin action in renal circulation. Kidney Int Suppl 63: S128-S131, 1997PubMedGoogle Scholar
  158. 158.
    Croft KD, McGiff JC, Sanchez-Mendoza A, Carroll MA: Angiotensin II releases 20-HETE from rat renal microvessels. Am.J.Physiol Renal Physiol 279:F544-F551, 2000PubMedGoogle Scholar
  159. 159.
    Vyas SJ, Blaschak CM, Chinoy MR, Jackson EK: Angiotensin II-induced changes in G-protein expression and resistance of renal microvessels in young genetically hypertensive rats. Mol.Cell Biochem. 212:121-129, 2000PubMedGoogle Scholar
  160. 160.
    Imig JD, Pham BT, LeBlanc EA, Reddy KM, Falck JR, Inscho EW: Cytochrome P450 and cyclooxygenase metabolites contribute to the endothelin-1 afferent arteriolar vasoconstrictor and calcium responses. Hypertension 35:307-312, 2000PubMedGoogle Scholar
  161. 161.
    Yu H, Carretero OA, Juncos LA, Garvin JL: Biphasic effect of bradykinin on rabbit afferent arterioles. Hypertension 32:287-292, 1998PubMedGoogle Scholar
  162. 162.
    Ito S: Characteristics of isolated perfused juxtaglomerular apparatus. Kidney Int Suppl 67:S46-S48, 1998PubMedGoogle Scholar
  163. 163.
    Ito S, Ren Y: Evidence for the role of nitric oxide in macula densa control of glomerular hemodynamics. J.Clin.Invest 92:1093-1098, 1993PubMedGoogle Scholar
  164. 164.
    Ito S, Carretero OA: An in vitro approach to the study of macula densa-mediated glomerular hemodynamics. Kidney Int 38:1206-1210, 1990PubMedGoogle Scholar
  165. 165.
    Molitoris BA, Sandoval RM: Intravital multiphoton microscopy of dynamic renal processes. American Journal of Physiology -Renal Physiology 288:F1084-F1089, 2005PubMedGoogle Scholar
  166. 166.
    Dagher PC, Herget-Rosenthal S, Ruehm SG, Jo SK, Star RA, Agarwal R, Molitoris BA: Newly developed techniques to study and diagnose acute renal failure. Journal of the American Society of Nephrology 14:2188-2198, 2003PubMedGoogle Scholar
  167. 167.
    Dunn KW, Sandoval RM, Molitoris BA: Intravital imaging of the kidney using multiparameter multiphoton microscopy. Nephron Experimental Nephrology. 94:e7-11, 2003PubMedGoogle Scholar
  168. 168.
    Dunn KW, Sandoval RM, Kelly KJ, Dagher PC, Tanner GA, Atkinson SJ, Bacallao RL, Molitoris BA: Functional studies of the kidney of living animals using multicolor two-photon microscopy. American Journal of Physiology -Cell Physiology 283:C905-C916, 2002PubMedGoogle Scholar
  169. 169.
    Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA: Injury of the renal microvascular endothelium alters barrier function after ischemia. American Journal of Physiology -Renal Fluid & Electrolyte Physiology 285:F191-F198, 2003Google Scholar
  170. 170.
    Lee HT, Jan M, Bae SC, Joo JD, Goubaeva FR, Yang J, Kim M: A1 adenosine receptor knockout mice are protected against acute radiocontrast nephropathy in vivo. American Journal of Physiology -Renal Physiology 290:F1367-F1375, 2006PubMedGoogle Scholar
  171. 171.
    Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW: A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. American Journal of Physiology -Renal Physiology 286:F298-F306, 2004PubMedGoogle Scholar
  172. 172.
    Wei Q, Yin XM, Wang MH, Dong Z: Bid deficiency ameliorates ischemic renal failure and delays animal death in C57BL/6 mice. American Journal of Physiology -Renal Physiology 290:F35-F42, 2006PubMedGoogle Scholar
  173. 173.
    Kielar ML, John R, Bennet M, Richardson JA, Shelton JM, Chen L, Jeyarajah DR, Zhou XJ, Zhou H, Chiquett B, Nagami GT, Lu CY: Maladaptive role of IL-6 in ischemic acute renal failure. J.Am.Soc.Nephrol. 16:3315-3325, 2006Google Scholar
  174. 174.
    Marques VP, Goncalves GM, Feitoza CQ, Cenedeze MA, Fernandes Bertocchi AP, Damiao MJ, Pinheiro HS, Antunes T, V, dos Reis MA, Pacheco-Silva A, Saraiva Camara NO: Influence of TH1/TH2 switched immune response on renal ischemia-reperfusion injury. Nephron Experimental Nephrology. 104:e48-e56, 2006PubMedGoogle Scholar
  175. 175.
    Yamasowa H, Shimizu S, Inoue T, Takaoka M, Matsumura Y: Endothelial nitric oxide contributes to the renal protective effects of ischemic preconditioning. Journal of Pharmacology & Experimental Therapeutics 312:153-159, 2005Google Scholar
  176. 176.
    Zheng J, Devalaraja-Narashimha K, Singaravelu K, Padanilam BJ: Poly(ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury. American Journal of Physiology -Renal Physiology 288:F387-F398, 2005PubMedGoogle Scholar
  177. 177.
    Thurman JM, Ljubanovic D, Edelstein CL, Gilkeson GS, Holers VM: Lack of a functional alternative complement pathway amelio-rates ischemic acute renal failure in mice. Journal of Immunology 170:1517-1523, 2003Google Scholar
  178. 178.
    Yamashita J, Kita S, Iwamoto T, Ogata M, Takaoka M, Tazawa N, Nishikawa M, Wakimoto K, Shigekawa M, Komuro I, Matsumura Y: Attenuation of ischemia/reperfusion-induced renal injury in mice deficient in Na+/Ca2+ exchanger. Journal of Pharmacology & Experimental Therapeutics 304:284-293, 2003Google Scholar
  179. 179.
    Yamada K, Miwa T, Liu J, Nangaku M, Song WC: Critical protection from renal ischemia reperfusion injury by CD55 and CD59. Journal of Immunology 172:3869-3875, 2004Google Scholar
  180. 180.
    Lee HT, Ota-Setlik A, Xu H, D’Agati VD, Jacobson MA, Emala CW: A3 adenosine receptor knockout mice are protected against ischemia-and myoglobinuria-induced renal failure. American Journal of Physiology -Renal Physiology 284:F267-F273, 2003PubMedGoogle Scholar
  181. 181.
    Melnikov VY, Ecder T, Fantuzzi G, Siegmund B, Lucia MS, Dinarello CA, Schrier RW, Edelstein CL: Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J.Clin.Invest 107:1145-1152, 2001PubMedGoogle Scholar
  182. 182.
    Daemen MA, Denecker G, Van’t Veer C, Wolfs TG, Vandenabeele P, Buurman WA: Activated caspase-1 is not a central mediator of inflammation in the course of ischemia-reperfusion. Transplantation 71:778-784, 2001PubMedGoogle Scholar
  183. 183.
    Ling H, Edelstein CL, Gengaro P, Meng X, Lucia S, Knotek M, Wangsiripaisan A, Shi Y, Schrier RW: Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. Am.J.Physiol. 277:F383-F390, 1999PubMedGoogle Scholar
  184. 184.
    Haq M, Norman J, Saba SR, Ramirez G, Rabb H: Role of IL-1 in renal ischemic reperfusion injury. J Am Soc Nephrol 9:614-619, 1998PubMedGoogle Scholar
  185. 185.
    Kelly KJ, Williams WWJr, Colvin RB, Bonventre JV: Antibody to intracellular adhesion molecule-1 protects the kidney against ischemic injury. Proc Natl Acad Sci USA 91:812-816, 1994PubMedGoogle Scholar
  186. 186.
    Rabb H, Daniels F, O’Donnell M, Haq M, Saba SR, Keane W, Tang WW: Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am.J.Physiol Renal Physiol 279:F525-F531, 2000PubMedGoogle Scholar
  187. 187.
    Noiri E, Dickman K, Miller F, Romanov G, Romanov VI, Shaw R, Chambers AF, Rittling SR, Denhardt DT, Goligorsky MS: Reduced tolerance to acute renal ischemia in mice with a targeted disruption of the osteopontin gene. Kidney Int 56:74-82, 1999PubMedGoogle Scholar
  188. 188.
    Ge Y, Bagnall A, Stricklett PK, Strait K, Webb DJ, Kotelevtsev Y, Kohan DE: Collecting duct-specific knockout of the endothelin B receptor causes hypertension and sodium retention. American Journal of Physiology -Renal Physiology 291:F1274-F1280, 2006PubMedGoogle Scholar
  189. 189.
