Pharmacological aspects of nephrotoxicity

  • Marisa D. Covington
  • Rick G. Schnellmann

Because the kidney is vital to total body homeostasis, a toxic insult to the kidney can have profound effects – an insult of sufficient severity can permanently damage renal tissue, necessitating chronic dialysis or kidney transplantation. Such susceptibility to various toxicants is due to several functional properties of the kidney. First, the kidney receives approximately one-quarter of the total body blood flow to support renal function, including glomerular filtration, permitting the delivery of high levels of toxicants. The absorption of water and solutes along the nephron concentrates the tubular fluid, thereby exposing tubular epithelial cells to greater concentrations of toxicants.

The high metabolic rate and work load of renal cells increases its susceptibility to toxicants. Furthermore, the kidney possesses biotransformation enzymes that can result in formation of toxic metabolites and reactive intermediates which can damage renal macromolecules. Because the nephron has specialized transporters for reabsorption and excretion, toxicants can enter and accumulate within renal cells, leading to nephrotoxicity. Finally, the unique functions of the varied segments along the nephron impart different susceptibilities to toxicants in the kidney, complicating the potential toxicities and subsequent renal damage via a variety of mechanisms. In this chapter, we will review some of these sites and mechanisms of nephrotoxicity.


Acute Renal Failure Hepatocyte Growth Factor Tubular Epithelial Cell Acute Tubular Necrosis Renal Tubular Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alcorn D and Ryan GB. Distribution of anionic groups in the glomerular capillary wall in rat nephrotoxic nephritis and aminonucleoside nephrosis. Pathology 13: 37-50, 1981.CrossRefPubMedGoogle Scholar
  2. 2.
    Kerjaschki D, Vernillo AT, and Farquhar MG. Reduced sialylation of podocalyxin--the major sialoprotein of the rat kidney glomerulus in aminonucleoside nephrosis. The American Journal of Pathology 118: 343-349, 1985.PubMedGoogle Scholar
  3. 3.
    Andersson M, Nilsson UA, Hjalmarsson C, Haraldsson B, and Nystrom Sorensson J. Mild renal ischemia-reperfusion reduces charge and size selectivity of the glomerular barrier. Am J Physiol Renal Physiol 292(6): F1802-9, 2007.CrossRefPubMedGoogle Scholar
  4. 4.
    Perico N, Remuzzi A, Imberti O, Cavallotti D, Bertani T, and Remuzzi G. Morphometrical analysis of glomerular changes induced by cyclosporine in the rat. Am J Kidney Dis 17: 537-543, 1991.PubMedGoogle Scholar
  5. 5.
    Deray G. Amphotericin B nephrotoxicity. J Antimicrob Chemother 49 Suppl 1: 37-41, 2002.PubMedGoogle Scholar
  6. 6.
    Abbate GF, Alagia I, Giaquinto E, Giordano B, Leonessa V, and Altucci P. Preclinical comparative evaluation of aminoglycosides. Chemioterapia 3: 378-384, 1984.PubMedGoogle Scholar
  7. 7.
    Budisavljevic MN, Hodge L, Barber K, Fulmer JR, Durazo-Arvizu RA, Self SE, Kuhlmann M, Raymond JR, and Greene EL. Oxidative stress in the pathogenesis of experimental mesangial proliferative glomerulonephritis. Am J Physiol Renal Physiol 285: F1138-1148, 2003.PubMedGoogle Scholar
  8. 8.
    Peltier J, Bellocq A, Perez J, Doublier S, Dubois YC, Haymann JP, Camussi G, and Baud L. Calpain activation and secretion promote glomerular injury in experimental glomerulonephritis: evidence from calpastatin-transgenic mice. J Am Soc Nephrol 17: 3415-3423, 2006.CrossRefPubMedGoogle Scholar
  9. 9.
    Davies DJ, Dowling J, and Xipell JM. Gold nephropathy. Pathology 9: 281-288, 1977.CrossRefPubMedGoogle Scholar
  10. 10.
    Guery JC, Druet E, Glotz D, Hirsch F, Mandet C, De Heer E, and Druet P. Specificity and cross-reactive idiotypes of anti-glomerular basement membrane autoantibodies in HgCl2-induced autoimmune glomerulonephritis. European Journal of Immunology 20: 93-100, 1990.CrossRefPubMedGoogle Scholar
  11. 11.
