Skip to main content

Urinary biomarkers and nephrotoxicity

  • Chapter

There are a number of definitions of the term “biomarker”. In general, they have in common three components: [1] that they are objectively measured indicators of specific anatomic, physiologic, biochemical, or molecular events; [2] that thay are associated with normal biological processes or accompany the onset, progression and/or severity of specific pathological or toxic conditions and [3] are that they are useful for measuring the progress of injury, disease or the effects of therapeutic intervention. For example, according to the National Institutes of Health (NIH) working group, a biomarker is a characteristic that is objectively measured as an indicator of normal biological processes, pathogenic processes, or a pharmacological response to a therapeutic intervention [1].

The types of biomarkers and the purposes served vary to some extent depending on the population beng observed. For public health purposes, the requirements of useful biomarkers to protect from injurious xenobiotic exposure are three-fold: firstly, to achieve the earliest identification of the potential for health impairment; secondly, to gain insight into the mechanism(s) responsible for any adverse impact on the health of individuals or specific populations at risk; and thirdly, to help assess the effects of interventions designed to minimize the short and longterm consequences of the initial injury. Important requirments for biomarker development are a detailed understanding of biochemical pathways involved in nephrotoxicity, minimal invasiveness and capacity to screen large atrisk populations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Definitions Working Group: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Therapeut 2001; 69: 89-95.

    Google Scholar 

  2. Ilyin SE, Belkowski SM, Plata-Salamán CR. Biomarker discovery and validation: technologies and integrative approaches. Trends Biotechnol. 2004 ; 22: 411-6.

    PubMed  CAS  Google Scholar 

  3. Dieterle F, Marrer E. New technologies around biomarkers and their interplay with drug development, Anal Bioanal Chem, 2007; (In press).

    Google Scholar 

  4. National Research Council. Commission on Life Sciences Board on Environmental Studies and Toxicology. Committee on Biological Markers, Subcommittee on Biologic Markers in Urinary Toxicology. In: Biologic Markers in Urinary Toxicology. National Academy Press, Washington DC 1995; p. 16-21.

    Google Scholar 

  5. Niemann CU, Serkova NJ. Biochemical mechanisms of nephrotoxicity: sapplication for metabolomics. Expert Opin Drug Metab Toxicol 2007; 3: 527-544.

    PubMed  CAS  Google Scholar 

  6. Fels LM, C. Herbort C, Pergande M, Jung K, Hotter G, Roselló J, Gelpi E, Mutti A, De Broe M, Stolte H. Nephron target sites in chronic exposure to lead Nephrol Dial Transplant. 1994; 9: 1740-1746.

    CAS  Google Scholar 

  7. de Jong PE, Gansevoort RT, Bakker SJ. Macroalbuminuria and microalbuminuria: do both predict renal and cardiovascular events with similar strength? J Nephrol. 2007; 20: 375-80.

    PubMed  Google Scholar 

  8. Cooper RG. Effect of tobacco smoking on renal function. Indian J Med Res. 2006; 124: 261-268.

    PubMed  CAS  Google Scholar 

  9. Bernard A. Renal dysfunction induced by cadmium: biomarkers of critical effects. Biometals. 2004; 17: 519-23.

    PubMed  CAS  Google Scholar 

  10. Roels HA, Hoet P, Lison D. Usefulness of biomarkers of exposure to inorganic mercury, lead, or cadmium in controlling occupational and environmental risks of nephrotoxicity. Ren Fail. 1999 May-Jul; 21(3-4): 251-62.

    PubMed  CAS  Google Scholar 

  11. Fanos V, Cataldi L. Amphotericin B-induced nephrotoxicity: a review. J Chemother. 2000; 12: 463-70.

    PubMed  CAS  Google Scholar 

  12. Widmer P, Maibach R, Künzi UP, Capaul R, Mueller U, Galeazzi R, Hoigné R. Diuretic-related hypokalaemia: the role of diuretics, potassium supplements, glucocorticoids and beta 2-adrenoceptor agonists. Results from the comprehensive hospital drug monitoring programme, berne (CHDM). Eur J Clin Pharmacol. 1995; 49(1-2): 31-6.

    PubMed  CAS  Google Scholar 

  13. Cheng HF, Harris RC. Renal effects of non-steroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors. Curr Pharm Des. 2005; 11(14): 1795-804.

    PubMed  CAS  Google Scholar 

  14. Harris RC. COX-2 and the kidney. J Cardiovasc Pharmacol. 2006; 47 Suppl 1: S37-42.

    PubMed  CAS  Google Scholar 

  15. Gooch K, Culleton BF, Manns BJ, Zhang J, Alfonso H, Tonelli M, Frank C, Klarenbach S, Hemmelgarn BR. NSAID use and progression of chronic kidney disease. Am J Med. 2007; 120(3): 280.e1-7.

    Google Scholar 

  16. Perazella MA. Drug-induced renal failure: update on new medications and unique mechanisms of nephrotoxicity. Am J Med Sci. 2003 Jun; 325(6): 349-62.

    PubMed  Google Scholar 

  17. Jaffe JA, Kimmel PL. Chronic nephropathies of cocaine and heroin abuse: a critical review. Clin J Am Soc Nephrol. 2006; 1: 655-67.

    PubMed  CAS  Google Scholar 

  18. Schetz M, Dasta J, Goldstein S, Golper T. Drug-induced acute kidney injury. Curr Opin Crit Care. 2005; 11: 555-65.

    PubMed  Google Scholar 

  19. Pichette V, Leblond FA. Drug metabolism in chronic renal failure. Curr Drug Metab. 2003; 4: 91-103.

    PubMed  CAS  Google Scholar 

  20. Bonnardeaux A, Somerville P, Kaye M. A study on the reliability of dipstick urinalysis. Clin Nephrol 1994; 41: 167-172.

    PubMed  CAS  Google Scholar 

  21. Voswinckel P. A marvel of colors and ingredients. The story of urine test strips. Kidney Int 1994; 46 (Suppl 47): S3-S7.

    Google Scholar 

  22. Janssens PMW. New markers for analyzing the cause of hematuria. Kidney Int 1994; 46 (Suppl 47): S111-S114.

    Google Scholar 

  23. Hotta O, Taguma Y, Yusa N and Ooyama M. Analysis of mononuclear cells in urine using flow cytometry in glomerular diseases. Kidney Int 1994; 46 (Suppl 47): S117-S121.

    Google Scholar 

  24. Nolan CR, Anger MS, Kelleher SP. Eosinophiluria--a new method of detection and definition of the clinical spectrum N Eng J Med 1986; 315: 1516-1519.

    Google Scholar 

  25. Ruffing KA, Hoppes P, Blend D, Cugino A, Jarjoura D, Whittier FC. Eosinophils in urine revisited. Clin Nephrol 1994; 41: 163-166.

    PubMed  CAS  Google Scholar 

  26. Hotta O, Yusa N, Kitamura H, Taguma Y. Urinary macrophages as activity markers of renal injury. Clin Chim Acta. 2000; 297: 123-33.

    PubMed  CAS  Google Scholar 

  27. Vogelmann SU, Nelson WJ, Myers BD, Lemley KV: Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol 2003; 285: F40-F48.

    PubMed  CAS  Google Scholar 

  28. Bagshaw SM, Langenberg C, Bellomo R. Urinary biochemistry and microscopy in septic acute renal failure: a systematic review. Am J Kidney Dis 2006; 48: 695-705.

    PubMed  CAS  Google Scholar 

  29. Delanghe J. New screening diagnostic techniques in urinalysis. Acta Clin Belg. 2007; 62: 155-61.

    PubMed  CAS  Google Scholar 

  30. Chan RW, Szeto CC. Advances in the clinical laboratory assessment of urinary sediment. Clin Chim Acta. 2004; 340: 67-78.

    PubMed  CAS  Google Scholar 

  31. Tsai JJ, Yeun JY, Kumar VA, Don BR. Comparison and interpretation of urinalysis performed by a nephrologist versus a hospital-based clinical laboratory. Am J Kidney Dis. 2005; 46: 820-9.

    PubMed  Google Scholar 

  32. Meyer TW, Hostetter TH. N Engl J Med 2007; 357: 1316-1325.

    PubMed  CAS  Google Scholar 

  33. Kaplan AA, Kohn OF. Fractional excretion of urea as a guide to renal dysfunction. Am J Nephrol 1992; 12: 49-54.

    PubMed  CAS  Google Scholar 

  34. Carvounis CP, Nisar S, Guro-Razuman S. Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int 2002; 62: 2223-2229.

    PubMed  CAS  Google Scholar 

  35. Stevens LA, Levey AS. Measurement of kidney function. Med Clin North Am 2005; 89: 457-473.

    PubMed  Google Scholar 

  36. Shemesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 1985; 28: 830-838.

    PubMed  CAS  Google Scholar 

  37. Brochner-Mortensen J. Routine methods and their reliability for assessment of glomerular filtration rate in adults. Danish Med Bull 1978; 25: 181-202.

    PubMed  CAS  Google Scholar 

  38. Kastrup J, Petersen P, Bartram R, Hansen JM. The effect of trimethoprim on serum creatinine. Brit J Urol 1985; 57: 265-268.

    PubMed  CAS  Google Scholar 

  39. Hoffmann U, Fischereder M, Kruger B, Drobnik W, Kramer BK. The value of N-acetylcysteine in the prevention of radiocontrast agent-induced nephropathy seems questionable. J Am Soc Nephrol 2004; 15: 407-410.

    PubMed  CAS  Google Scholar 

  40. Mainra R, Gallo K, Moist L. Effect of N-acetylcysteine on renal function in patients with chronic kidney disease. Nephrology (Carlton). 2007 Oct; 12(5): 510-3.

    CAS  Google Scholar 

  41. Ducharme MP, Smythe M, Strohs G. Drug-induced alterations in serum creatinine concentrations. Ann Pharmacother. 1993; 27: 622-33.

    PubMed  CAS  Google Scholar 

  42. Coresh J, Astor B, McQuillan G, et al. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate the glomerular filtration rate.Am J Kidney Dis 2002; 39: 920-929.

    PubMed  CAS  Google Scholar 

  43. Murthy K, Stevens LA, Stark PC, Levey AS. Variation in serum creatinine assay calibration: A practical application to glomerular filtration rate estimation. Kidney Int 2005; 68: 1884-1887.

    PubMed  CAS  Google Scholar 

  44. Stevens LA, Manzi J, Levey AS, Chen J, Deysher AE, Greene T, Poggio ED, Schmid CH, Steffes MW, Zhang YL, Van Lente F, Coresh J. Impact of Creatinine Calibration on Performance of GFR Estimating Equations in a Pooled Individual Patient Database. Am J Kidney Dis 2007; 50: 21-35.

    PubMed  CAS  Google Scholar 

  45. Wade WE, Spruill WJ. New serum creatinine assay standardization: implications for drug dosing. Ann Pharmacother. 2007; 41:475-80.

    PubMed  CAS  Google Scholar 

  46. Trof RJ, DiMaggio F, Leemreis J, Johan-Groeneveld AB: Bimarkers of acute renal injury and renal failure. Shock 2006; 26: 245-259.