    Rojek A, Fuchtbauer EM, Kwon TH, Frokiaer J, Nielsen S: Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proceedings of the National Academy of Sciences of the United States of America 103:6037-6042, 2006PubMedGoogle Scholar
  190. 190.
    Zhang H, Zhang A, Kohan DE, Nelson RD, Gonzalez FJ, Yang T: Collecting duct-specific deletion of peroxisome proliferator-acti-vated receptor gamma blocks thiazolidinedione-induced fluid retention. Proceedings of the National Academy of Sciences of the United States of America 102:9406-9411, 2005PubMedGoogle Scholar
  191. 191.
    Ahn D, Ge Y, Stricklett PK, Gill P, Taylor D, Hughes AK, Yanagisawa M, Miller L, Nelson RD, Kohan DE: Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention. Journal of Clinical Investigation 114:504-511, 2004PubMedGoogle Scholar
  192. 192.
    Leheste JR, Melsen F, Wellner M, Jansen P, Schlichting U, Renner-Muller I, Andreassen TT, Wolf E, Bachmann S, Nykjaer A, Willnow TE: Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB Journal 17:247-249, 2003PubMedGoogle Scholar
  193. 193.
    Rubera I, Loffing J, Palmer LG, Frindt G, Fowler-Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC: Collecting duct-specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance. Journal of Clinical Investigation 112:554-565, 2003PubMedGoogle Scholar
  194. 194.
    Stein JH, Gottschall J, Osgood RW, Ferris TF: Pathophysiology of a nephrotoxic model of acute renal failure. Kidney Int 8:27-41, 1975PubMedGoogle Scholar
  195. 195.
    Mauk RH, Patak RV, Fadem SZ, Lifschitz MD, Stein JH: Effect of prostaglandin E administration in a nephrotoxic and a vasocon-strictor model of acute renal failure. Kidney Int 12:122-130, 1977PubMedGoogle Scholar
  196. 196.
    Solez K, Marel-Maroger L, Sraer J: The morphology of acute tubular necrosis in man. Analysis of 57 renal biopsies and comparison with glycerol model. Medicine (Baltimore) 58:362-376, 1979Google Scholar
  197. 197.
    Baylis C, Rennke HR, Brenner BM: Mechanisms of the defect in glomerular ultrafiltration associated with gentamicin administra-tion. Kidney Int 12:344-353, 1977PubMedGoogle Scholar
  198. 198.
    Neugarten J, Aynedjian HS, Bank N: Role of tubular obstruction in acute renal failure due to gentamicin. Kidney Int 24:330-335, 1983PubMedGoogle Scholar
  199. 199.
    Verstrepen WA, Persy VP, Verhulst A, Dauwe S, De Broe ME: Renal osteopontin protein and mRNA upregulation during acute nephrotoxicity in the rat. Nephrol.Dial.Transplant. 16:712-724, 2001PubMedGoogle Scholar
  200. 200.
    Wolfert AI, Laveri LA, Reilly KM, Oken KR, Oken DE: Glomerular hemodynamics in mercury-induced acute renal failure. Kidney Int 32:246-255, 1987PubMedGoogle Scholar
  201. 201.
    Dobyan DC, Levi J, Jacobs C, Kosek J, Weiner MW: Mechanism of cis-platinum nephrotoxicity: II. Morphologic observations. J.Pharmacol.Exp.Ther. 213:551-556, 1980PubMedGoogle Scholar
  202. 202.
    Stein JH, Fried TA: Experimental models of nephrotoxic acute renal failure. Transplant.Proc. 17:72-80, 1985PubMedGoogle Scholar
  203. 203.
    Faubel SG, Ljubanovic D, Reznikov LL, Somerset H, Dinarello CA, Edelstein CL: Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney Int. 66:2202-2213, 2004PubMedGoogle Scholar
  204. 204.
    Yasuda H, Yuen PS, Hu X, Zhou H, Star RA: Simvastatin improves sepsis-induced mortality and acute kidney injury via renal vascular effects. Kidney International 69:1535-1542, 2006PubMedGoogle Scholar
  205. 205.
    Dear JW, Yasuda H, Hu X, Hieny S, Yuen PS, Hewitt SM, Sher A, Star RA: Sepsis-induced organ failure is mediated by different pathways in the kidney and liver: acute renal failure is dependent on MyD88 but not renal cell apoptosis. Kidney International 69:832-836, 2006PubMedGoogle Scholar
  206. 206.
    Lee HT, Kim M, Joo JD, Gallos G, Chen JF, Emala CW: A3 adenosine receptor activation decreases mortality and renal and hepatic injury in murine septic peritonitis. American Journal of Physiology -Regulatory Integrative & Comparative Physiology 291:R959-R969, 2006Google Scholar
  207. 207.
    Singbartl K, Bockhorn SG, Zarbock A, Schmolke M, Van Aken H: T cells modulate neutrophil-dependent acute renal failure during endotoxemia: critical role for CD28. Journal of the American Society of Nephrology 16:720-728, 2005PubMedGoogle Scholar
  208. 208.
    Boffa JJ, Just A, Coffman TM, Arendshorst WJ: Thromboxane receptor mediates renal vasoconstriction and contributes to acute renal failure in endotoxemic mice. Journal of the American Society of Nephrology 15:2358-2365, 2004PubMedGoogle Scholar
  209. 209.
    Knotek M, Rogachev B, Gengaro P, Esson M, Edelstein CL, Dinarello CA, Schrier RW: Endotoxemic renal failure in mice:Role of tumor necrosis factor indepenent of inducible nitric oxide synthase. Kidney Int 59:2243-2249, 2001PubMedGoogle Scholar
  210. 210.
    Schwartz D, Mendoca M, Schwartz Y, Xia Y, Satriano J, Wilson CB, Blantz R: Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats. J.Clin. Invest. 100:439-448., 1997PubMedGoogle Scholar
  211. 211.
    Satriano J, Schwartz D, Ishizuka S, Lortie MJ, Thomson SC, Gabbai F, Kelly CJ, Blantz RC: Suppression of inducible nitric oxide generation by agmatine aldehyde: Beneficial effects in sepsis. J Cell Physiol 188:313-320, 2001PubMedGoogle Scholar
  212. 212.
    Carcillo JA, Herzer WA, Mi Z, Thomas NJ, Jackson EK: Treatment with the type IV phosphodiesterase inhibitor Ro 20-1724 pro-tects renal and mesenteric blood flow in endotoxemic rats treated with norepinephrine. J Pharmacol.Exp.Ther. 279:1197-1204, 1996PubMedGoogle Scholar
  213. 213.
    Zurovsky Y, Gispaan I: Antioxidants attenuate endotoxin-induced acute renal failure in rats. Am J Kidney Dis. 25:51-57, 1995PubMedGoogle Scholar
  214. 214.
    Ruetten H, Thiemermann C: Effect of selective blockade of endothelin ETB receptors on the liver dysfunction and injury caused by endotoxaemia in the rat. Br.J Pharmacol. 119:479-486, 1996PubMedGoogle Scholar
  215. 215.
    Mitaka C, Hirata Y, Yokoyama K, Nagura T, Tsunoda Y, Amaha K: Improvement of renal dysfunction in dogs with endotoxemia by a nonselective endothelin receptor antagonist. Crit Care Med. 27:146-153, 1999PubMedGoogle Scholar
  216. 216.
    Parikh CR, Jani A, Melnikov VY, Faubel SG, Edelstein CL: Urinary interleukin-18 is a marker of human acute tubular necrosis. Am.J.Kidney Dis. 43:405-414, 2004PubMedGoogle Scholar
  217. 217.
    Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL: Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the ICU. J.Am.Soc.Nephrol. 16:3046-3052, 2005PubMedGoogle Scholar
  218. 218.
    Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, Dent C, Devarajan P, Edelstein CL: Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney International 70:199-203, 2006PubMedGoogle Scholar
  219. 219.
    Parikh CR, Jani A, Mishra J, Ma Q, Kelly C, Barasch J, Edelstein CL, Devarajan P: Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. American Journal of Transplantation 6:1639-1645, 2006PubMedGoogle Scholar
  220. 220.
    Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P: Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. Journal of the American Society of Nephrology 14:2534-2543, 2003PubMedGoogle Scholar
  221. 221.
    Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P: Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery.[see comment]. Lancet 365:1231-1238, 2005PubMedGoogle Scholar
  222. 222.
    Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M: Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. Journal of Biologi-cal Chemistry 273:4135-4142, 1998Google Scholar
  223. 223.
    Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV: Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. American Journal of Physiology -Renal Physiology 290:F517-F529, 2006PubMedGoogle Scholar
  224. 224.
    Liangos O, Perianayagam MC, Vaidya VS, Han WK, Wald R, Tighiouart H, Mackinnon RW, Balakrishnan VS, Pereira BJ, Bonventre JV, Jaber BL: Urinary N-Acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J.Am.Soc.Nephrol. 18:904-912, 2007PubMedGoogle Scholar
  225. 225.
    Muramatsu Y, Tsujie M, Kohda Y, Pham B, Perantoni AO, Zhao H, Jo SK, Yuen PS, Craig L, Hu X, Star RA: Early detection of cysteine rich protein 61 (CYR61, CCN1) in urine following renal ischemic reperfusion injury. Kidney Int. 62:1601-1610, 2002PubMedGoogle Scholar
  226. 226.
    Molls RR, Savransky V, Liu M, Bevans S, Mehta T, Tuder RM, King LS, Rabb H: Keratinocyte-derived chemokine is an early biomarker of ischemic acute kidney injury. American Journal of Physiology -Renal Physiology 290:F1187-F1193, 2006PubMedGoogle Scholar
  227. 227.
    Park S, Bivona BJ, Harrison-Bernard LM: Compromised renal microvacular reactivity of angiotensin type 1 double null mice. Am.J.Physiol Renal Physiol Epub ahead of print.: 2007Google Scholar
  228. 228.
    Harrison-Bernard LM, Monjure CJ, Bivona BJ: Efferent arterioles exclusively express the subtype 1A angiotensin receptor: func-tional insights from genetic mouse models. American Journal of Physiology -Renal Physiology 290:F1177-F1186, 2006PubMedGoogle Scholar
  229. 229.
    Ichihara A, Hayashi M, Koura Y, Tada Y, Sugaya T, Hirota N, Saruta T: Blunted tubuloglomerular feedback by absence of angiotensin type 1A receptor involves neuronal NOS. Hypertension 40:934-939, 2002PubMedGoogle Scholar
  230. 230.
    Harrison-Bernard LM, Cook AK, Oliverio MI, Coffman TM: Renal segmental microvascular responses to ANG II in AT1A receptor null mice. American Journal of Physiology -Renal Physiology 284:F538-F545, 2003PubMedGoogle Scholar
  231. 231.
    Schneider MP, Inscho EW, Pollock DM: Attenuated vasoconstrictor responses to endothelin in afferent arterioles during a high salt diet. Am.J.Physiol Renal Physiol 292:F1208-F1214, 2007PubMedGoogle Scholar
  232. 232.
    Botros FT, Navar LG: Interaction between endogenously produced carbon monoxide and nitric oxide in regulation of renal af-ferent arterioles. American Journal of Physiology -Heart & Circulatory Physiology 291:H2772-H2778, 2006Google Scholar
  233. 233.
    Sharma K, Cook A, Smith M, Valancius C, Inscho EW: TGF-beta impairs renal autoregulation via generation of ROS. American Journal of Physiology -Renal Physiology 288:F1069-F1077, 2005PubMedGoogle Scholar
  234. 234.
    Pittner J, Wolgast M, Casellas D, Persson AE: Increased shear stress-released NO and decreased endothelial calcium in rat isolated perfused juxtamedullary nephrons. Kidney International 67:227-236, 2005PubMedGoogle Scholar
  235. 235.
    Feng MG, Navar LG: Nitric oxide synthase inhibition activates L-and T-type Ca2+ channels in afferent and efferent arterioles. American Journal of Physiology -Renal Physiology 290:F873-F879, 2006PubMedGoogle Scholar
  236. 236.
    Steinhausen M, Kucherer H, Parekh N, Weis S, Wiegman DL, Wilhelm KR: Angiotensin II control of the renal microcirculation: effect of blockade by saralasin. Kidney Int 30:56-61, 1986PubMedGoogle Scholar
  237. 237.
    Steinhausen M, Weis S, Fleming J, Dussel R, Parekh N: Responses of in vivo renal microvessels to dopamine. Kidney Int 30:361-370, 1986PubMedGoogle Scholar
  238. 238.
    Loutzenhiser R, Hayashi K, Epstein M: Atrial natriuretic peptide reverses afferent arteriolar vasoconstriction and potentiates efferent arteriolar vasoconstriction in the isolated perfused rat kidney. J.Pharmacol.Exp.Ther. 246:522-528, 1988PubMedGoogle Scholar
  239. 239.
    Endlich K, Steinhausen M: Natriuretic peptide receptors mediate different responses in rat renal microvessels. Kidney Int 52:202-207, 1997PubMedGoogle Scholar
  240. 240.
    Hayashi K, Epstein M, Loutzenhiser R: Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney. Circ.Res. 65:1475-1484, 1989PubMedGoogle Scholar
  241. 241.
    Steinhausen M, Ballantyne D, Fretschner M, Parekh N: Sex differences in autoregulation of juxtamedullary glomerular blood flow in hydronephrotic rats. Am.J.Physiol 258:F863-F869, 1990PubMedGoogle Scholar
  242. 242.
    Bloom IT, Bentley FR, Wilson MA, Garrison RN: In vivo effects of endothelin on the renal microcirculation. J.Surg.Res. 54:274-280, 1993PubMedGoogle Scholar
  243. 243.
    Fretschner M, Endlich K, Gulbins E, Lang RE, Schlottmann K, Steinhausen M: Effects of endothelin on the renal microcirculation of the split hydronephrotic rat kidney. Ren Physiol Biochem. 14:112-127, 1991PubMedGoogle Scholar
  244. 244.
    Dietrich MS, Endlich K, Parekh N, Steinhausen M: Interaction between adenosine and angiotensin II in renal microcirculation. Microvasc.Res. 41:275-288, 1991PubMedGoogle Scholar
  245. 245.
    Chen J, Fleming JT: Juxtamedullary afferent and efferent arterioles constrict to renal nerve stimulation. Kidney Int 44:684-691, 1993PubMedGoogle Scholar
  246. 246.
    Takenaka T, Kanno Y, Kitamura Y, Hayashi K, Suzuki H, Saruta T: Role of chloride channels in afferent arteriolar constriction. Kidney Int 50:864-872, 1996PubMedGoogle Scholar
  247. 247.
    Hayashi K, Fujiwara K, Oka K, Nagahama T, Matsuda H, Saruta T: Effects of insulin on rat renal microvessels: studies in the isolated perfused hydronephrotic kidney. Kidney Int 51:1507-1513, 1997PubMedGoogle Scholar
  248. 248.
    Tang L, Loutzenhiser K, Loutzenhiser R: Biphasic actions of prostaglandin E(2) on the renal afferent arteriole: role of EP(3) and EP(4) receptors. Circ.Res. 86:663-670, 2000PubMedGoogle Scholar
  249. 249.
    Hayashi K, Suzuki H, Saruta T: Nitric oxide modulates but does not impair myogenic vasoconstriction of the afferent arteriole in spontaneously hypertensive rats. Studies in the isolated perfused hydronephrotic kidney. Hypertension 25:1212-1219, 1995PubMedGoogle Scholar
  250. 250.
    Zimmerhackl LB, Fretschner M, Steinhausen M: Cyclosporin reduces renal blood flow through vasoconstriction of arcuate arteries in the hydronephrotic rat model. Klin.Wochenschr. 68:166-174, 1990PubMedGoogle Scholar
  251. 251.
    Bloom IT, Bentley FR, Spain DA, Garrison RN: An experimental study of altered nitric oxide metabolism as a mechanism of cy-closporin-induced renal vasoconstriction. Br.J.Surg. 82:195-198, 1995PubMedGoogle Scholar
  252. 252.
    Nakamura A, Hayashi K, Fujiwara K, Ozawa Y, Honda M, Saruta T: Distinct action of aranidipine and its active metabolite on renal arterioles, with special reference to renal protection. J.Cardiovasc.Pharmacol. 35:942-948, 2000PubMedGoogle Scholar
  253. 253.
    Glazer AA, Inman SR, Stowe NT, Novick AC: Renal microcirculatory effects of lovastatin in a rat model of reduced renal mass. Urology 50:812-817, 1997PubMedGoogle Scholar
  254. 254.
    Krysztopik RJ, Bentley FR, Spain DA, Wilson MA, Garrison RN: Lazaroids prevent acute cyclosporine-induced renal vasoconstric-tion. Transplantation 63:1215-1220, 1997PubMedGoogle Scholar
  255. 255.