    Koren G. The nephrotoxic potential of drugs and chemicals. Pharmacological basis and clinical relevance. Medical Toxicology and adverse drug experience 4: 59-72, 1989.PubMedGoogle Scholar
  12. 12.
    Ponticelli C and Pezzagno G. Hydrocarbons and glomerulonephritis--is the definite answer in? Nephrol Dial Transplant 9: 1539-1540, 1994.PubMedGoogle Scholar
  13. 13.
    Textor SC, Gephardt GN, Bravo EL, Tarazi RC, Fouad FM, Tubbs R, and McMahon JT. Membranous glomerulopathy associated with captopril therapy. The American Journal of Medicine 74: 705-712, 1983.CrossRefPubMedGoogle Scholar
  14. 14.
    Wali RK and Henrich WL. Recent developments in toxic nephropathy. Current Opinion in Nephrology and Hypertension 11: 155-163, 2002.CrossRefPubMedGoogle Scholar
  15. 15.
    Ho ES, Lin DC, Mendel DB, and Cihlar T. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 11: 383-393, 2000.PubMedGoogle Scholar
  16. 16.
    Weinberg JM, Harding PG, and Humes HD. Mitochondrial bioenergetics during the initiation of mercuric chloride-induced renal injury. II. Functional alterations of renal cortical mitochondria isolated after mercuric chloride treatment. The Journal of Biological Chemistry 257: 68-74, 1982.PubMedGoogle Scholar
  17. 17.
    Fillastre JP, Moulin B, and Josse S. Aetiology of nephrotoxic damage to the renal interstitium and tubuli. Toxicology Letters 46: 45-54, 1989.CrossRefPubMedGoogle Scholar
  18. 18.
    Fowler BA, Kimmel CA, Woods JS, McConnell EE, and Grant LD. Chronic low-level lead toxicity in the rat. III. An integrated assessment of long-term toxicity with special reference to the kidney. Toxicology and Applied Pharmacology 56: 59-77, 1980.CrossRefPubMedGoogle Scholar
  19. 19.
    Pardi DS, Tremaine WJ, Sandborn WJ, and McCarthy JT. Renal and urologic complications of inflammatory bowel disease. Am J Gastroenterol 93: 504-514, 1998.CrossRefPubMedGoogle Scholar
  20. 20.
    Thuluvath PJ, Ninkovic M, Calam J, and Anderson M. Mesalazine induced interstitial nephritis. Gut 35: 1493-1496, 1994.CrossRefPubMedGoogle Scholar
  21. 21.
    Kahn J, Lagakos S, Wulfsohn M, Cherng D, Miller M, Cherrington J, Hardy D, Beall G, Cooper R, Murphy R, Basgoz N, Ng E, Deeks S, Winslow D, Toole JJ, and Coakley D. Efficacy and safety of adefovir dipivoxil with antiretroviral therapy: a randomized controlled trial. The American Journal of Medicine 282: 2305-2312, 1999.Google Scholar
  22. 22.
    Tanji N, Tanji K, Kambham N, Markowitz GS, Bell A, and D’Agati V D. Adefovir nephrotoxicity: possible role of mitochondrial DNA depletion. Human Pathology 32: 734-740, 2001.CrossRefPubMedGoogle Scholar
  23. 23.
    Sarcletti M, Petter A, Romani N, Lhotta K, Konig P, Maier H, and Zangerle R. Pyuria in patients treated with indinavir is associated with renal dysfunction. Clinical Nephrology 54: 261-270, 2000.PubMedGoogle Scholar
  24. 24.
    Monks TJ and Lau SS. The pharmacology and toxicology of polyphenolic-glutathione conjugates. Annual Review of pPharmacol-ogy and Toxicology 38: 229-255, 1998.CrossRefGoogle Scholar
  25. 24a.
    Chen JC, Stevens JL, Trifillis AL, and Jones TW. Renal cysteine conjugate beta-lyase-mediated toxicity studied with primary cultures of human proximal tubular cells. Toxicology and Applied Pharmacology 103: 463-473, 1990.CrossRefPubMedGoogle Scholar
  26. 25.
    Kleinman JG, Breitenfield RV, and Roth DA. Acute renal failure associated with acetaminophen ingestion: report of a case and review of the literature. Clinical Nephrology 14: 201-205, 1980.PubMedGoogle Scholar
  27. 25a.