    PubMed  CAS  Google Scholar 

  47. Tajagura R, Yonemura K, Yonekawa O, Iwahara K, Kanno T, Fujise Y, Hishida A : Tryptophan glycoconjugate As a novel marker of renal function. Am J Med 2001; 110: 192-197.

    Google Scholar 

  48. Shemish O, Golbetz H, Kriss JP, Myers B. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 1985; 28: 830-838.

    Google Scholar 

  49. Bauer JH, Brooks CS, Burch RN. Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis 1982; 2: 337-347.

    PubMed  CAS  Google Scholar 

  50. Walser M . Assessing renal function from creatinine measurements in adults with chronic renal failure. Am J Kidney Dis 1998; 32:23-31.

    PubMed  CAS  Google Scholar 

  51. Cockroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31-41.

    Google Scholar 

  52. Levey, AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate fromserum creatinine: a new prediction equation. Ann Intern Med 1999; 130: 461-470.

    PubMed  CAS  Google Scholar 

  53. Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, Van Lente F, for Chronic Kidney Disease Epidemiology Collaboration. Expressing the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate with StandardizedSerum Creatinine Values Clinical Chemistry 2007; 53: : 766-772.

    Google Scholar 

  54. National Kidney Fondation K/DOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, classification, and stratification. Am J Kidney Dis 2002; 39: S1-S266.

    Google Scholar 

  55. Gaspari F, Perico N, Remuzzi G. Measurement of glomerular filtration rate. Kidney Int 1997; 63: S151-S154.

    CAS  Google Scholar 

  56. Rocco MV, Buckalew VMJr, Moore LC, Shihabi ZK. Measurement of glomerular filtration rate using nonradioactive Iohexol: comparison of two one-compartment models. Am J Nephrol 1996; 16: 138-143.

    PubMed  CAS  Google Scholar 

  57. Maher FT, Nolan NG, Elverback LR. Comparison of simultaneous clearances of 125I-labeled sodium iothalamate and of inulin. Mayo Clin Proc 1971; 46: 690-691.

    PubMed  CAS  Google Scholar 

  58. Gaspan F, Amuchastegui CS, Guerini E, Perico N, Mosconi L, Ruggenenti P, Remuzzi G. Plasma clearance of nonradioactive iohexol as an alternative to renal clearance of inulin for measurement of glomerular filtration rate in humans. J Am Soc Nephrol 1993; 4: 315.

    Google Scholar 

  59. Aurell M. Accurate and feasible measurements of glomerular filtration rate-is the iohexol clearance the answer. Nephrol Dial Transplant 1994; 9: 1222-1224.

    PubMed  CAS  Google Scholar 

  60. Brown SCW, O’Reilly PH. Iohexol clearance for the determination of glomerular filtration rate in clinical practice: evidence for a new gold standard. J Urol 1991; 148: 675-679.

    Google Scholar 

  61. Sterner G, Frennby B, Mansson S, Nyman U, Vanwesten D, Almén T. Determining ‘true’ glomerular filtration rate in healthy adults using infusion of inulin and comparing it with values obtained using other clearance techniques or prediction equations. Scand J Urol Nephrol. 2007; 16: 1-8.

    Google Scholar 

  62. Esposito C, Plati A, Mazzullo T, Fasoli G, De Mauri A, Grosjean F, Mangione F, Castoldi F, Serpieri N, Cornacchia F, Dal Canton A. Renal function and functional reserve in healthy elderly individuals. J Nephrol. 2007; 20: 617-25.

    PubMed  CAS  Google Scholar 

  63. Schrier RW. Aquaporin-related disorders of water homeostasis. Drug News Perspect. 2007; 20: 447-53.

    PubMed  CAS  Google Scholar 

  64. Peters HP, Robben JH, Deen PM, Wetzels JF. Water in health and disease: new aspe cts of disturbances in water metabolism. Neth J Med. 2007; 65: 325-32.

    PubMed  CAS  Google Scholar 

  65. Cook JD, Strauss KA, Caplan YH, Lodico CP, Bush DM. Urine pH: the effects of time and temperature after collection. J Anal Toxicol. 2007; 31: 486-96.

    PubMed  CAS  Google Scholar 

  66. Thomsen K, Schou M. Renal lithium excretion in man. Am J Physiol 1968; 215: 823-827.

    PubMed  CAS  Google Scholar 

  67. Whiting PH. The use of lithium clearance measurements as an estimate of glomerulo-tubular function. Renal Failure 1999; 21: 421-426.

    PubMed  CAS  Google Scholar 

  68. Anastasio P, Frangiosa A, Papalia T, DeNapoli N, Capodicasa L, Loguercio C, DelVecchio BC, DeSanto NG. Renal tubular function by lithium clearance in liver cirrhosis. Sem Nephrol 2001; 21: 323-326.

    CAS  Google Scholar 

  69. Barbato A, Cappuccio FP, Folkerd EJ, Strazzullo P, Sampson B, Cook DG, Alberti KG. Metabolic syndrome and renal sodium handling in three ethnic groups living in England. Diabetologia. 2004; 47: 40-6.

    PubMed  CAS  Google Scholar 

  70. Strazzullo P, Barbato A; Galletti F; Barba G; Siani A; Iacone R; D’Elia L; Russo O; Versiero M; Farinaro E; Cappuccio FP. Abnormalities of renal sodium handling in the metabolic syndrome. Results of the Olivetti Heart Study J Hypertens. 2006; 24: 1633-1639.

    CAS  Google Scholar 

  71. Sansoè G, Silvano S, Mengozzi G, Smedile A, Touscoz G, Rosina F, Rizzetto M. Loss of tubuloglomerular feedback in decompensated liver cirrhosis: physiopathological implications. Dig Dis Sci. 2005 May; 50(5): 955-63.

    PubMed  Google Scholar 

  72. Guder WG, Hofman W. Markers for the diagnosis and monitoring of renal tubular lesions. Clin Nephrol 1992; 38 (Suppl 1): S3-S7.

    PubMed  Google Scholar 

  73. Peterson PA, Evrin PE, Berggard I. Differentiation of glomerular, tubular, and normal proteinuria: determinations of urinary excre-tion of β-2-microglobin, albumin and total protein. J Clin Invest 1969; 48: 1189-1198.

    PubMed  CAS  Google Scholar 

  74. Ivandic M, Hofmann W, Guder WG. Development and evaluation of a urine protein expert system. Clin Chem 1996, 42: 1214-1222.

    PubMed  CAS  Google Scholar 

  75. Lun A, Ivandic M, Priem F, Filler G, Kirschstein M, Ehrich JH, Guder WG. Evaluation of pediatric nephropathies by a computerized Urine Protein Expert System (UPES). Ped Nephrol 1999; 13: 900-906.

    CAS  Google Scholar 

  76. Lau YK, Woo KT. SDS-PAGE is underutilized as a tool for investigating renal patients. Nephron 2002; 90: 227-229.

    PubMed  CAS  Google Scholar 

  77. Ginsberg JM, Chang BS, Matarese RA, Garella S. Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med 1983; 309: 1543-1548.

    PubMed  CAS  Google Scholar 

  78. Schwab SJ, Christensen RL, Dougherty K, Klahr S. Quantitation of proteinuria by the use of protein to creatinine ratio in single urine sample. Arch Intern Med 1987; 147: 943-949.

    PubMed  CAS  Google Scholar 

  79. Lane C, Brown M, Dunsmuir W, Kelly J, Mangos G. Can spot urine protein/creatinine ratio replace 24 h urine protein in usual clinical nephrology? Nephrology (Carlton). 2006; 11: 245-249.

    CAS  Google Scholar 

  80. Leung YY, Szeto CC, Tam LS, Lam CW, Li EK, Wong KC, Yu SW, Kun EW. Urine protein-to-creatinine ratio in an untimed urine col-lection is a reliable measure of proteinuria in lupus nephritis. Rheumatology (Oxford). 2007; 46: 649-652.

    CAS  Google Scholar 

  81. Price CP, Newall RG, Boyd JC. Use of the protein: creatinine ratio measurements on random urine samples for prediction of significant proteinuria: a systematic review. Clin Chem 2005; 51: 1577-1586.

    PubMed  CAS  Google Scholar 

  82. Gai M, Motta D, Giunti S, Fop F, Masini S, Mezza E, Segoloni GP, Lanfranco G. Comparison between 24-h protaeinuria, urinary protein/creatinine ratio and dipstick test in patients with nephropathy: Patterns of prolteinuia in dipstick-negative patients. Scan J Clin Lab Invest 2006; 66: 299-308.

    CAS  Google Scholar 

  83. Shankland SJ. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 2006; 69: 2131-2147.

    PubMed  CAS  Google Scholar 

  84. Remuzzi G, Bertani T. Is glomerulosclerosis a consequence of altered glomerular permeability to macromolecules? Kidney Int 1990; 38: 384-394.

    PubMed  CAS  Google Scholar 

  85. Bohle A, Mackensen-Haen S, von Gise H, Grund K-E, Wehrmann M, Batz Ch, Bogenschütz O, Schmitt H, Nagy J, Müller C, Müller G. The Consequences of Tubulo-Interstitial Changes for Renal Function in Glomerulopathies. A Morphometric and Cytological Analysis. Path Res Pract 1990; 186: 135-144.

    PubMed  CAS  Google Scholar 

  86. Nath KA. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992; 1: 1-17.

    Google Scholar 

  87. Bernard A, Lauwerys RR. Proteinuria: changes and mechanisms in toxic nephropathies. Crit Rev ToxicoI 1991; 21: 373-405.

    CAS  Google Scholar 

  88. Wolf G, Schroeder R, Ziyadeh FN, Stahl RA. Albumin up-regulates the type II transforming growth factor-beta receptor in cultured proximal tubular cells. Kidney Int 2004; 66: 1849-1858.

    PubMed  CAS  Google Scholar 

  89. Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int 2001; 59: 260-269.

    PubMed  CAS  Google Scholar 

  90. Perico N, Codreanu I, Schieppati A, Remuzzi G. Pathophysiology of disease progression in proteinuric nephropathies. Kidney Int 2005 Suppl 94: S79-S82.

    Google Scholar 

  91. Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol 2006; 17: 2974-2984.

    PubMed  CAS  Google Scholar 

  92. Barratt J and Topham P. Urine proteomics: the present and future of measuring urinary protein components in disease. CMAJ. 2007; 177: 361-8.

    PubMed  Google Scholar 

  93. Nguyen MT, Ross, GF, Dent CL, Devarajan P. Early prediction of acute renal injury using urinary proteomics. Am. J Nephrol. 2005; 25: 318-326.

    PubMed  CAS  Google Scholar 

  94. Varghese SA, Powell TB, Budisavljevic MN, Oates JC, Raymond JR, Almeida JS, Arthur JM. Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol 2007; 18: 913-922.

    PubMed  CAS  Google Scholar 

  95. Derhaschnig U, Kittler H, Woisetschläger C, Bur A, Herkner H, Hirschl MM. Microalbumin measurement alone or calculation of the albumin/creatinine ratio for the screening of hypertension patients? Nephrol Dial Transplant. 2002; 17: 81-5.