    Krysztopik RJ, Bentley FR, Spain DA, Wilson MA, Garrison RN: Free radical scavenging by lazaroids improves renal blood flow during sepsis. Surgery 120:657-662, 1996PubMedGoogle Scholar
  256. 256.
    Schlottmann K, Gulbins E, Rauterberg EW, Steinhausen M: Effects of systemic complement activation on renal circulation of rats. Eur.J.Clin.Invest 24:320-330, 1994PubMedGoogle Scholar
  257. 257.
    Kimura K, Tojo A, Hirata Y, Hayakawa H, Goto A, Omata M: Effects of a calcium antagonist and an angiotensin II receptor antagonist on rat renal arterioles. Blood Press Suppl 5:71-74, 1994PubMedGoogle Scholar
  258. 258.
    Shi Y, Wang X, Chon KH, Cupples WA: Tubuloglomerular feedback-dependent modulation of renal myogenic autoregulation by nitric oxide. American Journal of Physiology -Regulatory Integrative & Comparative Physiology 290:R982-R991, 2006Google Scholar
  259. 259.
    Wang X, Breaks J, Loutzenhiser K, Loutzenhiser R: Effects of Na+/K+/2Cl-cotransporter on myogenic and angiotensin ii responses of the rat afferent arteriole. Am.J.Physiol Renal Physiol 292:F999-F1006, 2007PubMedGoogle Scholar
  260. 260.
    Hayashi K, Wakino S, Ozawa Y, Homma K, Kanda T, Okubo K, Takamatsu I, Tatematsu S, Kumagai H, Saruta T: Role of protein kinase C in Ca channel blocker-induced renal arteriolar dilation in spontaneously hypertensive rats--studies in the isolated perfused hydronephrotic kidney. Keio Journal of Medicine 54:102-108, 2005PubMedGoogle Scholar
  261. 261.
    Hayashi K, Ozawa Y, Wakino S, Kanda T, Homma K, Takamatsu I, Tatematsu S, Saruta T: Cellular mechanism for mibefradil-induced vasodilation of renal microcirculation: studies in the isolated perfused hydronephrotic kidney. Journal of Cardiovascular Phar-macology 42:697-702, 2003Google Scholar
  262. 262.
    Weiss C, Passow H, Rothstein A: Autoregulation of flow in isolated rat kidney in the absence of red cells. Am J Physiol 196:1115-1118, 1959PubMedGoogle Scholar
  263. 263.
    Nishiitsutsuji-Uwo JM, Ross BD, Krebs HA: Metabolic activities of the isolated perfused rat kidney. Biochem J 103:852-62, 1967PubMedGoogle Scholar
  264. 264.
    Ross BD, Epstein FH, Leaf A: Sodium reabsorption in the perfused rat kidney. Am J Physiol 225:1165-1171, 1973PubMedGoogle Scholar
  265. 265.
    Epstein FH, Brosnan JT, Tange JD, Ross BD: Improved function with amino acids in the isolated perfused kidney. Am J Physiol 243:284-92, 1982Google Scholar
  266. 266.
    Baines AD, Shaikh N, Ho P: Mechanisms of perfused kidney cytoprotection by alanine and glycine. Am.J..Physiol. 259:F80-F87, 1990PubMedGoogle Scholar
  267. 267.
    Schurek HJ, Kriz W: Morphologic and functional evidence for oxygen deficiency in the isolated perfused rat kidney. Lab Invest 53:145-155, 1985PubMedGoogle Scholar
  268. 268.
    Lieberthal W, Stephens GW, Wolf EF, Rennke HG, Vasilevsky ML, Valeri CR, Levinsky NG: Effect of erythrocytes on the function and morphology of the isolated perfused rat kidney. Ren Physiol 10:14-24, 1987PubMedGoogle Scholar
  269. 269.
    Endre ZH, Ratcliffe PJ, Tange JD, Ferguson DJ, Radda GK, Ledingham JG: Erythrocytes alter the pattern of renal hypoxic injury: predominance of proximal tubular injury with moderate hypoxia. Clin.Sci. 76:19-29, 1989PubMedGoogle Scholar
  270. 270.
    Ratcliffe PJ, Endre ZH, Scheinman SJ, Tange JD, Ledingham JG, Radda GK: 31P nuclear magnetic resonance study of steady-state adenosine 5’-triphosphate levels during graded hypoxia in the isolated perfused rat kidney. Clin.Sci. 74:437-448, 1988PubMedGoogle Scholar
  271. 271.
    Lieberthal W, Sheridan AM, Valeri CR: Protective effect of atrial natriuretic factor and mannitol following renal ischemia. Am J Physiol 258:1266-72, 1990Google Scholar
  272. 272.
    Cross M, Endre ZH, Stewart-Richardson P, Cowin GJ, Westhuyzen J, Duggleby RG, Fleming SJ: 23Na-NMR detects hypoxic injury in intact kidney: increases in sodium inhibited by DMSO and DMTU. Magn Reson.Med. 30:465-475, 1993PubMedGoogle Scholar
  273. 273.
    Cowin GJ, Crozier S, Endre ZH, Leditschke IA, Brereton IM: Cortical and medullary betaine-GPC modulated by osmolality inde-pendently of oxygen in the intact kidney. Am J Physiol 277:F338-F346, 1999PubMedGoogle Scholar
  274. 274.
    M. Rahgozar, Z. Guan, A. Matthias, G. C. Gobe and Z. H. Endre. Angiotensin II facilitates autoregulation in the perfused mouse kidney: An optimized in vitro model for assessment of renal vascular and tubular function. Nephrology (Carlton) 2004;9(5):288-96.Google Scholar
  275. 275.
    Buhrle CP, Hackenthal E, Helmchen U, Lackner K, Nobiling R, Steinhausen M, Taugner R. The hydronephrotic kidney of the mouse as a tool for intravital microscopy and in vitro electrophysiological studies of renin containing cells. Lab Invest 1886, 5494); 462-472.Google Scholar
  276. 276.
    Loutzenhiser R, Epstein M, Horton C: Inhibition by diltiazem of pressure-induced afferent vasoconstriction in the isolated perfused rat kidney. Am J Cardiol 59:72-75, 1987Google Scholar
  277. 277.
    Carmines PK, Morrison TK, Navar LG: Angiotensin II effects on microvascular diameters of in vitro blood-perfused juxtamedullary nephrons. Am J Physiol 251:610-618, 1986Google Scholar
  278. 278.
    Carmines PK, Navar LG: Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to angiotensin II. Am J Physiol 256:1015-1020, 1989Google Scholar
  279. 279.
    Moore LC, Casellas D: Tubuloglomerular feedback dependence of autoregulation in rat juxtamedullary afferent arterioles. Kidney Int 37:1402-1408, 1990PubMedGoogle Scholar
  280. 280.
    Ichihara A, Imig JD, Navar LG: Cyclooxygenase-2 modulates afferent arteriolar responses to increases in pressure. Hypertension 34:843-847, 1999PubMedGoogle Scholar
  281. 281.
    Schurek HJ, Alt JM: Effect of albumin on the function of perfused rat kidney. Am J Physiol 240:569-76, 1981Google Scholar
  282. 282.
    Bullivant M: Autoregulation of plasma flow in the isolated perfused rat kidney. J Physiol 280:141-53, 1978PubMedGoogle Scholar
  283. 283.
    Schurek HJ, Brecht JP, Lohfert H, Hierholzer K: The basic requirements for the function of the isolated cell free perfused rat kidney. Pflugers Arch 354:349-65, 1975PubMedGoogle Scholar
  284. 284.
    Lieberthal W, Vasilevsky ML, Valeri CR, Levinsky NG: Interactions between ADH and prostaglandins in isolated erythrocyte-per-fused rat kidney. Am J Physiol 252:331-7, 1987Google Scholar
  285. 285.
    Silva P, Hallac R, Spokes K, Epstein FH: Relationship among gluconeogenesis, QO2, and Na+ transport in the perfused rat kidney. Am J Physiol 11:508-513, 1982Google Scholar
  286. 286.
    Baumgartl H, Leichtweiss HP, Lubbers DW, Weiss C, Huland H: The oxygen supply of the dog kidney: measurements of intrarenal pO 2. Microvasc.Res. 4:247-257, 1972PubMedGoogle Scholar
  287. 287.
    Schurek HJ, Jost U, Baumgartl H, Bertram H, Heckmann U: Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am J Physiol 259:F910-F915, 1990PubMedGoogle Scholar
  288. 288.