    Dahlin DC, Miwa GT, Lu AY, and Nelson SD. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proceedings of the National Academy of Sciences of the United States of America 81: 1327-1331, 1984.CrossRefPubMedGoogle Scholar
  28. 26.
    Cohen SD and Khairallah EA. Selective protein arylation and acetaminophen-induced hepatotoxicity. Drug Metabolism Review 29: 59-77, 1998.CrossRefGoogle Scholar
  29. 27.
    Bolton JL, Trush MA, Penning TM, Dryhurst G, and Monks TJ. Role of quinones in toxicology. Chemical Research in Toxicology 13: 135-160, 2000.CrossRefPubMedGoogle Scholar
  30. 28.
    Dekant W, Vamvakas S, and Anders MW. Formation and fate of nephrotoxic and cytotoxic glutathione S-conjugates: cysteine conjugate beta-lyase pathway. Advances in pharmacology (San Diego, Calif ) 27: 115-162, 1994.Google Scholar
  31. 29.
    Hughey RP, Rankin BB, Elce JS, and Curthoys NP. Specificity of a particulate rat renal peptidase and its localization along with other enzymes of mercapturic acid synthesis. Archives of biochemistry and biophysics 186: 211-217, 1978.CrossRefPubMedGoogle Scholar
  32. 30.
    Wolfgang GH, Gandolfi AJ, Stevens JL, and Brendel K. N-acetyl S-(1,2-dichlorovinyl)-L-cysteine produces a similar toxicity to S-(1,2-dichlorovinyl)-L-cysteine in rabbit renal slices: differential transport and metabolism. Toxicology and Applied Pharmacology 101: 205-219, 1989.CrossRefPubMedGoogle Scholar
  33. 31.
    Groves CE, Lock EA, and Schnellmann RG. Role of lipid peroxidation in renal proximal tubule cell death induced by haloalkene cysteine conjugates. Toxicology and Applied Pharmacology 107: 54-62, 1991.CrossRefPubMedGoogle Scholar
  34. 31a.
    Chen Q, Jones TW, Brown PC, and Stevens JL. The mechanism of cysteine conjugate cytotoxicity in renal epithelial cells. Covalent binding leads to thiol depletion and lipid peroxidation. The Journal of Biological Chemistry 265: 21603-21611, 1990.PubMedGoogle Scholar
  35. 32.
    Bernareggi A, Torti L, Facino RM, Carini M, Depta G, Casetta B, Farrell N, Spadacini S, Ceserani R, and Tognella S. Characterization of cisplatin-glutathione adducts by liquid chromatography-mass spectrometry. Evidence for their formation in vitro but not in vivo after concomitant administration of cisplatin and glutathione to rats anc cancer patients. Journal of Chromatography 669: 247-263, 1995.CrossRefPubMedGoogle Scholar
  36. 33.
    Townsend DM and Hanigan MH. Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice. The Journal of Pharmacology and Experimental Therapeutics 300: 142-148, 2002.CrossRefPubMedGoogle Scholar
  37. 34.
    Townsend DM, Deng M, Zhang L, Lapus MG, and Hanigan MH. Metabolism of Cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol 14: 1-10, 2003.CrossRefPubMedGoogle Scholar
  38. 35.
    Mayer RD, Lee KE, and Cockett AT. Inhibition of cisplatin-induced nephrotoxicity in rats by buthionine sulfoximine, a glutathione synthesis inhibitor. Cancer Chemotherapy and Pharmacology 20: 207-210, 1987.CrossRefPubMedGoogle Scholar
  39. 36.
    Mistry P, Lee C, and McBrien DC. Intracellular metabolites of cisplatin in the rat kidney. Cancer Chemotherapy and Pharmacology 24: 73-79, 1989.CrossRefPubMedGoogle Scholar
  40. 37.
    Mayer RD, Lee KE, and Cockett AT. Improved use of buthionine sulfoximine to prevent cisplatin nephrotoxicity in rats. Journal of Cancer Research and Clinical Oncology 115: 418-422, 1989.CrossRefPubMedGoogle Scholar
  41. 38.
    Zalups, R.K. and Diamond, G.L., Nephrotoxicity of Metals, In:Toxicology of the Kidney, Eds. J.B. Tarloff and L.H. Lash, CRC Press, 3rd edition, 2005, 937-993.Google Scholar
  42. 39.