    PubMed  CAS  Google Scholar 

  96. Sarafidis PA, Riehle J, Bogojevic Z, Basta E, Chugh A, Bakris GL. A Comparative Evaluation of Various Methods for Microalbuminuria Screening. Am J Nephrol 2007; 28: 324-329.

    PubMed  Google Scholar 

  97. Weir MR. Microalbuminuria and cardiovascular disease. Clin J Am Soc Nephrol 2007; 2: 581-90.

    PubMed  Google Scholar 

  98. Ruggenenti P, Remuzzi GTime to abandon microalbuminuria? Kidney Int. 2006; 70: 1214-22.

    PubMed  CAS  Google Scholar 

  99. Prinsen BH, De Sain-Van der Velden MG, Kaysen GA, Straver HW, Van Rijn HJ, Stellaard F, Berger R, Rabelink TJ. Transferrin synthesis is increased in nephrotic patients insufficiently to replace urinary losses. J Am Soc Nephrol 2001; 12: 1017-1025.

    PubMed  CAS  Google Scholar 

  100. Tencer J, Frick IM, Oquist BW, Alm P, Rippe B. Size-selectivity of the glomerular barrier to high molecular weight proteins: upper size limitations of shunt pathways. Kidney Int 1998; 53(3): 709-715.

    PubMed  CAS  Google Scholar 

  101. Schurek HJ, Neuman KH, Flohr, et al: the physiological and pathophysiological basis of glomerular capillarry permeability for plasma proteins and erythrocytes. Eur J Clin Chem Clin Biochem 1992; 30: 627-633.

    PubMed  CAS  Google Scholar 

  102. Schurek HJ, Neumann KH, Flohr H, Zeh M, Stolte H. Diagnostic and prognostic significance of proteinuria selectivity index in glomerular diseases. Clin Chim Acta 2000; 297: 73-83.

    Google Scholar 

  103. Bakoush O, Tencer J, Tapia J, Rippe B, Torffvit O. Higher urnary IgM excretion in type 2 diabetic nephropathy compared to type 1 diabetic nephropathy. Kidney Int 2002; 61: 203-208.

    PubMed  CAS  Google Scholar 

  104. Tencer J, Bakoush O, Torffvit O. Diagnostic and prognostic significance of proteinuria selectivity index in glomerular diseases. Clin Chim Acta 2000; 297: 73-83.

    PubMed  CAS  Google Scholar 

  105. Bazzi C, Petrini C, Rizza V, Arrigo G. Beltrame A, Pisano L, D’Amico G. Urinary excretion of IgG and β-1-microglobulin predicts clinical course better than extent of proteinuria in membranous nephropathy. Am J Kidney Dis 2001; 38: 240-248.

    PubMed  CAS  Google Scholar 

  106. Bernard,A. Renal dysfunction induced by cadmium: biomarkers of critical effects. Biometals 2004; 17: 519-523.

    PubMed  CAS  Google Scholar 

  107. Kawasaki T, Kono K, Dote T, Usuda K, Shimizu H, Dote E. Markers of cadmium exposure in workers in a cadmium pigment factory after changes in the exposure conditions. Toxicol Ind Health 2004; 20: 51-56.

    PubMed  CAS  Google Scholar 

  108. Xu S, Venge P. Lipocalins as biochemical markers of disease. Biochim Biophys Acta. 2000; 1482: 298-307.

    PubMed  CAS  Google Scholar 

  109. Creppy EE, Moukha S, Bacha H, Carratu MR. How much should we involve genetic and environmental factors in the risk assess-ment of mycotoxins in humans? Int J Environ Res Public Health 2005: 2: 185-193.

    Google Scholar 

  110. Dimitrov P, Tsolova S, Georgieva R, Bozhilova D, Simeonov V, Bonev A, Karmaus W. Clinical markers in adult offspring of families with and without Balkan Endemic Nephropathy. Kidney Int 2006; 69: 723-729.

    PubMed  CAS  Google Scholar 

  111. Lee JW, Kim HJ, Sung SH, Lee SJ. A case of tubulointerstitial nephritis and uveitis syndrome with severe immunologic dysregula-tion. Pediatr Nephrol 2005; 20: 1805-1808.

    PubMed  Google Scholar 

  112. Winchester JF, Salsberg JA, Levin NW. Beta-2 microglobulin in ESRD: an in-depth review. Adv Ren Replace Ther 2003; 10: 279-309.

    PubMed  Google Scholar 

  113. Saito A, Gejyo F. Current clinical aspects of dialysis-related amyloidosis in chronic dialysis patients. Ther Apher Dial 2006; 10: 316-320.

    PubMed  CAS  Google Scholar 

  114. Nomura T, Huang WC, Seo S, Zhau HE, Mimata H, Chung LW. Targeting beta2-microglobulin mediated signaling as a novel therapeutic approach for human renal cell carcinoma. J Ureol 2007; 178: 292-300.

    CAS  Google Scholar 

  115. Cheung AK, Rocco MV, Yan G, Leypoldt JK, Levin NW, Greene T, Agodoa L, Bailey J, Beck GJ, Clark W, Levey AS, Ornt DB, Schulman G, Schwab S, Teehan B, Eknoyan G. Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study J Am Soc Nephrol 2006; 17: 546-555.

    PubMed  CAS  Google Scholar 

  116. Marino M, Andrews D, Brown D, McLuskey RT. Trancytosis of retinol-binding protein across renal proximal tubule cells after megalin (gp 330)-mediated endocytosis. J Am Soc Nephrol 2001; 12: 637-648.

    PubMed  CAS  Google Scholar 

  117. Camara NO, Matos AC, Rodrigues DA, Pereira AB, Pacheco-Silva A. Urinary retinol binding protein is a good marker of progressive cyclosporine nephrotoxicity after heart transplant. Transplant Proc 2001; 33(3): 2129-2131.

    PubMed  CAS  Google Scholar 

  118. Salem MA, el-Habashy SA, Saeid OM, el-Tawil MM, Tawfik PH Urinary excretion of n-acetyl-beta-D-glucosaminidase and retinol binding protein as alternative indicators of nephropathy in patients with type 1 diabetes mellitus. Pediatr Diabetes. 2002; 3: 37-41.

    PubMed  Google Scholar 

  119. Cabré A, Lázaro I, Girona J, Manzanares J, Marimón F, Plana N, Heras M, Masana LRetinol-binding protein 4 as a plasma biomarker of renal dysfunction and cardiovascular disease in type 2 diabetes. J Intern Med. 2007; 262: 496-503.

    PubMed  Google Scholar 

  120. Kobayashi E, Suwazono Y, Honda R, Dochi M, Nishijo M, Kido T, Nakagawa H. Serial changes in urinary cadmium concentrations and degree of renal tubular injury after soil replacement in cadmium-polluted rice paddies. Toxicol Lett. 2007 Nov 1.

    Google Scholar 

  121. Bernard A. Renal dysfunction induced by cadmium: biomarkers of critical effects. Biometals. 2004 Oct; 17(5): 519-23.

    PubMed  CAS  Google Scholar 

  122. Gavrilov V, Yermiahu T, Gorodischer R. Renal pathology and retinol status in multiple myeloma patients. Kidney Int. 2006 Jan; 69(1): 173-7.

    PubMed  CAS  Google Scholar 

  123. Ekstrom B, Peterson PA, Berggard I. A urinary and plasma β-l-glycoprotein of low molecular weight: isolation and some properties. Biochem Biophys Res Commun 1975; 65: 1472-1535.

    Google Scholar 

  124. Weber MH, Verwiebe R. β1-Microglobulin (Protein HC): features of a promising indicator of proximal tubular dysfunction. Eur J Clin Chem Clin Biochem 1992; 30: 683-691.

    PubMed  CAS  Google Scholar 

  125. Grubb A. Diagnostic value of analysis of cystatin C and protein HC in biological fluids. Clin Nephrol 1992; 38(Suppl 1): S20-S27.

    PubMed  CAS  Google Scholar 

  126. Tencer J, Thysell H, Grubb A. Analysis of proteinuria: Reference limits for urine excretion of albumin, protein HC, immunoglobin G, k-and l-chain immunoreactrivity, orosomucoid and α1-antitrypsin. Scand J Clin Lab Invest 1996; 56: 691-700.

    PubMed  CAS  Google Scholar 

  127. Carrieri M, Trevisan A, Bartolucci GB. Adjustment to concentration-dilution of spot urine samples: correlation between specific gravity and creatinine. Int Arch Occup Environ Health 2001; 74: 63-67.

    PubMed  CAS  Google Scholar 

  128. Andersson L, Haraldsson B, Johansson C, Barregard L. Methodological issues on the use of urinary alpha-1-microglobuline in epidemiological studies. Nephrol Dial Transplant 2008; 23: 1252-1256.

    PubMed  CAS  Google Scholar 

  129. Teppo AM, Honkanen E, Ahonen J, Gronhagen-Riska C. Changes of urinary β1-microglobullin in the assessment of prognosis in renal transplant recipients. Transplantation 2000; 70: 1154-1159.

    PubMed  CAS  Google Scholar 

  130. Tsukahara H, Hiraoka M, Kuriyama M, Saito M, Morikawa K, Kuroda M, Tominaga T, Sudo M. Urinary β1-microglobulin as index of proximal tubule function in early infancy. Pediatr Nephrol 1993; 7: 199-201.

    PubMed  CAS  Google Scholar 

  131. Bakoush O, Grubb A, Rippe B, Tencer J. Urine excretion of protein HC in proteinuric glomerular diseases correlates to urine IgG but not to albuminuria. Kidney Int 2001; 60: 1904-1909.

    PubMed  CAS  Google Scholar 

  132. Madalena L, Facio ML, Angerosa M, Pandolfo M, Bresciani P, Alejandre M, Pizzolato M, Toblli JE. Urinary excretion of low molecularweight proteins in patients with pure monoclonal light chain proteinuria. J Nephrol. 2007 Nov-Dec; 20(6): 683-8.

    PubMed  CAS  Google Scholar 

  133. Penders J, Delanghe JR. Alpha 1-microglobulin: clinical laboratory aspects and applications. Clin Chim Acta. 2004 Aug 16; 346(2): 107-18.

    PubMed  CAS  Google Scholar 

  134. Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 2003; 14: 2534-2543.

    PubMed  CAS  Google Scholar 

  135. Mishra J, Mori K, Ma Q, et al. Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxic-ity. Am J Nephrol 2004; 24: 307-315.

    PubMed  CAS  Google Scholar 

  136. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, Barasch J. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 2007; 18: 407-413.

    PubMed  CAS  Google Scholar 

  137. Mori K, Nakao K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Interna-tional 2007; doi: 10.1038/sj.ki.5002165.

    Google Scholar 

  138. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, et al. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol 2006; 26: 287-292.

    PubMed  CAS  Google Scholar 

  139. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Pawlak K, Mysliwiec M, Lawnicki S, Szmitkowski M, Dobrzycki S. Could neutrophil-gelatinase-associated lipocalin and cystatin C predict the development of contrast-induced nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine values? Kidney Blood Press Res 2007; 30: 408-415.