    Brezis M, Heyman SN, Dinour D, Epstein FH, Rosen S: Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys. J Clin Invest 88:390-5, 1991PubMedGoogle Scholar
  289. 289.
    Heyman SN, Karmeli F, Rachmilewitz D, Haj-Yehia A, Brezis M: Intrarenal nitric oxide monitoring with a Clark-type electrode: potential pitfalls. Kidney Int 51:1619-23, 1997PubMedGoogle Scholar
  290. 290.
    Dowd T, Barac-Nieto M, Gupta RK, Spitzer A: 31P nuclear magnetic resonance and saturation transfer studies of the isolated perfused rat kidney. Ren Physiol Biochem 12:161-70, 1989PubMedGoogle Scholar
  291. 291.
    Gupta RK, Dowd TL, Spitzer A, Barac-Nieto M: 23Na, 19F, 35Cl and 31P multinuclear nuclear magnetic resonance studies of perfused rat kidney. Ren Physiol Biochem. 12:144-160, 1989PubMedGoogle Scholar
  292. 292.
    Barac-Nieto M, Gupta RK, Spitzer A: NMR studies of phosphate metabolism in the isolated perfused kidney of developing rats. Pediatr Nephrol 4:392-8, 1990PubMedGoogle Scholar
  293. 293.
    Barac-Nieto M, Dowd TL, Gupta RK, Spitzer A: Changes in NMR-visible kidney cell phosphate with age and diet: relationship to phosphate transport. Am J Physiol 261:153-62, 1991Google Scholar
  294. 294.
    Dowd TL, Gupta RK: Multinuclear NMR studies of intracellular cations in perfused hypertensive rat kidney. J.Biol.Chem. 267:3637-3643, 1992PubMedGoogle Scholar
  295. 295.
    Dowd TL, Gupta RK: NMR studies of the effect of hyperglycemia on intracellular cations in rat kidney. J Biol Chem 268:991-6, 1993PubMedGoogle Scholar
  296. 296.
    Dowd TL, Gupta RK: Multinuclear NMR studies of intracellular cations in the prehypertensive rat kidney. Biochim Biophys Acta 1226:83-8, 1994PubMedGoogle Scholar
  297. 297.
    Dowd TL, Gupta RK: NMR studies of the effect of Mg2+ on post-ischemic recovery of ATP and intracellular sodium in perfused kidney. Biochim Biophys Acta 1272:133-9, 1995PubMedGoogle Scholar
  298. 298.
    Endre ZH, Allis JL, Ratcliffe PJ, Radd GK: 87-rubidium NMR: a novel method of measuring cation flux in intact kidney. Kidney Int 35:1249-1256, 1989PubMedGoogle Scholar
  299. 299.
    Endre ZH, Solez K: Anatomical and functional imaging of transplant acute renal failure. Transplantation Review 9:147-158, 1995Google Scholar
  300. 300.
    Cowin GJ, Leditschke IA, Crozier S, Brereton IM, Endre ZH: Regional proton nuclear magnetic resonance spectroscopy differenti-ates cortex and medulla in the isolated perfused rat kidney. MAGMA 5:151-8, 1997PubMedGoogle Scholar
  301. 301.
    S. Crozier, G. Cowin and Z. Endre. MR Microscopy and Microspectroscopy of the Intact Kidney. Concepts Magnetic Resonance 2004(Part A 22A):50-9.Google Scholar
  302. 302.
    Endre ZH, Hull WE, Fichtner K-P, Werner U, Kriz W, Ritz E: Development of MR Microscopy for the functioning isolated perfused kidney, in Renal Magnetic Resonance: Experimental and Clinical Applications, edited by Endre ZH, New York, Marcel Dekker, 2002,Google Scholar
  303. 303.
    Endre ZH: Magnetic resonance imaging and spectroscopy in critical care nephrology, in Critical care nephrology, edited by C. R, Bellomo R, Dordrecht, Kluwer, 1998, pp 1517-1533Google Scholar
  304. 304.
    F. Schweda, C. Wagner, B. K. Kramer, J. Schnermann and A. Kurtz. Preserved macula densa-dependent renin secretion in A1 adenosine receptor knockout mice. Am J Physiol Renal Physiol 2003;284(4):F770-7.PubMedGoogle Scholar
  305. 305.
    A. Kurtz and F. Schweda. Osmolarity-induced renin secretion from kidneys: evidence for readily releasable renin pools. Am J Physiol Renal Physiol 2006;290(4):F797-805.PubMedGoogle Scholar
  306. 306.
    R. Takeda, H. Nishimatsu, E. Suzuki, H. Satonaka, D. Nagata, S. Oba, et al. Ghrelin improves renal function in mice with ischemic acute renal failure. J Am Soc Nephrol 2006;17(1):113-21.PubMedGoogle Scholar
  307. 307.
    Alcorn D, Emslie KR, Ross BD, Ryan GB, Tange JD: Selective distal nephron damage during isolated kidney perfusion. Kidney Int 19:638-647, 1981PubMedGoogle Scholar
  308. 308.
    Brezis M, Rosen S, Silva P, Epstein FH: Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. J Clin.Invest 73:182-190, 1984PubMedGoogle Scholar
  309. 309.
    Z. Guan, D. A. Willgoss, A. Matthias, S. W. Manley, S. Crozier, G. Gobe, et al. Facilitation of renal autoregulation by angiotensin II is mediated through modulation of nitric oxide. Acta Physiol Scand 2003;179(2):189-201.PubMedGoogle Scholar
  310. 310.
    Lieberthal W, Wolf EF, Merrill EW, Levinsky NG, Valeri CR: Hemodynamic effects of different preparations of stroma free hemo-lysates in the isolated perfused rat kidney. Life Sci 41:2525-33, 1987PubMedGoogle Scholar
  311. 311.
    Lieberthal W, Vogel WM, Apstein CS, Valeri CR: Studies of the mechanism of the vasoconstrictor activity of stroma-free hemoglobin in the isolated perfused rat kidney and rabbit heart. Prog Clin Biol Res 319:407-20, 1989PubMedGoogle Scholar
  312. 312.
    Baines AD, Christoff B, Wicks D, Wiffen D, Pliura D: Cross-linked hemoglobin increases fractional reabsorption and GFR in hypoxic isolated perfused rat kidneys. Am J Physiol 269:628-36, 1995Google Scholar
  313. 313.
    Baines AD, Adamson G, Wojciechowski P, Pliura D, Ho P, Kluger R: Effect of modifying O2 diffusivity and delivery on glomerular and tubular function in hypoxic perfused kidney. Am J Physiol 274:744-52, 1998Google Scholar
  314. 314.
    Hayakawa H, Hirata Y, Suzuki E, Sugimoto T, Matsuoka H, Kikuchi K, Nagano T, Hirobe M: Mechanisms for altered endothelium-dependent vasorelaxation in isolated kidneys from experimental hypertensive rats. Am J Physiol 264:1535-41, 1993Google Scholar
  315. 315.
    Hirata Y, Hayakawa H, Kakoki M, Tojo A, Suzuki E, Nagata D, Kimura K, Goto A, Kikuchi K, Nagano T, Hirobe M, Omata M: Receptor subtype for vasopressin-induced release of nitric oxide from rat kidney. Hypertension 29:58-64, 1997PubMedGoogle Scholar
  316. 316.
    Hirata Y, Hayakawa H, Suzuki E, Omata M: Does endothelin work as an intrarenal mechanism to alter pressure natriuresis in spontaneously hypertensive rats? J Hypertens 12:251-7, 1994PubMedGoogle Scholar
  317. 317.
    Hirata Y, Hayakawa H, Suzuki Y, Suzuki E, Ikenouchi H, Kohmoto O, Kimura K, Kitamura K, Eto T, Kangawa K, et al.: Mechanisms of adrenomedullin-induced vasodilation in the rat kidney. Hypertension 25:790-5, 1995PubMedGoogle Scholar
  318. 318.
    Hayakawa H, Raij L: Relationship between hypercholesterolaemia, endothelial dysfunction and hypertension. J Hypertens 17:611-9, 1999PubMedGoogle Scholar
  319. 319.
    Kakoki M, Hirata Y, Hayakawa H, Tojo A, Nagata D, Suzuki E, Kimura K, Goto A, Kikuchi K, Nagano T, Omata M: Effects of hyperten-sion, diabetes mellitus, and hypercholesterolemia on endothelin type B receptor-mediated nitric oxide release from rat kidney. Circulation 99:1242-8, 1999PubMedGoogle Scholar
  320. 320.