    Brezis M, Rosen S, Silva P, and Epstein FH. Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. The Journal of Clinical Investigation 73: 182-190, 1984.CrossRefPubMedGoogle Scholar
  43. 40.
    Bernardo JF, Murakami S, Branch RA, and Sabra R. Potassium depletion potentiates amphotericin-B-induced toxicity to renal tubules. Nephron 70: 235-241, 1995.CrossRefPubMedGoogle Scholar
  44. 41.
    Safirstein R, Deray G. Anticancer: Cisplatin/carboplatin. In: DeBroe ME, Porter GA, Bennett WM, Verpooten GA (eds) Clinical Nephrotoxins. Renal injury from drugs and chemicals. Kluwer Academic, Dordrecht, 261-271, 1998.Google Scholar
  45. 42.
    De Broe ME, Elseviers MM. Analgesic nephropathy. N Engl J Med 1998; 338: 446-452.CrossRefPubMedGoogle Scholar
  46. 43.
    Nadasdy T, Laszik Z, Blick KE, Johnson DL, Burst-Singer K, Nast C, Cohen AH, Ormos J, and Silva FG. Human acute tubular necrosis: a lectin and immunohistochemical study. Human Pathology 26: 230-239, 1995.CrossRefPubMedGoogle Scholar
  47. 44.
    Silva GA, Costa LM, Brito FC, Miranda AL, Barreiro EJ, and Fraga CA. New class of potent antinociceptive and antiplatelet 10H-phenothiazine-1-acylhydrazone derivatives. Bioorganic & Medicinal Chemistry 12: 3149-3158, 2004.CrossRefGoogle Scholar
  48. 45.
    Levin S, Bucci TJ, Cohen SM, Fix AS, Hardisty JF, LeGrand EK, Maronpot RR, and Trump BF. The nomenclature of cell death: recommendations of an ad hoc Committee of the Society of Toxicologic Pathologists. Toxicologic Pathology 27: 484-490, 1999.CrossRefPubMedGoogle Scholar
  49. 46.
    Savill J. Apoptosis in resolution of inflammation. Kidney & Blood pressure research 23: 173-174, 2000.Google Scholar
  50. 47.
    Rich T, Allen RL, and Wyllie AH. Defying death after DNA damage. Nature 407: 777-783, 2000.CrossRefPubMedGoogle Scholar
  51. 48.
    Ortiz A, Lorz C, Catalan MP, Danoff TM, Yamasaki Y, Egido J, and Neilson EG. Expression of apoptosis regulatory proteins in tubular epithelium stressed in culture or following acute renal failure. Kidney International 57: 969-981, 2000.CrossRefPubMedGoogle Scholar
  52. 49.
    Ortiz A, Justo P, Catalan MP, Sanz AB, Lorz C, and Egido J. Apoptotic cell death in renal injury: the rationale for intervention. Current Drug Targets 2: 181-192, 2002.PubMedGoogle Scholar
  53. 50.
    Bonegio R and Lieberthal W. Role of apoptosis in the pathogenesis of acute renal failure. Current Opinion in Nephrology and Hypertension 11: 301-308, 2002.CrossRefPubMedGoogle Scholar
  54. 50.
    Meldrum KK, Meldrum DR, Hile KL, Yerkes EB, Ayala A, Cain MP, Rink RC, Casale AJ, and Kaefer MA. p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis during simulated ischemia. American Journal of Physiology 281: C563-570, 2001.PubMedGoogle Scholar
  55. 51.
    Kern JC and Kehrer JP. Acrolein-induced cell death: a caspase-influenced decision between apoptosis and oncosis/necrosis. Chemico-Biological Interactions 139: 79-95, 2002.CrossRefPubMedGoogle Scholar
  56. 51.
    Lorz C, Ortiz A, Justo P, Gonzalez-Cuadrado S, Duque N, Gomez-Guerrero C, and Egido J. Proapoptotic Fas ligand is expressed by normal kidney tubular epithelium and injured glomeruli. J Am Soc Nephrol 11: 1266-1277, 2000.PubMedGoogle Scholar
  57. 52.
    Lash LH, Hueni SE, Putt DA. Apoptosis, necrosis, and cell proliferation induced by S-(1,2-dichlorovinyl)-L-cysteine in primary cultures of human proximal tubular cells. Toxicology and Applied Pharmacology 177: 1-16, 2001.CrossRefPubMedGoogle Scholar
  58. 53.