    PubMed  CAS  Google Scholar 

  140. Hirsch R, Dent C, Pfriem H, Allen J, Beekman RH, Ma Q, Dastrala S, Bennett M, Mitsnefes M, Devarajan P. NGAL is an early predic-tive biomarker of contrast-induced nephropathy in children. Pediatr.Nephrol. 2007).

    Google Scholar 

  141. Ding H, He Y, Li K, Yang J, Li X, Lu R, Gao W. Urinary neutrophol gelatinase-associated lipocalin (NGAL) is an early biomarker for renal tubulaointerstitial injury in IgA nephropathy. Clin Immunol 2007; 123: 227-234.

    PubMed  CAS  Google Scholar 

  142. Parikh CR, Jani A, Mishra J, Ma Q, Kelly C, Barasch J, Edelstein CL, Devarajan P. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 2006; 7: 1639-1645.

    Google Scholar 

  143. Mishra J, Ma Q, Kelly C, et al. Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol 2006; 21: 856-863.

    PubMed  Google Scholar 

  144. Schaub S, Mayr M, Honger G, Bestland J, Steiger J, Regeniter A, Mihatsch MJ, Wilkins JA, Rush D, Nickerson P. Detection of sub-clinical tubular injury after renal transplantation: comparison of urine protein analysis with allograft histopathologydetection of subclinical tubular injury after renal transplantation: comparison of urine protein analysis with allograft histopathology. Transplantation 2007; 84: 104-112.

    PubMed  CAS  Google Scholar 

  145. Bolignano D, Coppolino G, Campo S, Aloisi C, Nicocia G, Frisina N, Buemi M. Neutrophil gelatinase-associated lipocalin in patients with autosomal-dominant polycystic kidney disease. Am J Nephrol 2007; 27: 373-378.

    PubMed  CAS  Google Scholar 

  146. Parikh CR, Mishra J, Thiessen-Philbrook H, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 2006; 70: 199-203.

    PubMed  CAS  Google Scholar 

  147. Parikh C, Jani A, McInikov VY, Faubel S. Edelstein CL: Urinary interleukin-18 is a marker of human acute tubular necrosis Am. J Kid Dis. 2004; 43: 405-414.

    CAS  Google Scholar 

  148. Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005; 365: 1231-1238.

    PubMed  CAS  Google Scholar 

  149. Wagener G, Jan M, Kim M, et al. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology 2006; 105: 485-491.

    PubMed  CAS  Google Scholar 

  150. Baricos WH, Cortez SL, Le QC, Zhou Y, Dicarlo RM, O’Connor SE, Shah SV. Glomerular basement membrane degradation by en-dogenous cysteine proteinases in isolated glomeruli. Kidney Int 1990; 38: 395-401.

    PubMed  CAS  Google Scholar 

  151. Coll E, Botey A, Alvarez L, et al. Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis 2000; 36: 29-34.

    PubMed  CAS  Google Scholar 

  152. Jonsson AS, Flodin M, Hansson LO, Larsson A. Estimated glomerular filtration rate (eGFR(CystC)) from serum cystatin C shows strong agreement with iohexol clearance in patients with low GFR. Scand J Clin Lab Invest. 2007; 9: 1-9.

    Google Scholar 

  153. Herget-Rosenthal S, Feldkamp T, Volbracht L, Kribben A. Measurement of urinary cystatin C by particle-enhanced nephelometric immunoassay: precision, interferences, stability and reference range. Ann Clin Biochem 2004; 41: 111-118.

    PubMed  CAS  Google Scholar 

  154. Herget-Rosenthal S, van Wijk JA, Brocker-Preuss M, Bokenkamp A. Increased urinary cystatin C reflects structural and functional renal tubular impairment independent of glomerular filtration rate. Clin Biochem 2007; 27 April [Epub ahead of print]. This study provides evidence for urinary cystatin C as a biomarker for tubular injury.

    Google Scholar 

  155. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 2002; 40: 221-226.

    PubMed  CAS  Google Scholar 

  156. Herget-Rosenthal S, Pietruck F, Volbracht L, et al. Serum cystatin C: a superior marker of rapidly reduced glomerular filtration after uninephrectomy in kidney donors compared to creatinine. Clin Nephrol 2005; 64: 41-46.

    PubMed  CAS  Google Scholar 

  157. Herget-Rosenthal S, Marggraf G, Husing J, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int 2004; 66: 1115-1122.

    PubMed  CAS  Google Scholar 

  158. Herget-Rosenthal S, Poppenb D, Husing J, Markggraf G, Pietruck F, Jakon H-G, Phillipp T, Kribben A. Prognotic value of tubular proteinuria and enzymuria in non-oliguric renal acute tubular necrosis. Clin Chem 2004, 50: 552-558.

    PubMed  CAS  Google Scholar 

  159. Mazui-Sunko B, Zarkovic N, Vrkic N, Antoljak N, Beslin MB, Heitzler VN, Siranovic M, Krizmanic-Dekanic A, Klinger R: Proatrial natriuretic peptide (1-98) but not cystatin C is predictive for occurence of acute renal insufficiency in critical ill septic patients. Nephron Cloin Pract 2004; 97: c103-c107.

    Google Scholar 

  160. Lynn KL, Marshall RO. Excretion of Tamm-Horsfall glycoprotein in renal disease. Clin Sci 1985; 68: 253-257.

    Google Scholar 

  161. Serafini-Cessi F, Malagolini N, Cavallone DTamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis. 2003 Oct; 42(4): 658-76.

    PubMed  CAS  Google Scholar 

  162. Mo L, Huang HY, Zhu XH, Shapiro E, Hasty DL, Wu XR. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int. 2004 Sep; 66(3): 1159-66.

    PubMed  CAS  Google Scholar 

  163. Hess B, Nakagawa Y, Parks JH, Coe FL: Molecular abnormality of Tamm-Horsfall glycoprotein in calcium oxalate nephrolithiasis. Am J Physiol 260: F569-F578, 1991.

    PubMed  CAS  Google Scholar 

  164. Romero MC, Nocera S, Nesse AB: Decreased Tamm-Horsfall protein in lithiasic patients. Clin Biochem 30: 63-67, 1997.

    PubMed  CAS  Google Scholar 

  165. Ganter K, Bongartz D, Hesse A: Tamm-Horsfall protein excretion and its relation to citrate in urine of stone-forming patients. Urology 53: 492-495, 1999.

    PubMed  CAS  Google Scholar 

  166. Kumar V, Pena DL, Farell VG, Lieske JC: Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 68: 1784-1792, 2005.

    PubMed  Google Scholar 

  167. Plummer DR. Noorazar S, Obatomi DK, Haslan JD. Assessment of renal injury by urinary enzymes. Uremia Invest 1985; 9: 97-102.

    PubMed  CAS  Google Scholar 

  168. Dubach UC, LeHir M. Conical evaluation of the diagnostic use of urinary enzymes. Contrib Nephrol 1984; 42: 74-80.

    PubMed  CAS  Google Scholar 

  169. Scherberich JE: Urinary proteins of tubular origin: basic immunological and clinical aspects. Am J Nephrol 1990; 10: 43-51.

    PubMed  Google Scholar 

  170. Westhuyzen J, Endre ZH, Reece G, Reith DM, Saltissie D, Morgan TJ: Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol Dial Transplant 2003; 18: 543-551.

    PubMed  CAS  Google Scholar 

  171. Mutti A. Detection of renal disease in humans. Developing markers and methods. Toxicol Lett 1989; 46: 177-191.

    PubMed  CAS  Google Scholar 

  172. Vanderlinde RE. Urinary enzymes measurements of renal disorders. Ann Clin Lab Sci 1981; 11: 189-201.

    PubMed  CAS  Google Scholar 

  173. Maruhn D, Fuchs I, Mues G, Bock KD. Normal limits of excretion of eleven enzymes. Clin Chem 1976; 22: 1567-1574.

    PubMed  CAS  Google Scholar 

  174. Koenig H, Goldstone A, Hughes C. Lysosomal enzymuria in the testosterone treated mouse. Lab Invest 1978; 39: 329-341.

    PubMed  CAS  Google Scholar 

  175. Ceriotti G. A new look at the measurement and interpretation of enzyme assays. Ann Clin Biochem 1976; 13: 345-353.

    PubMed  CAS  Google Scholar 

  176. Dubach UC, LeHir M, Gandhi R. Use of urinary enzymes as markers of nephrotoxicity. Toxicol Lett 1988; 46: 193-196.

    Google Scholar 

  177. Tolkoff-Rubin NE, Rubin RH, Bonventre JV: Noninvasive renal diagnostic studies. Clin Lab Med 1988; 8: 507-526.

    PubMed  CAS  Google Scholar 

  178. Price RG. Urinalysis to exclude and monitor nephrotoxicity. Clinica Chimica Acta 2000; 297: 173-182.

    CAS  Google Scholar 

  179. Rosalki SB, Wilkinson JH. Urinary lactic dehydrogenase in renal disease. Lancet 1959; 2: 327-328.

    PubMed  CAS  Google Scholar 

  180. Bosomworth MP, Aparicio SR, Hay AWM. Urine N-acetyl-[beta]-d-glucosaminidase-a marker of tubular damage? Nephrol Dial Transplant 1999; 14: 620-626.

    PubMed  CAS  Google Scholar 

  181. Price RG. The role of NAG (N-acetyl-beta-d-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Clin Nephrol 1992; 38: S14-S19.

    PubMed  Google Scholar 

  182. Marchewka Z, Kuzniar J, Dlugosz A. Enzymuria and alpha-2-microalbuminuria in the assessment of the influence of proteinuriaon the progression of glomerulopathies. Int Urol Nephrol 2001; 33: 673-676.

    PubMed  CAS  Google Scholar 

  183. Ikenaga H, Suzuki H, Ishii N, Itoh H, Saruta T. Enzymuria in noninsulin dependent diabetic patients: signs of tubular cell dysfunction. Clin Sci 1993; 84: 469-475.

    PubMed  CAS  Google Scholar 

  184. Mohammadi-Karakani A, Asgharzadeh-Haghighi S, Ghazi-Khansari M, Hosseini R. Determination of urinary enzymes as a marker of early renal damage in diabetic patients. J Clin Lab Anal. 2007; 21(6): 413-7.

    PubMed  CAS  Google Scholar 

  185. Mattenheimer H. Enzymes in renal disease. Ann Clin Lab Sci 1977; 7: 422-432.

    PubMed  CAS  Google Scholar 

  186. Davey PG, Cowley DM, Geddes AM, Terry J. Clinical evaluation of β2-microglobulin, murmamidase, and alanine aminopeptidase as markers of gentamicin nephroxicity. Contrib Nephrol 1984; 42: 100-106.

    PubMed  CAS  Google Scholar 

  187. Scherberich JE, Mondorf W, Falkenberg FW, Pierard D, Scoeppe W. Monitoring drug nephrotoxicity. Contrib Nephrol 1984; 42: 81-92.