    Kakoki M, Hirata Y, Hayakawa H, Suzuki E, Nagata D, Tojo A, Nishimatsu H, Nakanishi N, Hattori Y, Kikuchi K, Nagano T, Omata M: Effects of tetrahydrobiopterin on endothelial dysfunction in rats with ischemic acute renal failure. J Am Soc Nephrol 11:301-9, 2000PubMedGoogle Scholar
  321. 321.
    Kakoki M, Hirata Y, Hayakawa H, Suzuki E, Nagata D, Nishimatsu H, Kimura K, Goto A, Omata M: Effects of vasodilatory antihy-pertensive agents on endothelial dysfunction in rats with ischemic acute renal failure. Hypertens Res 23:527-33, 2000PubMedGoogle Scholar
  322. 322.
    Galat JA, Robinson AV, Rhodes RS: A model of hypoxic renal failure. J Surg Res 44:764-71, 1988PubMedGoogle Scholar
  323. 323.
    Kadkhodaee M, Endre ZH, Towner RA, Cross M: Hydroxyl radical generation following ischaemia-reperfusion in cell-free perfused rat kidney. Biochim.Biophys.Acta 1243:169-174, 1995PubMedGoogle Scholar
  324. 324.
    Kadkhodaee M, Hanson GR, Towner RA, Endre ZH: Detection of hydroxyl and carbon-centred radicals by EPR spectroscopy after ischaemia and reperfusion of the rat kidney. Free Radic.Res. 25:31-42, 1996PubMedGoogle Scholar
  325. 325.
    Kadkhodaee M, Gobe G, Wilgoss DA, Endre ZH: DNA fragmentation reduced by anti-oxidants following ischemia-reperfusionin the isolated perfused rat kidney. Nephrology 4:163-175, 1998Google Scholar
  326. 326.
    Brezis M, Shanley P, Silva P, Spokes K, Lear S, Epstein FH, Rosen S: Disparate mechanisms for hypoxic cell injury in different nephron segments. Studies in the isolated perfused rat kidney. J Clin Invest 76:1796-806, 1985PubMedGoogle Scholar
  327. 327.
    S. L. Linas, D. Whittenburg, P. E. Parsons and J. E. Repine. Mild renal ischemia activates primed neutrophils to cause acute renal failure. Kidney Int 1992;42(3):610-6.PubMedGoogle Scholar
  328. 328.
    Z. Guan, G. Gobe, D. Willgoss and Z. H. Endre. Renal Endothelial Dysfunction And Impaired Autoregulation After Ischemia-Reper-fusion Injury result from Excess Nitric Oxide. Am J Physiol Renal Physiol 2006;Mar 28; [Epub ahead of print].Google Scholar
  329. 329.
    Lieberthal W, Menza SA, Levine JS: Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am.J.Physiol. 274:F315-F327, 1998PubMedGoogle Scholar
  330. 330.
    P. C. Dagher. Apoptosis in ischemic renal injury: roles of GTP depletion and p53. Kidney Int 2004;66(2):506-9.PubMedGoogle Scholar
  331. 331.
    Allis JL, Endre ZH, Radda GK: 87Rb, 23Na and 31P nuclear magnetic resonance spectroscopy of the perfused rat kidney. Ren Physiol Biochem. 12:171-180, 1989PubMedGoogle Scholar
  332. 332.
    Endre ZH, Cowin GJ, Stewart-Richardson P, Cross M, Willgoss DA, Duggleby RG: 23Na NMR detects protection by glycine and alanine against hypoxic injury in the isolated perfused rat kidney. Biochem.Biophys.Res.Commun. 202:1639-1644, 1994PubMedGoogle Scholar
  333. 333.
    Paller MS, Hoidal JR, Ferris TF: Oxygen free radicals in ischemic acute renal failure in the rat. J.Clin.Invest 74:1156-1162, 1984PubMedGoogle Scholar
  334. 334.
    Paller MS, Hedlund BE: Role of iron in postischemic renal injury in the rat. Kidney Int 34:474-480, 1988PubMedGoogle Scholar
  335. 335.
    Linas SL, Whittenburg D, Repine JE: Role of neutrophil derived oxidants and elastase in lipopolysaccharide-mediated renal injury. Kidney Int 39:618-623, 1991PubMedGoogle Scholar
  336. 336.
    Linas SL, Shanley PF, Whittenburg D, et al.: Neutrophils accentuate ischemia/reperfusion injury in isolated perfused rat kidneys. Am J Physiol 255:F725-F733, 1988Google Scholar
  337. 337.
    Ghielli M, Verstrepen W, Nouwen E, De Broe ME: Regeneration processes in the kidney after acute injury: role of infiltrating cells. Exp Nephrol 6:502-7, 1998PubMedGoogle Scholar
  338. 338.
    Ghielli M, Verstrepen WA, De Greef KE, Helbert MH, Ysebaert DK, Nouwen EJ, De Broe ME: Antibodies to both ICAM-1 and LFA-1 do not protect the kidney against toxic (HgCl2) injury. Kidney Int 58:1121-34, 2000PubMedGoogle Scholar
  339. 339.
    Paller MS, Neumann TV: Reactive oxygen species and rat renal epithelial cells during hypoxia and reoxygenation. Kidney Int 40:1041-1049, 1991PubMedGoogle Scholar
  340. 340.
    Brezis M, Rosen S, Stoff JS, Spokes K, Silva P, Epstein FH: Inhibition of prostaglandin synthesis in rat kidney perfused with and without erythrocytes: implication for analgesic nephropathy. Miner Electrolyte Metab 12:326-32, 1986PubMedGoogle Scholar
  341. 341.
    Brezis M, Rosen S: Hypoxia of the renal medulla--its implications for disease. N.Engl.J Med. 332:647-655, 1995PubMedGoogle Scholar
  342. 342.
    Heyman SN, Rosen S, Darmon D, Goldfarb M, Bitz H, Shina A, Brezis M: Endotoxin-induced renal failure. II. A role for tubular hypoxic damage. Exp Nephrol 8:275-82, 2000PubMedGoogle Scholar
  343. 343.
    Lieberthal W, Rennke HG, Sandock KM, Valeri CR, Levinsky NG: Ischemia in the isolated erythrocyte-perfused rat kidney. Protec-tive effect of hypothermia. Ren Physiol Biochem 11:60-9, 1988PubMedGoogle Scholar
  344. 344.
    Endre ZH, Ratcliffe PJ: Patterns of ischaemic renal cell injury, in Acute Renal Failure, edited by Solez K, Racusen LC, New York, Marcel Dekker, 1990, pp 173-185Google Scholar
  345. 345.
    Mason J, Welsch J, Torhorst J: The contribution of vascular obstruction to the functional defect that follows renal ischemia. Kidney Int 31:65-71, 1987PubMedGoogle Scholar
  346. 346.
    Wolgast M, Bayati A, Hellberg O, Kallskog O, Nygren K: Osmotic diuretics and hemodilution in postischemic renal failure. Ren Fail 14:297-302, 1992PubMedGoogle Scholar
  347. 347.
    H. Rabb. The T cell as a bridge between innate and adaptive immune systems: implications for the kidney. Kidney Int 2002;61(6):1935-46.PubMedGoogle Scholar
  348. 348.
    Beeri R, Symon Z, Brezis M, Ben-Sasson SA, Baehr PH, Rosen S, Zager RA: Rapid DNA fragmentation from hypoxia along the thick ascending limb of rat kidneys. Kidney Int. 47:1806-1810, 1995PubMedGoogle Scholar
  349. 349.
    Gobe G, Zhang XJ, Cuttle L, Pat B, Willgoss D, Hancock J, Barnard R, Endre RB: Bcl-2 genes and growth factors in the pathology of ischaemic acute renal failure. Immunol.Cell Biol. 77:279-286, 1999PubMedGoogle Scholar
  350. 350.
    Jaffe R, Ariel I, Beeri R, Paltiel O, Hiss Y, Rosen S, Brezis M: Frequent apoptosis in human kidneys after acute renal hypoperfusion. Exp Nephrol 5:399-403, 1997PubMedGoogle Scholar
  351. 351.
    Ueda N, Walker PD, Hsu S, Shah SV: Activation of a 15-kDa endonuclease in hypoxia/reoxygenation injury without morphologic features of apoptosis. Proc Natl Acad Sci USA 92:7202-7206, 1995PubMedGoogle Scholar
  352. 352.
    De Broe ME: Apoptosis in acute renal failure. Nephrol Dial Transplant 16:23-6, 2001PubMedGoogle Scholar
  353. 353.