    Lemasters JJ, Qian T, Elmore SP, Trost LC, Nishimura Y, Herman B, Bradham CA, Brenner DA, and Nieminen AL. Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. BioFactors (Oxford, England) 8: 283-285, 1998.Google Scholar
  59. 54.
    Miller GW and Schnellmann RG. A novel low-affinity strychnine binding site on renal proximal tubules: role in toxic cell death. Life Sciences 53: 1203-1209, 1993.CrossRefPubMedGoogle Scholar
  60. 55.
    Miller GW and Schnellmann RG. Inhibitors of renal chloride transport do not block toxicant-induced chloride influx in the proximal tubule. Toxicology Letters 76: 179-184, 1995.CrossRefPubMedGoogle Scholar
  61. 56.
    Molitoris BA, Leiser J, and Wagner MC. Role of the actin cytoskeleton in ischemia-induced cell injury and repair. Pediatric Nephrology (Berlin, Germany) 11: 761-767, 1997.CrossRefGoogle Scholar
  62. 57.
    Liu KD. Molecular mechanisms of recovery from acute renal failure. Critical Care Medicine 31:S572-81, 2003.CrossRefPubMedGoogle Scholar
  63. 58.
    Bush KT, Keller SH, and Nigam SK. Genesis and reversal of the ischemic phenotype in epithelial cells. The Journal of Clinical Investigation 106: 621-626, 2000.CrossRefPubMedGoogle Scholar
  64. 59.
    Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 14 Suppl 1: S55-61, 2003.CrossRefGoogle Scholar
  65. 60.
    Nony PA and Schnellmann RG. Mechanisms of renal cell repair and regeneration after acute renal failure. The Journal of Pharmacology and Experimental Therapeutics 304: 905-912, 2003.CrossRefPubMedGoogle Scholar
  66. 61.
    Lin F. Stem cells in kidney regeneration following acute renal injury. Pediatric Research 59: 74R-78R, 2006.CrossRefPubMedGoogle Scholar
  67. 62.
    Patschan D, Plotkin M, and Goligorsky MS. Therapeutic use of stem and endothelial progenitor cells in acute renal injury: ca ira. Current Opinion in Pharmacology 6: 176-183, 2006.CrossRefPubMedGoogle Scholar
  68. 63.
    Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, and Camussi G. Isolation of renal progenitor cells from adult human kidney. The American Journal of Pathology 166: 545-555, 2005.PubMedGoogle Scholar
  69. 64.
    Kawaida K, Matsumoto K, Shimazu H, and Nakamura T. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proceedings of the National Academy of Sciences of the United States of America 91: 4357-4361, 1994.CrossRefPubMedGoogle Scholar
  70. 65.
    Ichimura T, Maier JA, Maciag T, Zhang G, and Stevens JL. FGF-1 in normal and regenerating kidney: expression in mononuclear, interstitial, and regenerating epithelial cells. The American Journal of Physiology 269: F653-662, 1995.PubMedGoogle Scholar
  71. 66.
    Wang Z, Zhang B, Wang M, Carr BI. Cdc25A and ERK interaction: EGFR-independent ERK activation by a protein phosphatase Cdc25A inhibitor, compound 5. Journal of Cell Physiology 204:437-44, 2005.CrossRefGoogle Scholar
  72. 67.
    Zhuang S, Dang Y, and Schnellmann RG. Requirement of the epidermal growth factor receptor in renal epithelial cell proliferation and migration. Am J Physiol Renal Physiol 287: F365-372, 2004.CrossRefPubMedGoogle Scholar
  73. 68.
    Witzgall R, Brown D, Schwarz C, and Bonventre JV. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. The Journal of Clinical Investigation 93: 2175-2188, 1994.CrossRefPubMedGoogle Scholar
  74. 69.
    Zhuang S, Yan Y, Han J, and Schnellmann RG. p38 kinase-mediated transactivation of the epidermal growth factor receptor is required for dedifferentiation of renal epithelial cells after oxidant injury. The Journal of Biological Chemistry 280: 21036-21042, 2005.CrossRefPubMedGoogle Scholar
  75. 70.
    Abbate M, Brown D, and Bonventre JV. Expression of NCAM recapitulates tubulogenic development in kidneys recovering from acute ischemia. The American Journal of Physiology 277: F454-463, 1999.PubMedGoogle Scholar
  76. 71.
    Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2008 2: 284-291.CrossRefPubMedGoogle Scholar
  77. 72.