    PubMed  CAS  Google Scholar 

  188. Mueller PW, Smith SJ, Steimberg KK, Thun MJ. Chronic renal tubular effects in relation to urine cadmium levels. Nephron 1989; 52: 45-54.

    PubMed  CAS  Google Scholar 

  189. Porter GA. Contrast associated nephropathy. Am J Cardiol 1989; 64: E22-E26.

    Google Scholar 

  190. Mueller PW, Delaney V, MacNeil ML, Caudill SP, Steimberg KK. Indicators of acute renal transplant rejection in patients treated with cyclosporine. Clin Chem 1990; 36: 759-764.

    PubMed  CAS  Google Scholar 

  191. Tataranni G, Zavagli G, Farinelli R, Malacarne F, Fiocchi O, Nunzi L, Scaramuzzo P, Scorrano R. Usefulness of the assessment of urinary enzymes and microproteins in monitoring cyclosporine nephrotoxicity. Nephron 1992; 60: 314-318.

    PubMed  CAS  Google Scholar 

  192. Zafirovska KG, Bogdanovska SV, Marina N, Gruev T, Lozance L. Urinary excretion of three specific renal tubular enzymes in patients treated with nonsteroidal anti-inflammatory drugs (NSAID). Renal Failure 1993; 15: 51-54.

    PubMed  CAS  Google Scholar 

  193. Donadio C, Tramont G, Giordani R, Lucchetti A, Calderazzi A, Ferrari P, Bioanchi C. Renal effects and nephrotoxicity of contrast media in renal patients. Contrib Nephrol 1993; 101: 241-250.

    PubMed  CAS  Google Scholar 

  194. Naghibi B, Ghafghazi T, Hajhashemi V, Talebi A. Vancomycin-induced nephrotoxicity in rats: is enzyme elevation a consistent finding in tubular injury? J Nephrol. 2007; 20: 482-488.

    PubMed  CAS  Google Scholar 

  195. Taracha E, Habrat B, Lehner M, Wislowska A, Woronowicz BT, Bogulas M, Charewicz J, Markuszewski C, Plaźnik A. Alanine aminopeptidase activity in urine: a new marker of chronic alcohol abuse? Alcohol Clin Exp Res. 2004; 28: 729-35.

    PubMed  CAS  Google Scholar 

  196. Lauwerys RR, Bernard A. Early detection of the nephrotoxic effects of industrial chemicals: state of the art and future prospects. Am J Ind Med 1987; 11: 275-285.

    PubMed  CAS  Google Scholar 

  197. Trof RJ, Di Maggio F, Leemreis J, Groeneveld AB. Biomarkers of acute renal injury and renal failure. Shock 206; 26: 245-253.

    Google Scholar 

  198. Verpooten GF, Nuyts GD, Hoylaerts MF, Nouwen EJ, Vssanyiova Z, Dlhopolcek P, De Broe ME. Immunoassay in urine of a specific marker for proximal tubular S3 segment. Clin Chem 1992; 38: 642-647.

    PubMed  CAS  Google Scholar 

  199. Nuyts GD, Roels HA, Verpooten GF, Bernard AM, Lauwerys RR, De Broe ME. Intestinal type alkaline phosphatase in urine as an indicator of mercury induced effects on the S3 segment of the proximal tubule. Nephrol Dial Transplant 1992; 7: 225-229.

    PubMed  CAS  Google Scholar 

  200. Verpooten GF, Nouwen EJ, Hoylaerts MF, Hendrix PG, De Broe ME. Segment specific localization of intestinal type alkaline phosphatase in human kidney. Kidney Int 1989; 36: 617-625.

    PubMed  CAS  Google Scholar 

  201. Nouwen EJ, De Broe ME. Human intestinal versus tissue-nonspecific alkaline phosphatase as complementary urinary markers for the proximal tubule. Kidney Int 1994; 46 (Suppl 47): S43-51.

    Google Scholar 

  202. Taha MA, Shokeir AA, Osman HG, Abd El-Aziz Ael-A, Farahat SE. Obstructed versus dilated nonobstructed kidneys in children with congenital ureteropelvic junction narrowing: role of urinary tubular enzymes. J Urol. 2007; 178: 640-6.

    PubMed  CAS  Google Scholar 

  203. Kilty C, Doyle S, Hassett B, Manning F.Glutathione S-transferases as biomarkers of organ damage: applications of rodent and canine GST enzyme immunoassays. Chem Biol Interact. 1998; 111-112: 123-3 5.

    PubMed  CAS  Google Scholar 

  204. Sundberg AGM, Appelkvist E-L, Backman L, Dallner G: Quantitation of glutathione S-transferase-pi in the urine by radioimmunoassay. Nephron 1994; 66: 162-169.

    PubMed  CAS  Google Scholar 

  205. Harrison DJ, Kharbanda R, Cunningham DS, McClellan LI, Hayes JD: Glutathione S-transferase isoenzymes in the human kidney: basis for possible markers of renal injury. J Clin Pathol 1989; 42: 624-629.

    PubMed  CAS  Google Scholar 

  206. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30: 445-600.

    PubMed  CAS  Google Scholar 

  207. Branten AJ, Mulder TP, Peters WH, Assmann KJ, Wetzels JF. Urinary excretion of glutathione S transferase ω and pi in patients with proteinuria: reflection of the site of tubular injury. Nephron 2000; 85: 120-126.

    PubMed  CAS  Google Scholar 

  208. Shaw M. The use of histologically defined specific biomarkers in drug development with special reference to the glutathione S-transferases. Cancer Biomark. 2005; 1: 69-74.

    PubMed  CAS  Google Scholar 

  209. Kharasch ED, Hoffman GM, Thorning D, Hankins DC, Kilty CG. Role of renal cysteine conjugate β-lyase pathway in inhaled compound A nephrotoxicity in rats. Anesthesiology 1998; 88: 1624-1633.

    PubMed  CAS  Google Scholar 

  210. Rozell B, Hansson HA, Guthenberg C, Tahir MK, Mannervik B. Glutathione transferases of classes alpha, mu and pi show selective expression in different regions of rat kidney. Xenobiotica (1993) 23(8): 835-849.

    Article  PubMed  CAS  Google Scholar 

  211. Sundberg AG, Appelkvist EL, Backman L, Dallner G. Urinary pi-class glutathione transferase as an indicator of tubular damage in the human kidney. Nephron 1994; 67: 308-316.

    PubMed  CAS  Google Scholar 

  212. Goldberg ME, Cantillo J, Gratz I et al. Dose of compound A, not sevoflurane, determines changes in the biochemical markers of renal injury in volunteers. Anesth. Analg. (1999) 88: 437-445.

    PubMed  CAS  Google Scholar 

  213. Falkenberg, F. et al. Papillary antigens as markers of papillary toxicity. I Identification and characterisation of rat papillary antigens with monoclonal antibodies. Arch. Toxicol. 1996; 71, 80-92.

    PubMed  CAS  Google Scholar 

  214. Hildebrand, H. et al. Urinary antigens as markers of papillary toxicity. II Application of monoclonal antibodies for the determination of papillary antigens in rat urine. Arch. Toxicol. 1999; 73, 233-2.

    PubMed  CAS  Google Scholar 

  215. Kilty CG, Keenan J, Shaw M Histologically defined biomarkers in toxicology. Expert Opin Drug Saf. 2007; 6: 207-215.

    PubMed  CAS  Google Scholar 

  216. Dinarello CA. Historical insights into cytokines. Eur J Immunol. 2007; Suppl 1: S34-45.

    Google Scholar 

  217. Kovarik P, Sauer I, Schaljo B. Molecular mchanisms of the anti-inflammatory functions of interferons. Immunobiology. 2008; 212: 895-901.

    Google Scholar 

  218. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors, Immunol. Rev. 2004; 202: 8-32.

    PubMed  CAS  Google Scholar 

  219. Baron S, Tyring SK, Fleischmann WR Jr, Coppenhaver DH, Niesel DW, Klimpel GR, Stanton GJ, Hughes TK. The interferons. Mechanisms of action and clinical applications. JAMA 1991; 266: 1375-1383.

    PubMed  CAS  Google Scholar 

  220. Schrader JW. Interleukin is as interleukin does. Trends in Immunology 2002; 23: 573-574.

    PubMed  CAS  Google Scholar 

  221. Rosenberg SA. Interleukin 2 for patients with renal cancer. Nature Clinical Practice Oncology 2007; 4: 497.

    PubMed  Google Scholar 

  222. Sandrini S. Use of IL-2 receptor antagonists to reduce delayed graft function following renal transplantation: a review. Clinical Transplantation 2005; 19: 705-710.

    PubMed  Google Scholar 

  223. Horii Y, Iwano M, Hirata E, Shiiki H, Fujii Y, Dohi K, Ishikawa H. Role of interleukin-6 in the progression of mesangial proliferative glomerulonephritis. Kidney Int 1993; 43 (Suppl 39): S71-S75.

    CAS  Google Scholar 

  224. Coleman D, Ruef C. Interleukin 6: an autocrine regulator of mesangial cell growth. Kidney Int 1992; 41: 604-611.

    PubMed  CAS  Google Scholar 

  225. Frank J, Engler-Blum G, Rodemann HP, Muller GA. Human tubular cells as a cytokine source: PDGF-B, GM-CSF and iL-6 mRNA expression in vitro. Exp Nephrol 1993; 1: 26-35.

    PubMed  CAS  Google Scholar 

  226. Hirano T, Akira S, Taga T, Kishimoto T. Biological and clinical aspects of interleukin 6. Immunol today 1990; 11: 443-449.

    PubMed  CAS  Google Scholar 

  227. Fukatsu A, Matsuo S, Tamai H, Sakamoto N, Matsuda T, Hirano T. Distribution of interleukin-6 in normal and diseased human kidney. Lab Invest 1991; 65: 61-66.

    PubMed  CAS  Google Scholar 

  228. Ohta K, Takano N, Seno A et al. Detection and clinical usefulness of urinary interleukin-6 in the diseases of the kidney and urinary tract. Clin Nephrol 1992; 38: 185-189.

    PubMed  CAS  Google Scholar 

  229. Ranieri E, Gesualdo L, Petrarulo E, Schena FP. Urinary IL-6/EGF ratio: a useful prognostic marker of renal damage in IgA neph-ropathy. Kidney Int 1996; 50: 1990-2001.

    PubMed  CAS  Google Scholar 

  230. Di Paolo S, Gesualdo L, Stallone G, Ranieri E, Schena FP. Renal expression and urinary concentration of EGF and IL-6 in acutely dysfuctioning transplanted patients. Nephrol Dial Transplant 1997; 12: 2687-2693.

    PubMed  CAS  Google Scholar 

  231. Jutley RS, Youngson GG, Eremin O, Ninan GK. Serum cytokine profile in reflux nephropathy. Ped Surg Interna 2000; 16: 64-68.