    Gobe G, Willgoss D, Hogg N, Schoch E, Endre Z: Cell survival or death in renal tubular epithelium after ischemia-reperfusion injury. Kidney Int 56:1299-1304, 1999PubMedGoogle Scholar
  354. 354.
    Cuttle L, Zhang XJ, Endre ZH, Winterford C, Gobe GC: Bcl-X(L) translocation in renal tubular epithelial cells in vitro protects distal cells from oxidative stress. Kidney Int 59:1779-88, 2001PubMedGoogle Scholar
  355. 355.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479-489, 1997PubMedGoogle Scholar
  356. 356.
    J. F. di Mari, R. Davis and R. L. Safirstein. MAPK activation determines renal epithelial cell survival during oxidative injury. Am J Physiol 1999;277(2 Pt 2):F195-203.PubMedGoogle Scholar
  357. 357.
    Safirstein R: Renal stress response and acute renal failure. Adv.Ren Replace.Ther. 4:38-42, 1997PubMedGoogle Scholar
  358. 358.
    Ratcliffe PJ, Endre ZH, Nicholls LG, Tange JD, Ledingham JGG: The isolated perfused rat kidney: filtering and non-filtering models in the assessment of altered renal vascular resistance in nephrotoxicity, in Nephrotoxicity: Extrapolation from in vitro to in vivo and from animals to man., edited by Bach PH, Lock EA, New York, Plenum, 1989, pp 107-110Google Scholar
  359. 359.
    Firth JD, Ratcliffe PJ, Raine AE, Ledingham JG: Endothelin: an important factor in acute renal failure? Lancet 2:1179-82, 1988PubMedGoogle Scholar
  360. 360.
    Firth JD, Ratcliffe PJ: Organ distribution of the three rat endothelin messenger RNAs and the effects of ischemia on renal gene expression. J Clin Invest 90:1023-31, 1992PubMedGoogle Scholar
  361. 361.
    Ritthaler T, Gopfert T, Firth JD, Ratcliffe PJ, Kramer BK, Kurtz A: Influence of hypoxia on hepatic and renal endothelin gene expres-sion. Pflugers Arch 431:587-93, 1996PubMedGoogle Scholar
  362. 362.
    Kramer BK, Bucher M, Sandner P, Ittner KP, Riegger GA, Ritthaler T, Kurtz A: Effects of hypoxia on growth factor expression in the rat kidney in vivo. Kidney Int 51:444-7, 1997PubMedGoogle Scholar
  363. 363.
    Wilhelm SM, Simonson MS, Robinson AV, Stowe NT, Schulak JA: Endothelin up-regulation and localization following renal ischemia and reperfusion. Kidney Int 55:1011-8, 1999PubMedGoogle Scholar
  364. 364.
    Forbes JM, Hewitson TD, Becker GJ, Jones CL: Ischemic acute renal failure: long-term histology of cell and matrix changes in the rat. Kidney Int 57:2375-85, 2000PubMedGoogle Scholar
  365. 365.
    Forbes JM, Jandeleit-Dahm K, Allen TJ, Hewitson TD, Becker GJ, Jones CL: Endothelin and endothelin a/b receptors are increased after ischaemic acute renal failure. Exp Nephrol 9:309-16, 2001PubMedGoogle Scholar
  366. 366.
    Chan L, Chittinandana A, Shapiro JI, Shanley PF, Schrier RW: Effect of endothelin-receptor antagonist on ischemic acute renal failure. Am.J.Physiol. 266:F135-F138, 1994PubMedGoogle Scholar
  367. 367.
    Forbes JM, Hewitson TD, Becker GJ, Jones CL: Simultaneous blockade of endothelin A and B receptors in ischemic acute renal failure is detrimental to long-term kidney function. Kidney Int 59:1333-41, 2001PubMedGoogle Scholar
  368. 368.
    Lieberthal W, Wolf EF, Rennke HG, Valeri CR, Levinsky NG: Renal ischemia and reperfusion impair endothelium-dependent vascular relaxation. Am J Physiol 256:F894-F900, 1989PubMedGoogle Scholar
  369. 369.
    Allgren RL, Marbury TC, Rahman SN, Weisberg LS, Fenves AZ, Lafayette RA, Sweet RM, Genter FC, Kurnik BRC, Conger JD, Sayegh MH: Anaritide in acute tubular necrosis. N Engl J Med 336:828-834, 1997PubMedGoogle Scholar
  370. 370.
    Perico N, Dadan J, Remuzzi G: Endothelin mediates the renal vasoconstriction induced by cyclosporine in the rat. J Am Soc Nephrol 1:76-83, 1990PubMedGoogle Scholar
  371. 371.
    Bertelli A, Giovannini L, Palla R, Migliori M, Panichi V, Andreini B: Protective effect of L-propionylcarnitine on cyclosporine-induced nephrotoxicity. Drugs Exp Clin Res 21:221-8, 1995PubMedGoogle Scholar
  372. 372.
    Hirata Y, Hayakawa H, Suzuki E, Kimura K, Kikuchi K, Nagano T, Hirobe M, Omata M: Direct measurements of endothelium-derived nitric oxide release by stimulation of endothelin receptors in rat kidney and its alteration in salt-induced hypertension. Circula-tion 91:1229-35, 1995Google Scholar
  373. 373.
    Oldroyd S, Slee SJ, Haylor J, Morcos SK, Wilson C: Role for endothelin in the renal responses to radiocontrast media in the rat. Clin Sci (Colch) 87:427-34, 1994Google Scholar
  374. 374.
    Oldroyd SD, Haylor JL, Morcos SK: Bosentan, an orally active endothelin antagonist: effect on the renal response to contrast media. Radiology 196:661-5, 1995PubMedGoogle Scholar
  375. 375.
    Morcos SK, Oldroyd S, Haylor J: Effect of radiographic contrast media on endothelium derived nitric oxide-dependent renal vasodilatation. Br J Radiol 70:154-9, 1997PubMedGoogle Scholar
  376. 376.
    Wang A, Holcslaw T, Bashore TM, Freed MI, Miller D, Rudnick MR, Szerlip H, Thames MD, Davidson CJ, Shusterman N, Schwab SJ: Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int 57:1675-80, 2000PubMedGoogle Scholar
  377. 377.
    Cantley LG, Spokes K, Clark B, McMahon EG, Carter J, Epstein FH: Role of endothelin and prostaglandins in radiocontrast-induced renal artery constriction. Kidney Int 44:1217-23, 1993PubMedGoogle Scholar
  378. 378.
    Erley CM, Duda SH, Schlepckow S, Koehler J, Huppert PE, Strohmaier WL, Bohle A, Risler T, Osswald H: Adenosine antagonist theo-phylline prevents the reduction of glomerular filtration rate after contrast media application. Kidney Int 45:1425-31, 1994PubMedGoogle Scholar
  379. 379.
    Katholi RE, Taylor GJ, McCann WP, Woods WT, Jr., Womack KA, McCoy CD, Katholi CR, Moses HW, Mishkel GJ, Lucore CL, et al.: Nephrotoxicity from contrast media: attenuation with theophylline. Radiology 195:17-22, 1995PubMedGoogle Scholar
  380. 380.
    Yoshioka T, Fogo A, Beckman JK: Reduced activity of antioxidant enzymes underlies contrast media-induced renal injury in volume depletion. Kidney Int 41:1008-15, 1992PubMedGoogle Scholar
  381. 381.
    Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W: Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 343:180-4, 2000PubMedGoogle Scholar
  382. 382.
    Endre ZH, Nicholls LG, Ratcliffe PJ, Ledingham JGG: Prevention and reversal of mercuric chloride-induced increase in renal vas-cular resistance by captopril, in Nephrotoxicity: Extrapolation from in vitro to in vivo and from animals to man., edited by Bach PH, Lock EA, New York, Plenum, 1989, pp 103-106Google Scholar
  383. 383.
    Rossi N, Churchill P, Ellis V, Amore B: Mechanism of adenosine receptor-induced renal vasoconstriction in rats. Am J Physiol 255:885-90, 1988Google Scholar
  384. 384.
    Rossi N, Ellis V, Kontry T, Gunther S, Churchill P, Bidani A: The role of adenosine in HgCl2-induced acute renal failure in rats. Am J Physiol 258:1554-60, 1990Google Scholar
  385. 385.
    Yanagisawa H, Nodera M, Kurihara N, Wada O: Altered expression of endothelin-1 and endothelial nitric oxide synthase in the juxtaglomerular apparatus of rats with HgCl2-induced acute renal failure. Toxicol Lett 98:181-8, 1998PubMedGoogle Scholar
  386. 386.