    Franquesa M, Alperovich G, Herrero-Fresneda I, Lloberas N, Bolanos N, Fillat C, Rama I, Cruzado JM, Grinyo JM, and Torras J. Direct electrotransfer of hHGF gene into kidney ameliorates ischemic acute renal failure. Gene Therapy 12: 1551-1558, 2005.CrossRefPubMedGoogle Scholar
  78. 73.
    Harris RC. Growth factors and cytokines in acute renal failure. Advances in Renal Replacement Therapy 4: 43-53, 1997.PubMedGoogle Scholar
  79. 74.
    Humes HD, Cieslinski DA, Coimbra TM, Messana JM, Galvao C. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. Journal of Clinical Investigations 84: 1757-61, 1989.CrossRefGoogle Scholar
  80. 75.
    Ichimura T, Finch PW, Zhang G, Kan M, Stevens JL. Induction of FGF-7 after kidney damage: a possible paracrine mechanism for tubule repair. American Journal of Physiology 271: F967-76, 1996.PubMedGoogle Scholar
  81. 76.
    Igawa T, Kanda S, Kanetake H, Saitoh Y, Ichihara A, Tomita Y, and Nakamura T. Hepatocyte growth factor is a potent mitogen for cultured rabbit renal tubular epithelial cells. Biochemical and Biophysical Research Communications 174: 831-838, 1991.CrossRefPubMedGoogle Scholar
  82. 77.
    Miller SB, Martin DR, Kissane J, and Hammerman MR. Insulin-like growth factor I accelerates recovery from ischemic acute tubular necrosis in the rat. Proceedings of the National Academy of Sciences of the United States of America 89: 11876-11880, 1992.CrossRefPubMedGoogle Scholar
  83. 78.
    Zeisberg M, Shah AA, and Kalluri R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. The Journal of Biological Chemistry 280: 8094-8100, 2005.CrossRefPubMedGoogle Scholar
  84. 79.
    Hirschberg R, Kopple J, Lipsett P, Benjamin E, Minei J, Albertson T, Munger M, Metzler M, Zaloga G, Murray M, Lowry S, Conger J, McKeown W, O’Shea M, Baughman R, Wood K, Haupt M, Kaiser R, Simms H, Warnock D, Summer W, Hintz R, Myers B, Haenftling K, Capra W et al., and Multicenter clinical trial of recombinant human insulin-like growth factor I in patients with acute renal failure. Kidney International 55: 2423-2432, 1999.CrossRefPubMedGoogle Scholar
  85. 80.
    Franklin SC, Moulton M, Sicard GA, Hammerman MR, and Miller SB. Insulin-like growth factor I preserves renal function postop-eratively. The American Journal of Physiology 272: F257-259, 1997.PubMedGoogle Scholar
  86. 81.
    Nowak G, Carter CA, and Schnellmann RG. Ascorbic acid promotes recovery of cellular functions following toxicant-induced injury. Toxicology and Applied Pharmacology 167: 37-45, 2000.CrossRefPubMedGoogle Scholar
  87. 82.
    Nony PA and Schnellmann RG. Interactions between collagen IV and collagen-binding integrins in renal cell repair after sublethal injury. Molecular Pharmacology 60: 1226-1234, 2001.PubMedGoogle Scholar
  88. 83.
    Kovacs CJ, Braunschweiger PG, Schenken LL, and Burholt DR. Proliferative defects in renal and intestinal epithelium after cis-dichlorodiammine platinum (II). British Journal of Cancer 45: 286-294, 1982.PubMedGoogle Scholar
  89. 84.
    Leonard I, Zanen J, Nonclercq D, Toubeau G, Heuson-Stiennon JA, Beckers JF, Falmagne P, Schaudies RP, and Laurent G. Modifica-tion of immunoreactive EGF and EGF receptor after acute tubular necrosis induced by tobramycin or cisplatin. Renal Failure 16: 583-608, 1994.CrossRefPubMedGoogle Scholar
  90. 85.
    Counts RS, Nowak G, Wyatt RD, and Schnellmann RG. Nephrotoxicant inhibition of renal proximal tubule cell regeneration. The American Journal of Physiology 269: F274-281, 1995.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marisa D. Covington
    • 1
  • Rick G. Schnellmann
    • 1
  1. 1.Medical University of South CarolinaCharlestonUSA

Personalised recommendations