    CAS  Google Scholar 

  232. Dinarello CA. Interleukin-1β. Crit. Care Med. 2005; 33: S460-62.

    PubMed  Google Scholar 

  233. Daphna-Iken D, Morrison AR. Interleukin-1β induces interstitial collagenase gene expression, and protein secretion in renal mesangial cells. Am J Physiol Renal Fluid Electrolyte Physiol 1995; 269: F831-F837.

    CAS  Google Scholar 

  234. Ikeda M, Ikeda U, Oohara T, Takeda K, Kano S. Recombinant interleukin-1 inhibits the growth of rat mesangial cells in culture. Clin Exp Immunol 1991; 83: 149-153.

    Article  PubMed  CAS  Google Scholar 

  235. Pawluczyk IZ, Harris KP. Cytokine interactions promote synergistic fibronectin accumulation by mesangial cells. Kidney Int 1998; 54: 62-70.

    PubMed  CAS  Google Scholar 

  236. Sheu JN, Chen MC, Cheng SL, Lee IC, Chen SM, Tsay GJ. Urine interleukin-1beta in children with acute pyelonephritis and renal scarring. Nephrology (Carlton). 2007; 12: 487-93.

    CAS  Google Scholar 

  237. Gauer S, Sichler O, Obermüller N, Holzmann Y, Kiss E, Sobkowiak E, Pfeilschifter J, Geiger H, Mühl H, Hauser IA. IL-18 is expressed in the intercalated cell of human kidney. Kidney Int. 2007; 72: 1081-7.

    PubMed  CAS  Google Scholar 

  238. Gracie JA, Robertson SE, McInnes IB Interleukin-18. J Leukoc Biol. 2003; 73: 213-24.

    PubMed  CAS  Google Scholar 

  239. Melnikov VY, Ecder T, Fantuzzi G, et al. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest 2001; 107: 1145-1152.

    PubMed  CAS  Google Scholar 

  240. Calvani N, Richards HB, TucciM, Pannarale G, Silvestris F. Up-regulation of IL-18 and prominence of Th1 immune response as a hallmark of lupus nephritis. Clin Exp Immunol 2004; 138: 171-178.

    PubMed  CAS  Google Scholar 

  241. Chiang CK, hsu SP, Pai MF et al. Plasma interleukin-18 levels in chronic renal failure and continuous ambulatory peritoneal dialysis. Blood Purif 2005; 23: 144-148.

    PubMed  CAS  Google Scholar 

  242. Liang D, Liu H-F, Yao C-W, Liu H-Y, Huang-Fu C-M, Chen X-W, Du S-H, Chen X-W. Effects of interleukin on injury and activation of human proximal tubular epithelial cells. Nephrology 2007; 12: 53-61.

    PubMed  CAS  Google Scholar 

  243. Melnikov VY, Ecder T, Fantuzzi G. Impaired IL-18 processing protects caspase-1 deficient mice from ischemic acute renal failure. J Clin Invest 2001; 107: 1145-1152.

    PubMed  CAS  Google Scholar 

  244. Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 2005; 16: 3046-3052.

    PubMed  CAS  Google Scholar 

  245. Parikh CR, Jani A, Melnikov VY, et al. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 2004; 43: 405-414.

    PubMed  CAS  Google Scholar 

  246. Parikh CR, Jani A, Mishra J, et al. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 2006; 6: 1639-1645.

    PubMed  CAS  Google Scholar 

  247. Hu H, Aizenstein BK, Puchalski Am Burmania JA, HarnawyMM, Knechtle SJ. Elevation of CXCR3-binding chemokines in urine indicated acute renal allograft rejection Am J Transpl.2004; 432-437.

    Google Scholar 

  248. Washburn KK, Zappitelli M, Arikan AA, Loftis L, Yalavarthy R, Parikh CR, Edelstein CL, Goldstein SL. Urinary Interleukin-18 is an Acute Kidney Injury Biomarker in Critically Ill Children. Nephrol Dial Transplant. 2007 Oct 1.

    Google Scholar 

  249. Araki S, Haneda M, Koya D, Sugimoto T, Isshiki K, Chin-Kanasaki M, Uzu T, Kashiwagi A. Predictive impact of elevated serum level of IL-18 for early renal dysfunction in type 2 diabetes: an observational follow-up study. Diabetologia. 2007; 50: 867-73.

    PubMed  CAS  Google Scholar 

  250. Gaffen SL. Biology of recently discovered cytokines: Interleukin-17-aunique inflammatory cytokine with roles in bone biology and arthritis. Arthritis Res Ther 2004; 6: 240-247.

    PubMed  CAS  Google Scholar 

  251. Yu JJ, Gaffen SL. Interleukin-17: a novel inflammatory cytokniwe that bridges innate and adaptive immunity. Front Biosci 2008; 13: 170-177.

    PubMed  CAS  Google Scholar 

  252. Matsumoto K, Kanmatsuse K. Increased urinary excretion of interleukin-17 in nephrotic patients. Nephron 91 : 243-249, 2002.

    PubMed  CAS  Google Scholar 

  253. Gomez-Chiarri M, Ortiz A, Seron D, Gonzalez E, Egido J. The intercrine superfamily and renal disease. Kidney Int 1993; 43 (Suppl 39): S81-S85.

    Google Scholar 

  254. Wada T, Yokoyama H, Tomosugi N, Hisada Y, Ohta S, Naito T, Kobayashi K-I, Mukaida N, Matsushima K. Detection of urinary interleukin-8 in glomerular disease. Kidney Int 1994; 46: 455-460.

    PubMed  CAS  Google Scholar 

  255. Gormley SM, McBride WT, Armstron MA, Young IS, McClean E, MacGowna SW, Campalani G, McMurry TJ. Plasma and Urinary cytokine homeostasis and renal dysfunction during cardiac surgery. Anesthesiology 2000; 93: 1210-1216.

    PubMed  CAS  Google Scholar 

  256. Baud L, Oudinet JP, Bens M, Noe L, Peraldi MN, Etienne J, Ardaillou R. Production of tumor necrosis factor by rat mesangial cells in response to bacterial lipopolysaccharide. Kidney Int 1989; 35: 1111-1118.

    PubMed  CAS  Google Scholar 

  257. Baud L, Ardaillou R. Tumor necrosis factor in renal injury, Miner Electrolyte Metab 21 (1995), pp. 336-341.

    PubMed  CAS  Google Scholar 

  258. Navarro JF, Mora-Fernández C. The role of TNF-alpha in diabetic nephropathy: pathogenic and therapeutic implications. Cytokine Growth Factor Rev. 2006; 17: 441-50.

    PubMed  CAS  Google Scholar 

  259. Baud L, Fouqueray B, Philippe C, Amrani A. Tumor necrosis factor α and mesangial cells. Kidney Int 1992; 41: 600-603.

    PubMed  CAS  Google Scholar 

  260. Radeke HH, Meier B, Topley N, Floge J, Habermehl GG, Resch K. Interleukin l-β and tumor necrosis factor-α induce oxygen radical formation in mesangial cells. Kidney Int 1990; 37: 767-775.

    PubMed  CAS  Google Scholar 

  261. Zoja C, Wang JM, Bettoni S, Sironi M, Renzi D, Chiaffarino F, Abboud HE, Van Damme J, Mantovani A, Remuzzi G, Rambaldi A. Interleukin-1b and tumor necrosis factor-α induce gene expression and production of leukocyte chemotactic factors, colonystimulating factors, and interleukin-6 in human mesangial cells. Am J Pathol 1991; 138: 991-1003.

    PubMed  CAS  Google Scholar 

  262. Tomosugi N, Cashman S, Hay H, Pusey C, Evans D, Shaw A, Rees A. Modulation of antibodiy-mediated glomerular injury in vivo by bacterial lipopolysaccharide, tumor necrosis factor, and IL-l. J Immunol 1989; 142: 3083-3090.

    PubMed  CAS  Google Scholar 

  263. Brockhaus M, Bar-Khayim Y, Gurwicz S, Frensdorff A, Haran N. Plasma tumor necrosis factor soluble receptors in chronic renal failure. Kidney Int 1992; 42: 663-667.

    PubMed  CAS  Google Scholar 

  264. Boucher A, Droz, D, Adafer E, Noel L. Characterization of Mononuclear Cell Subsets in Renal Cellular Interstitial Infiltrates. Kidney Int 1986; 29: 1043-1049.

    PubMed  CAS  Google Scholar 

  265. Danoff TM. Chemokines in Interstitial Injury. Kidney Int 1998; 53: 1807-1808.

    PubMed  CAS  Google Scholar 

  266. Prodjosudjadi,W, Gerritsma JSJ, Klar-Mohamad N, Gerritsen AF, Bruijn J.A., Daha MR, Van Es LA. Production and cytokine-mediated regulation of monocyte chemoattractant protein-1 by human proximal tubular epithelial cells. Kidney Int 1995; 48: 1477-1486.

    PubMed  CAS  Google Scholar 

  267. Lloyd CM, Minto AW, Dorf ME, Proudfoot A, Wells TNC, Salant DJ, Gutierrez-Ramos JC. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med 1997; 185: 1371-1380.

    PubMed  CAS  Google Scholar 

  268. Wang Y, Chen J, Chen L, Tay Y, Rangan GK, Harris DCH. Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol 1997; 8: 1537-1545.

    PubMed  CAS  Google Scholar 

  269. Eddy, A.A.; Giachelli, C.M. Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein overload proteinuria. Kidney Int 1995; 47: 1546-1557.

    PubMed  CAS  Google Scholar 

  270. Morii T, Fujita H, Narita T, Koshimura J, Shimotomai T, Fujishima H, Yoshioka N, Imai H, Kakei M, Seiki Ito S. increased urinary excretion of monocyte chemoattractant protein-1 in proteinuric renal diseases. Ren Fail 2003; 25: 439-444.

    PubMed  CAS  Google Scholar 

  271. Rovin BH, Song H, Birmingham DJ, Hebert LA, Yu CY, Nagaraja HN: Urine chemokines as biomarkers of human systemic lupus erythematosus activity. J Am Soc Nephrol 2005; 16 : 467-473.

    PubMed  CAS  Google Scholar 

  272. Rabb HA. Cell adhesion molecules and the kidney. Am J Kidney Dis 1994; 23: 155-166.

    PubMed  CAS  Google Scholar 

  273. Perantoni AO. Cell adhesion molecules in the kidney: from embryo to adult. Exp Nephrol. 1999; 7: 80-102.

    PubMed  CAS  Google Scholar 

  274. Müller GA, Müller CA, Markovic-Lipkovski J Adhesion molecules in renal diseases. Ren Fail. 1996; 18: 711-24.

    Google Scholar 

  275. Segawa C, Wada T, Takaeda M, Furuichi K, Matsuda I, Hisada Y, Ohta S, Takasawa K, Takeda S, Kobayashi K, Yokoyama H. 1997. In situ expression and soluble form of P-selectin in human glomerulonephritis. Kidney Int 1997; 52: 1054-1063.

    PubMed  CAS  Google Scholar 

  276. Takaeda M, Yokoyama H, Segawa-Takaeda C, Wada T, Kobayashi K. 2002. High endothelial venule-like vessels in the interstitial lesions of human glomerulonephritis. Am J Nephrol. 22: 48-57.