    Bhardwaj R, Moore PK: Endothelium-derived relaxing factor and the effects of acetylcholine and histamine on resistance blood vessels. Br J Pharmacol 95:835-43, 1988PubMedGoogle Scholar
  387. 387.
    Radermacher J, Forstermann U, Frolich JC: Endothelium-derived relaxing factor influences renal vascular resistance. Am J Physiol 259:9-17, 1990Google Scholar
  388. 388.
    Radermacher J, Klanke B, Kastner S, Haake G, Schurek HJ, Stolte HF, Frolich JC: Effect of arginine depletion on glomerular and tubular kidney function: studies in isolated perfused rat kidneys. Am J Physiol 261:779-86, 1991Google Scholar
  389. 389.
    Radermacher J, Klanke B, Schurek HJ, Stolte HF, Frolich JC: Importance of NO/EDRF for glomerular and tubular function: studies in the isolated perfused rat kidney. Kidney Int. 41:1549-1559, 1992PubMedGoogle Scholar
  390. 390.
    Garcia-Estan J, Atucha NM, Sabio JM, Vargas F, Quesada T, Romero JC: Increased endothelium-dependent renal vasodilation in cirrhotic rats. Am J Physiol 267:549-53, 1994Google Scholar
  391. 391.
    Garcia-Estan J, Atucha NM, Groszmann RJ: Renal response to methoxamine in portal hypertensive rats: role of prostaglandins and nitric oxide. J Hepatol 25:206-11, 1996PubMedGoogle Scholar
  392. 392.
    Vargas F, Sabio JM, Luna JD: Contribution of endothelium derived relaxing factors to acetylcholine induced vasodilatation in the rat kidney. Cardiovasc Res 28:1373-7, 1994PubMedGoogle Scholar
  393. 393.
    Vargas F, Osuna A, Fernandez-Rivas A: Vascular reactivity and flow-pressure curve in isolated kidneys from rats with N-nitro-L-arginine methyl ester-induced hypertension. J Hypertens 14:373-9, 1996PubMedGoogle Scholar
  394. 394.
    Rapacon M, Mieyal P, McGiff JC, Fulton D, Quilley J: Contribution of calcium-activated potassium channels to the vasodilator effect of bradykinin in the isolated, perfused kidney of the rat. Br J Pharmacol 118:1504-8, 1996PubMedGoogle Scholar
  395. 395.
    Bagate K, Grima M, Imbs JL, Jong WD, Helwig JJ, Barthelmebs M: Signal transduction pathways involved in kinin B(2) receptor-mediated vasodilation in the rat isolated perfused kidney. Br J Pharmacol 132:1735-42, 2001PubMedGoogle Scholar
  396. 396.
    Kaufmann MA, Castelli I, Pargger H, Drop LJ: Nitric oxide dose-response study in the isolated perfused rat kidney after inhibition of endothelium-derived relaxing factor synthesis: the role of serum albumin. J Pharmacol Exp Ther 273:855-62, 1995PubMedGoogle Scholar
  397. 397.
    Ziyyat A, Zhang BL, Benzoni D: Interactions between nitric oxide and prostanoids in isolated perfused kidneys of the rat. Br J Pharmacol 119:388-92, 1996PubMedGoogle Scholar
  398. 398.
    Boric MP, Bravo JA, Corbalan M, Vergara C, Roblero JS: Interactions between bradykinin and ANP in rat kidney in vitro: inhibition of natriuresis and modulation of medullary cyclic GMP. Biol Res 31:281-9, 1998PubMedGoogle Scholar
  399. 399.
    Rahimian R, Van Breemen C, Karkan D, Dube G, Laher I: Estrogen augments cyclopiazonic acid-mediated, endothelium-depend-ent vasodilation. Eur J Pharmacol 327:143-9, 1997PubMedGoogle Scholar
  400. 400.
    Muller C, Endlich K, Helwig JJ: AT2 antagonist-sensitive potentiation of angiotensin II-induced constriction by NO blockade and its dependence on endothelium and P450 eicosanoids in rat renal vasculature. Br J Pharmacol 124:946-52, 1998PubMedGoogle Scholar
  401. 401.
    Hayakawa H, Hirata Y, Kakoki M, Suzuki Y, Nishimatsu H, Nagata D, Suzuki E, Kikuchi K, Nagano T, Kangawa K, Matsuo H, Sugimoto T, Omata M: Role of nitric oxide-cGMP pathway in adrenomedullin-induced vasodilation in the rat. Hypertension 33:689-93, 1999PubMedGoogle Scholar
  402. 402.
    Miric G, Dallemagne C, Endre Z, Margolin S, Taylor SM, Brown L: Reversal of cardiac and renal fibrosis by pirfenidone and spironol-actone in streptozotocin-diabetic rats. Br J Pharmacol 133:687-94, 2001PubMedGoogle Scholar
  403. 403.
    Raz E, Kaminski N, Brezis M: Effects of perfusion pressure and renal flow upon albumin excretion in isolated perfused kidneys [see comments]. Nephron 56:396-8, 1990PubMedGoogle Scholar
  404. 404.
    Lapinski R, Perico N, Remuzzi A, Sangalli F, Benigni A, Remuzzi G: Angiotensin II modulates glomerular capillary permselectivity in rat isolated perfused kidney. J Am Soc Nephrol 7:653-60, 1996PubMedGoogle Scholar
  405. 405.
    Perico N, Lapinski R, Konopka K, Aiello S, Noris M, Remuzzi G: Platelet-activating factor mediates angiotensin II-induced proteinuria in isolated perfused rat kidney. J Am Soc Nephrol 8:1391-8, 1997PubMedGoogle Scholar
  406. 406.
    Burne MJ, Adal Y, Cohen N, Panagiotopoulos S, Jerums G, Comper WD: Anomalous decrease in dextran sulfate clearance in the diabetic rat kidney. Am J Physiol 274:700-8, 1998Google Scholar
  407. 407.
    Eppel GA, Osicka TM, Pratt LM, Jablonski P, Howden BO, Glasgow EF, Comper WD: The return of glomerular-filtered albumin to the rat renal vein. Kidney Int 55:1861-70, 1999PubMedGoogle Scholar
  408. 408.
    Boyce NW, Holdsworth SR: Evidence for direct renal injury as a consequence of glomerular complement activation. J Immunol 136:2421-5, 1986PubMedGoogle Scholar
  409. 409.
    Fauler J, Wiemeyer A, Yoshizawa M, Schurek HJ, Frolich JC: Metabolism of cysteinyl leukotrienes by the isolated perfused rat kidney. Prostaglandins 42:239-49, 1991PubMedGoogle Scholar
  410. 410.
    Yared A, Albrightson-Winslow C, Griswold D, Takahashi K, Fogo A, Badr KF: Functional significance of leukotriene B4 in normal and glomerulonephritic kidneys. J Am Soc Nephrol 2:45-56, 1991PubMedGoogle Scholar
  411. 411.
    Jocks T, Zahner G, Helmchen U, Kneissler U, Stahl RA: Antibody and complement reduce renal hemodynamic function in isolated perfused rat kidney. Am J Physiol 270:179-85, 1996Google Scholar
  412. 412.
    Jocks T, Zahner G, Freudenberg J, Wolf G, Thaiss F, Helmchen U, Stahl RA: Prostaglandin E1 reduces the glomerular mRNA ex-pression of monocyte-chemoattractant protein 1 in anti-thymocyte antibody-induced glomerular injury. J Am Soc Nephrol 7:897-905, 1996PubMedGoogle Scholar
  413. 413.
    Saunders JR, Aminian A, McRae JL, O’Farrell KA, Adam WR, Murphy BF: Clusterin depletion enhances immune glomerular injury in the isolated perfused kidney. Kidney Int 45:817-27, 1994PubMedGoogle Scholar
  414. 414.
    Gabbai FB, Peterson OW, Khang S, Wilson CB, Blantz RC: Glomerular hemodynamics in cell-free and erythrocyte-perfused isolated rat kidney. Am J Physiol 267:423-7, 1994Google Scholar
  415. 415.
    W. H. Beierwaltes. A different vision of the osmolar regulation of renin secretion. Am J Physiol Renal Physiol 2006;290(4):F795-6.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zoltan H. Endre
    • 1
  • Charles L. Edelstein
    • 2
  1. 1.Department of MedicineChristchurch School of Medicine, University of OtagoChristchurchNew Zealand
  2. 2.Health Sciences CenterUniversity of ColoradoDenverUSA

Personalised recommendations