    PubMed  Google Scholar 

  277. Tipping PG, Huang XR, Berndt MC, Holdsworth SR. A role for P selectin in complement-independent neutrophil-mediated glomerular injury. Kidney Int. 1994; 46: 79-88.

    PubMed  CAS  Google Scholar 

  278. Testa A, Benedetto FA, Spoto B, Pisano A, Tripepi G, Mallamaci F, Malatino LS, Zoccali CThe E-selectin gene polymorphism and carotid atherosclerosis in end-stage renal disease. Nephrol Dial Transplant. 2006; 21: 1921-6.

    PubMed  CAS  Google Scholar 

  279. Malatino LS, Stancanelli B, Cataliotti A, Bellanuova I, Fatuzzo P, Rapisarda F, Leonardis D, Tripepi G, Mallamaci F, Zoccali C. Circulat-ing E-selectin as a risk marker in patients with end-stage renal disease. J Intern Med. 2007; 262: 479-87.

    PubMed  CAS  Google Scholar 

  280. Watanabe Y, Inoue T, Okada H, Kotaki S, Kanno Y, Kikuta T, Suzuki HImpact of selectin gene polymorphisms on rapid progression to end-stage renal disease in patients with IgA nephropathy. Intern Med. 2006; 45: 947-51.

    PubMed  Google Scholar 

  281. Lai KN, Wong KC, Li PK, Lai CK, Chan CH, Lui SF, Chui YL, Haskard DO. Circulating leukocyte-endothelial adhesion molecules in IgA nephropathy. Nephron. 1994; 68: 294-300.

    PubMed  CAS  Google Scholar 

  282. Roy-Chaudhury P, Wu B, King G, Campbell M, Macleod AM, Haites NE, Simpson JG, Power DA. Adhesion molecule interactions in human glomerulonephritis: importance of the tubulointerstitium. Kidney Int. 1996; 49: 127-34.

    PubMed  CAS  Google Scholar 

  283. Kemler R. Classical cadherins. Semin Cell Biol 1992; 3: 149−155.

    Article  PubMed  CAS  Google Scholar 

  284. Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 2000; 299: 551−572.

    PubMed  CAS  Google Scholar 

  285. Nouwen EJ, Dauwe S, van der Biest I, De Broe ME. Stage-and segment-specific expression of cell-adhesion molecules N-CAM, A-CAM, and L-CAM in the kidney. Kidney Int 1993; 44: 147−158.

    PubMed  CAS  Google Scholar 

  286. Paul R, Ewing CM, Robinson JC, Marshall FF, Johnson KR, Wheelock MJ & Isaacs WB. Cadherin-6, a cell adhesion molecule specifi-cally expressed in the proximal renal tubule and renal cell carcinoma. Cancer Res 1997; 57: 2741−2748.

    PubMed  CAS  Google Scholar 

  287. Thomson RB, Igarashi P, Biemesderfer D, Kim R, Abu-Alfa A, Soleimani M & Aronson PS. Isolation and cDNA cloning of Ksp-cad-herin, a novel kidney-specific member of the cadherin multigene family. J Biol Chem 1995; 270: 17594−17601.

    PubMed  CAS  Google Scholar 

  288. Igarashi P. Following the expression of a kidney-specific gene from early development to adulthood. Nephron Exp Nephrol 2003; 94: e1−e6.

    PubMed  Google Scholar 

  289. Kuehn A, Paner GP, Skinnider BF, Cohen C, Datta MW, Young AN, Srigley JR, Amin MB. Expression analysis of kidney-specific cadherin in a wide spectrum of traditional and newly recognized renal epithelial neoplasms: diagnostic and histogenetic implications. Am J Surg Pathol. 2007; 31: 1528-33.

    PubMed  Google Scholar 

  290. Shen SS, Krishna B, Chirala R, Amato RJ, Truong LD. Kidney-specific cadherin, a specific marker for the distal portion of the ne-phron and related renal neoplasms. Mod Pathol. 2005; 18: 933-40.

    PubMed  CAS  Google Scholar 

  291. Thedieck C, Kuczyk M, Klingel K, Steiert I, Müller CA, Klein G. Expression of Ksp-cadherin during kidney development and in renal cell carcinoma British Journal of Cancer. 2005; 92, 2010-2017.

    CAS  Google Scholar 

  292. Brady HR. Leukocyte adhesion molecules and kidney disease. Kidney Int 1994: 45: 1285-1300.

    PubMed  CAS  Google Scholar 

  293. Bosman FT. Integrins: cell adhesives and modulators of cell function. Histochem J 1993; 25: 469-477.

    PubMed  CAS  Google Scholar 

  294. Ruoslahti E, Noble NA, Kagami S, Border WA. Integrins. Kidney Int 1994; 45 (Suppl 44): S17-S22.

    Google Scholar 

  295. Burridge K, Fath K, Kelly T, Nuckolis B, Turner C. Foca adhesion: transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann Rev Cell BioI 1988; 4: 487-525.

    CAS  Google Scholar 

  296. Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV. Antibody to intercellular adhesion molecule I protects the kidney against ischemic injury. Proc Natl Acad Sci 1994; 91: 812-816.

    PubMed  CAS  Google Scholar 

  297. Baraldi A, Zambruno G, Furci L et al. Beta 1 and beta 3 integrin upregulation in rapidly progressive glomerulonephritis. Nephrol. Dial. Transplant. 1995; 10: 1155-61.

    PubMed  CAS  Google Scholar 

  298. Kagami S, Kondo S. Beta1-integrins and glomerular injury. J Med Invest. 2004; 51: 1-13.

    PubMed  Google Scholar 

  299. Simon EE. Potential role of integrins in acute renal failure. Nephrol Dial Transplant 1994; 9 (Suppl 4): 26-33.

    PubMed  Google Scholar 

  300. Seron D, Cameron JS, Haskard DO. Expression of VCAM-1 in the normal and diseased kidney. Nephrol Dial Transplant 1991; 6: 917-922.

    PubMed  CAS  Google Scholar 

  301. Nakatani, K., H. Fujii, H. Hasegawa, M. Terada, N. Arita, M. R. Ito, M. Ono, S. Takahashi, K. Saiga, S. Yoshimoto, et al 2004. Endothelial adhesion molecules in glomerular lesions: association with their severity and diversity in lupus models. Kidney Int. 65: 1290-1300.

    PubMed  CAS  Google Scholar 

  302. Seron, D., J. S. Cameron, D. O. Haskard. 1991. Expression of VCAM-1 in the normal and diseased kidney. Nephrol. Dial. Transplant. 6: 917-922.

    PubMed  CAS  Google Scholar 

  303. Wuthrich, R. P.. 1992. Vascular cell adhesion molecule-1 (VCAM-1) expression in murine lupus nephritis. Kidney Int. 42: 903-914.

    PubMed  CAS  Google Scholar 

  304. Ikeda Y, Fujimoto T, Ameno M, Shiiki H, Dohi K. Relationship between lupus nephritis activity and the serum level of soluble VCAM-1. Lupus. 1998; 7: 347-54.

    PubMed  CAS  Google Scholar 

  305. Molad Y, Miroshnik E, Sulkes J, Pitlik S, Weinberger A, Monselise Y. 2002. Urinary soluble VCAM-1 in systemic lupus erythematosus: a clinical marker for monitoring disease activity and damage. Clin. Exp. Rheumatol. 20: 403-406.

    PubMed  CAS  Google Scholar 

  306. Wu T, Xie C, Wang HW, Zhou XJ, Schwartz N, Calixto S, Mackay M, Aranow C, Putterman C, Mohan C. Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in multiple murine lupus strains and human lupus nephritis. J Immunol. 2007; 179: 7166-7175.

    PubMed  CAS  Google Scholar 

  307. van Timmeren M.M, van den Heuvel M.C, Bailly V, Bakker S.J, van Goor H, Stegeman CA. Tubular kidney injury molecule-1 (KIM-1) in human renal disease J Pathol 2007; 212: 209-217.

    PubMed  CAS  Google Scholar 

  308. Zhang Z, Humphreys BD, Bonventre JV. Shedding of the urinary biomarker kidney injury molecule-1 (KIM-1) is regulated by MAP kinases and juxtamembrane region. J Am Soc Nephrol. 2007; 18: 2704-14.

    PubMed  CAS  Google Scholar 

  309. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M: Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 1998; 273: 4135-4142.

    PubMed  CAS  Google Scholar 

  310. Ichimura T, Hung CC, Yang SA, et al. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 2004; 286: F552-F563.

    PubMed  CAS  Google Scholar 

  311. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury Kidney Int 2002; 62: 237-244.

    PubMed  CAS  Google Scholar 

  312. Lin F, Zhang PL, Yang XJ, Shi J, Blasick T, Han WK, Wang HL, Shen SS, Teh BT, Bonventre JV: Human kidney injury molecule-1 (hKIM-1): A useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg Pathol 31 : 371-381, 2007.

    PubMed  Google Scholar 

  313. Han WK, Alinani A, Wu CL, Michaelson D, Loda M, McGovern FJ, Thadhani R, Bonventre JV: Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma. J Am Soc Nephrol 16 : 1126-1134, 2005.

    PubMed  CAS  Google Scholar 

  314. Perez-Rojas J, Blanco JA, Cruz C, Trujillo J, Vaidya VS, Uribe N, Bonventre JV, Gamba G, Bobadilla NA: Mineralocorticoid receptor blockade confers renoprotection in preexisting chronic cyclosporine nephrotoxicity. Am J Physiol Renal Physiol 292 : F131-F139, 2007.

    PubMed  CAS  Google Scholar 

  315. van Timmeren MM, Bakker SJ, Vaidya VS, Bailly V, Schuurs TA, Damman J, Stegeman CA, Bonventre JV, van Goor H: Tubular kidney injury molecule-1 in protein-overload nephropathy. Am J Physiol Renal Physiol 291 : F456-F464, 2006.

    PubMed  CAS  Google Scholar 

  316. Kuehn EW, Park KM, Somlo S, Bonventre JV: Kidney injury molecule-1 expression in murine polycystic kidney disease. Am J Physiol Renal Physiol 283 : F1326-F1336, 2002.

    PubMed  CAS  Google Scholar 

  317. Liangos O, Perianayagam MC, Vaidya VS, Han WK, Wald R, Tighiouart H, MacKinnon RW, Li L, Balakrishnan VS, Pereira BJ, Bonventre JV, Jaber BL. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure J Am Soc Nephrol 2007; 18: 904-912.

    PubMed  CAS  Google Scholar 

  318. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV: Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int 62 : 237-244, 2002.

    PubMed  CAS  Google Scholar 

  319. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV: Urinary kidney injury molecule-1: A sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 2006; 290 : F517-F529.

    PubMed  CAS  Google Scholar 

  320. Feldstein C, Romero C. Role of endothelins in hypertension. Am J Ther. 2007; 14: 147-53.

    PubMed  Google Scholar 

  321. Hoyer D, Waeber C, Palacios JM. 125I endothelin-1 binding sites: autoradiographic studies in the brain and periphery of various species including humans. J Cardiovasc Pharmacol. 1989; 13(Suppl 5): S162-S165.

    Article  PubMed  CAS  Google Scholar 

  322. Gandhi CR, Berkowitz DE. Watkis D. Endothelins: biochemistry and pathophysiologic actions. Anesthesiology 1994; 80: 892-905.

    PubMed  CAS  Google Scholar 

  323. Garcia NH, Garvin JL. Endothelin’s biphasic effect on fluid absorption in the proximal straight tubule and its inhibitory cascade. J Clin Invest. 1994; 93: 2572-2577.

    PubMed  CAS  Google Scholar 

  324. Plato CF, Stoos BA, Wang D, et al. Endogenous nitric oxide inhibits chloride transport in the thick ascending limb. Am J Physiol. 1999; 276: F159-F163.

    PubMed  CAS  Google Scholar 

  325. Simonson MS, Wann S, Mene P, Dubyak M, Kester Y, Nakazato Y, Sedor JR, Dunn MJ. Endothelin stimulates phospholipase C, Na/H exchange, c-fos expression and mitogenesis in rat mesangial cells. J Clin Invest 1989; 83: 708-712.

    PubMed  CAS  Google Scholar 

  326. Ohta K, Hirata Y, Shichiri M, Kanno K, Emori T, Tomita K, Marumo F. Urinary excretion of endothelin-1 in normal subjects and patients with renal disease. Kidney Int 1991; 39: 307-311.

    PubMed  CAS  Google Scholar 

  327. Kon V, Sugiura M, Inagami T, Harvie BR, Ichikawa I, Hoover RL. Role of endothelin in cyclosporine-induced glomerular dysfunc-tion. Kidney Int 1990; 37: 1487-1491.

    PubMed  CAS  Google Scholar 

  328. Fujisaki K, Kubo M, Masuda K, Tokumoto M, Hirakawa M, Ikeda H, Matsui R, Matsuo D, Fukada K, Kanai H. Infusion of radiocontrastagents induces exaggerated release of urinary endothelinin patients with impaired renal function. Clin. Exp Nephrol. 2003; 7: 279-283.

    PubMed  CAS  Google Scholar 

  329. Abassi ZA, Klein H, Golomb E, Keiser HR. Urinary endothelin: a possible biological marker of renal damage. Am J Hypertens 1993; 6(12): 1046-1054.

    PubMed  CAS  Google Scholar 

  330. Lovis C, Mach F, Donati YRA, Bonventure JV, Polla BS. Heat shock proteins and the kidney. Renal Failure 1994; 16: 179-192.

    PubMed  CAS  Google Scholar 

  331. Muller M, Gauley J, Heikkila: Hydrogen peroxide induces heat shock protein and proto-oncogene mRNA accumulation in Xenopus laevis A6 kidney epithelial cells. Can j Physiol Pharmacol 2004; 82: 523-529.

    PubMed  CAS  Google Scholar 

  332. Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacology and Therapeutics 1998; 80: 183-201.

    PubMed  CAS  Google Scholar 

  333. Hassen W, Ayed-Boussema I, Bouslimi A, Bacha H. Heat shock protein (Hsp 70) response is not systematic to cell stress: case of the mycotoxin ochratoxin A. Toxicology 2007.

    Google Scholar 

  334. Soti C, Pal C, Papp B, Csermely P. Molecular chaperones as regulatory elements of cellular networks. Curr Opin Cell Biol 2005; 17 , pp. 210-215.

    PubMed  Google Scholar 

  335. Sun Y, MacRae TH. Small heat shock proteins: Molecular structure and chaperone function. Cell Mol Life Sci 2005; 62 , pp. 2460-2476.

    PubMed  CAS  Google Scholar 

  336. Sun Y, MacRae TH. The small heat shock proteins and their role in human disease. FEBS J 2005; 272 , pp. 2613-2627.

    PubMed  CAS  Google Scholar 

  337. Dvergsten J, Manivel JC, Correa-Rotter R, Rosenberg ME. Expression of clusterin in human renal diseases. Kidney Int 1994; 45: 828-835.

    PubMed  CAS  Google Scholar 

  338. Trougakos IP, Gonos ES. Clusterin/apolipoproyein J in human aging and cancer. Int J Biochem Cell Biol 2002; 34: 1430-48.

    PubMed  CAS  Google Scholar 

  339. Rosenberg ME, Silkensen J. Clusterin and the kidney. Exp Nephrol 1995; 3: 9-14.

    PubMed  CAS  Google Scholar 

  340. Rosenberg ME, Dvergsten J, Correa-Rotter R. Clusterin: an enigmatic protein recruited by diverse stimuli. J Lab Clin Med 1993; 121: 205-14.

    PubMed  CAS  Google Scholar 

  341. Parczyk K, Pilarsky C, Rachel U, Koch-BrandtC. Gp80 (clusterin; TRPM-2) mRNA level is enhanced in human renal clear cell carcinomas. J Cancer Res Clin Oncol 1994; 120: 186-8.

    PubMed  CAS  Google Scholar 

  342. Trougakos IP, Gonos ES. Regulation of clusterin/apolipoprotein J, a functional homologue to the small heat shock proteins, by oxidative stress in ageing and age-related diseases. Free Radic Res. 2006; 40: 1324-1334.

    PubMed  CAS  Google Scholar 

  343. Takase O, Minto AW, Puri TS, Cunningham PN, Jacob A, Hayashi M, Quigg RJ. Inhibition of NF-kappaB-dependent Bcl-xL expression by clusterin promotes albumin-induced tubular cell apoptosis. Kidney Int. 2007 Dec 12.

    Google Scholar 

  344. Kurahashi T, Muramaki M, Yamanaka K, Hara I, Miyake H. Expression of the secreted form of clusterin protein in renal cell carcinoma as a predictor of disease extension. BJU International 2005; 96: 895-899.

    PubMed  CAS  Google Scholar 

  345. Rulitzky WK, Schlegel PN. Wu D, Cheng CY, Chen C-LC, Li PS, Goldstein M, Reidenberg M, Bardin CW. Measurement of urinary clusterin as an index of nephrotoxicity. Proc Soc Exp Biol Med 1992; 199: 93-96.

    Google Scholar 

  346. Ishii A, Sakai Y, Nakamura A. Molecular pathological evaluation of clusterin in a rat model of unilateral ureteral obstruction as a possible biomarker of nephrotoxicity. Toxicol Pathol. 2007; 35: 376-82.

    PubMed  CAS  Google Scholar 

  347. Tardanico R, Sanna-Cherchi S, Ferrario F, Montinaro V, Haupt R, Parodi S, Carnevali ML, Allegri L, Camussi G, Gesualdo L, Scolari F, Ghiggeri GM.Glomerular clusterin is associated with PKC-alpha/beta regulation and good outcome of membranous glomerulonephritis in humans. Kidney Int. 2006; 70: 477-85.

    PubMed  Google Scholar 

  348. Lerner RA, Glassock RJ, Dixon FJ. The role of anti-glomerular basement membrane antibody in the pathogenesis of human glomerulonephritis. J Exp Med. 1967; 126: 989-1004.

    PubMed  CAS  Google Scholar 

  349. Kalluri R. Goodpasture’s syndrome. Kidney Int 1999; 55: 1120-2.

    PubMed  CAS  Google Scholar 

  350. Kalluri R, Wilson CB, Eber M, Gunwar S, Chonko AM, Neilson EG, Hudson BG. Identification of the alpha 3 chain of type IV col-lagen as the common autoantigen in antibasement membrane doisease and Goodpasture syndrome. J Am Soc Nephrol 1995; 6: 1178-1185.

    PubMed  CAS  Google Scholar 

  351. Kalluri R, Torre A, Shield CF III, et al. Identification of alpha3, alpha4, and alpha5 chains of type IV collagen as alloantigens for Alport posttransplant anti-glomerular basement membrane antibodies. Transplantation. 2000; 69: 679-683.

    PubMed  CAS  Google Scholar 

  352. Brainwood D, Kashtan C, Gubler MC, Turner AN. Targets of alloantibodies in Alport anti-glomerular basement membrane disease after renal transplantation. Kidney Int. 1998; 53: 762-726.

    PubMed  CAS  Google Scholar 

  353. Turner AN, Rees AJ. Goodpasture’s disease and Alport’s syndromes. Annu Rev Med. 1996; 47: 377-386.

    PubMed  CAS  Google Scholar 

  354. Hellmark T, Niles JL, Collins AB, McCluskey RT, Brunmark C. Comparison of anti-GBM antibodies in sera with or without ANCA. J Am Soc Nephrol. 1997: 376-385.

    Google Scholar 

  355. Bosch X, Guilabert A., Font J. Antineutrophil cytoplasmic antibodies Lancet 2006 ; 368 : 404-418 3.

    PubMed  CAS  Google Scholar 

  356. Lionaki S, Jenntte JC, Falk RJ: Antineutrophile cytoplasmic (ANCA) and anti-glomerular basement (ABM) autoantibodies in necrotizing and crescentric glomerulonephritis. Semin Immunopathol 2007; 29: 459-474 3.

    PubMed  CAS  Google Scholar 

  357. Hauer HA, Bajema IM, van Houwelingen HC, Ferrario F, Noel LH, Waldherr R, Jayne DR, Rasmussen N, Bruijn JA, Hagen BC: renal histology in ANCA-associated vasculitis: differences between diagnostic and serologic subgroups. Kidney Int 2002; 61: 80-90.

    PubMed  Google Scholar 

  358. Slot MC, Tervaert JW, Boomsma MM, Stegman CA: Positive classic antineutrophil cytoplasmic antibody (C-ANCA) titer at stitch to azathioprine therapy assoiated with repapse I proteinase 3-related vasculitis. Arthritis Rheum 51: 269-273.

    Google Scholar 

  359. Falk RJ, Terrell RS, Charles LA, Jennette JC: Antineutrophile cytoplasmic antibodies induce neutrophils to degranulalte and produce oxygen radicals invivi. Proc Nat Acad Sci USA 1990; 87; 4115-4119.

    PubMed  CAS  Google Scholar 

  360. Bobulescu A, DiSole F, Moe OW. Na+/H+ exchangers: physiology and link to hypertension and organ ischemia. Curr Opin Nephrol Hypertens. 2005; 14: 485-494.

    PubMed  CAS  Google Scholar 

  361. du Cheyron D, Daubin C, Poggioli J, Ramakers M, Houillier P, Charbonneau P, Paillard M. Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am J. Kid Dis 2003; 42: 497-506.

    PubMed  CAS  Google Scholar 

  362. Heyman SN, Rosenberger C, Rosen S. Regional alterations in renal hemodynamics and oxygenation: a role in contrast medium-induced nephropathy. Nephrol Dial Transpl 2005; 20(Sl); i6-i11.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Finn, W.F., Porter, G.A. (2008). Urinary biomarkers and nephrotoxicity. In: De Broe, M.E., Porter, G.A., Bennett, W.M., Deray, G. (eds) Clinical Nephrotoxins. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84843-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-84843-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-84842-6

  • Online ISBN: 978-0-387-84843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics