Skip to main content

Mercury-induced renal effects

  • Chapter
Clinical Nephrotoxins

Mercury (Hg, CAS Number 7439-97-6) is a naturally-occurring metal that has an atomic number of 80 and an atomic weight of 200.6. Many different organic and inorganic mercury compounds are found in nature because of mercury’s ability to form covalent and ionic bonds with other chemicals. Mercury exists in three forms in three oxidation states (0, +1, +2): elemental mercury (Hg0), organic mercury (e.g., methyl mercury), and inorganic mercury (e.g., Hg1+, Hg2+). Elemental mercury is a silvery, white liquid at room temperature, and because of this, Aristotle named mercury “quicksilver.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. United States Food and Drug Administration. Mercury compounds in drugs and foods. Center for Biologics Evaluation and Research (CBER). 2001.

    Google Scholar 

  2. United States Geological Service (U.S.G.S.). U.S. Geological Survey, Mineral Commodity Summaries (Mercury). 2002.

    Google Scholar 

  3. United States Geological Service (U.S.G.S.). U.S. Geological Survey, Mineral Commodity Summaries (Mercury). 1999.

    Google Scholar 

  4. Chevalier, P. Mercury. Canadian Minerals Yearbook 1999. Natural Resources Canada. 2000.

    Google Scholar 

  5. Byrne L. Brazil’s mercury poisoning disaster. Brit Med J 1992; 304: 1397.

    Google Scholar 

  6. Schutte NP, Knight AL, Jahn O. Mercury and its compounds. In: Dickerson OB, Horovath EP, Zenz C, editors. Occupational medicine, 3rd ed. St Louis: Mosby-Year Book Inc, 1994: 549-57.

    Google Scholar 

  7. National Research Council (NRC). Toxicological effects of methylmercury. 2000.

    Google Scholar 

  8. Sällsten G, Barregård L, Österberg T. Tandgnissling hos amalgambärare-en orsak till hög kvicksilverutsöndring ? (Tooth grinding among wearers of amalgam fillings-a cause of high mercury release ?). Läkartidningen (Sweden) 1991; 88: 232-3.

    Google Scholar 

  9. Geijersstam E, Sandborgh-Englund G, Jonsson F, Ekstrand J. Mercury uptake and kinetics after ingestion of dental amalgam. J Dent Res 2001; 80:1793-6.

    Google Scholar 

  10. International Agency for Research on Cancer (IARC). IARC monograph on Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry. Volume 58. Lyon, France. 1994: 239-345.

    Google Scholar 

  11. United States Environmental Protection Agency (U.S. EPA). Mercury update: impact on fish advisories. 2001. Office of Water.

    Google Scholar 

  12. Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N, Dahl R, Jorgensen PJ. Cognitive deficit in 7-year old children with prenatal exposure to methylmercury. Neurotoxicol. Teratol. 1997; 19: 417-28.

    PubMed  CAS  Google Scholar 

  13. United States Food and Drug Administration (U.S. FDA). Methyl mercury levels in commercial seafood species. 2000. Center for Food Safety and Applied Nutrition. Office of Seafood.

    Google Scholar 

  14. World Health Organization. Methylmercury. Environmental Health Criteria 101. World Health Organization, Geneva 1990.

    Google Scholar 

  15. United States Environmental Protection Agency (U.S. EPA). Mercury study report to Congress. 1997. Office of Air Quality Planning and Standards and Office of Research and Development.

    Google Scholar 

  16. Campbell D, Gonzales M, Sullivan JB. 1992. Mercury. In, Sullivan, J.B. & Krieger, G.R., eds, Hazardous Materials Toxicology. 824-33.Clinical Principles of Environmental Health, Baltimore:Williams and Wilkins.

    Google Scholar 

  17. Elinder C-G, Friberg L, Nordberg GF, Kjellström T, Oberdoerster G. Biological monitoring of metals. Chemical safety monographs. International Programme on Chemical Safety. WHO/EHG/94.2 1994: 1-80.

    Google Scholar 

  18. Sällsten G, Barregård L, Järvholm B. Mercury in the Swedish chloralkali industri-an evaluation of the exposure and preventive measures over 40 years. Ann Occup Hyg 1990; 34: 205-14.

    PubMed  Google Scholar 

  19. Gutiérrez F, Leon L. Elemental mercury embolism to the lung. New England Journal of Medicine 2000; 342(24): 1791.

    PubMed  Google Scholar 

  20. Diner B, Brenner B. Toxicity, mercury. eMed J. 2001; 2:1-13. Available at: www.emedicine.com/EMERG/topic813.htm

    Google Scholar 

  21. World Health Organization. Inorganic mercury. Environmental Health Criteria 118. World Health Organization, Geneva 1991.

    Google Scholar 

  22. Hursh JB, Clarkson TW, Cherian MG, Vostal J, Mallie RV. Clearance of mercury (Hg-197 and Hg-203) vapor inhaled by human subjects. Arch Env Health 1976; 31: 302-9.

    CAS  Google Scholar 

  23. Barregård L, Ställsten G, Schutz A, Attwell R, Skerfving S, Jarvholm B. Kinetics of mercury in blood and urine after brief occupational exposure. Arch Env Health 1992; 47: 176-84.

    Google Scholar 

  24. Morrow PE, Gibb FR, Johnson L. Clearance of insoluble dust from the lower respira tory tract. Health Phys 1964; 10: 543-55.

    PubMed  CAS  Google Scholar 

  25. Clarkson TW. Human toxicity of mercury. The Journal of Trace Elements in Experimental Medicine 1998; 11: 303-17.

    CAS  Google Scholar 

  26. Rahola T, Hattula T, Korolainen A, Miettinen JK. Elimination of free and protein-bound ionic mercury in man. Ann Clin Res 1973; 5: 214-19.

    PubMed  CAS  Google Scholar 

  27. Hall LL, Allen PV, Fisher HL, et al. 1994. The kinetics of intravenously-administered inorganic mercury in humans. In: Kinetic Models of Trace Elements and Mineral Metabolism During Development, K.M.S. Subramanian and M.E. Wastney, Ed. CRC Press, Boca Raton, FL. p. 1-21.

    Google Scholar 

  28. Carmichael NG, Fowler BA. Effects of separate and combined chronic mercuric chloride and sodium selenite administration in rats: histologic, ultrastructural and x-ray microanalytical studies of liver and kidney. J Env Pathol Toxicol 1979; 3: 399-412.

    CAS  Google Scholar 

  29. Aslamkhan AG, Han YH, Yang XP, et al.Human renal anion transporter 1 dependent uptake and toxicity of mercuric thiol conjugates in Madin-Darby canine kidney cells. Mol Pharmacol 2003; 63(3):590-6.

    PubMed  CAS  Google Scholar 

  30. Lash LH, Hueni SE, Putt DA, et al. Role of organic anion and amino acid carriers in transport of inorganic mercury in rat renal basolateral membrane vesicles: influence of compensatory renal growth. Toxicol Sci 2005; 88(2):630-44.

    PubMed  CAS  Google Scholar 

  31. Zalups RK, Ahmad S. Handling of cysteine S-conjugates of methylmercury in MDCK cells expressing human OAT1. Kidney Int 2005; 68(4):1684-99

    PubMed  CAS  Google Scholar 

  32. Aberg B, Ekman L, Falk R, Greitz U, Persson G, Snihs J. Metabolism of methyl mercury (Hg) compounds in man: Excretion and distribution. Arch Environ. Health 1969; 19: 478-84.

    CAS  Google Scholar 

  33. Miettinen JK. 1973. Absorption and elimination of dietary (Hg++) and methyl mercury in man. In: Mercury, Mercurial, and Mercaptans, M.W. Miller and T.W. Clarkson, Ed. Springfield, IL. p. 233-43.

    Google Scholar 

  34. Fowler BA, Lucier GW, Mushak P. Phenobarbital protec tion against methylmercury nephrotoxicity. Proc Soc Exp Biol Med 1975; 149: 75-9.

    PubMed  CAS  Google Scholar 

  35. Vahter M, Mottet NK, Friberg L, Lind B, Shen DD, Burbacher T. Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol Appl Pharmacol 1994; 124(2): 221-29.

    PubMed  CAS  Google Scholar 

  36. Fowler BA. The morphologic effects of dieldrin and methyl mercuric chloride on pars recta segments of rat kidney proximal tubules. Am J Pathol 1972; 69: 163-74.

    PubMed  CAS  Google Scholar 

  37. Yasutake A, Hirayama K, Inouye M. Sex difference in acute renal dysfunction induced by methyl mercury in mice. Renal Failure 1990; 12: 233-40.

    PubMed  CAS  Google Scholar 

  38. Fowler BA, Brown HW, Lucier GW, Krigman MR. The effect of chronic oral methylmercury exposure on the lysosome system of rat kidney. Morphometric and biochemical studies. Lab Invest 1975; 32: 313-22.

    PubMed  CAS  Google Scholar 

  39. Zalups RK. Molecular interactions with mercury in the kidney. Pharmacological Reviews. 2000; 52(1):113-143.

    PubMed  CAS  Google Scholar 

  40. Clarkson TW. Mercury. J. Am. Coll. Toxicol. 1989; 8(7): 1291-96.

    Google Scholar 

  41. Hu H. Exposure to metals. Occupational and Environmental Medicine 2000; 27(4):983-96.

    CAS  Google Scholar 

  42. Roels HA, Hoet P, Lison D. Usefulness of biomarkers of exposure to inorganic mercury, lead, or cadmium in controlling occupational and environmental risks of nephrotoxicity. Renal Failure 1999; 21(3 & 4): 251-62.

    PubMed  CAS  Google Scholar 

  43. Satoh H. Occupational and environmental toxicology of mercury and its compounds. Industrial Health 2000; 38: 153-64.

    PubMed  CAS  Google Scholar 

  44. Grandjean P, Weihe P, White RF, Debes F: Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ Res 1998; 77(2): 165-72.

    PubMed  CAS  Google Scholar 

  45. Legrand M, Passos CJ, Mergler D, et al. Biomonitoring of mercury exposure with single human hair strand. Environ Sci Technol 2005; 39(12):4594-8.

    PubMed  CAS  Google Scholar 

  46. Legrand M, Lam R, Passos CJ, et al. Analysis of mercury in sequential micrometer segments of single hair strands of fish-eater 2007; 41(2):593-8.

    CAS  Google Scholar 

  47. Xue F, Holzman C, Rahbar MH, et al. Maternal fish consumption, mercury levels, and risk of preterm delivery. Environ Health Perspect 2007; 115(1):42-7.

    PubMed  CAS  Google Scholar 

  48. Ohno T, Sakamoto M, Kurosawa T, et al. Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function. Environ Res 2007; 103(2):191-7.

    PubMed  CAS  Google Scholar 

  49. Byrne AR, Kosta L. Simultaneous neutron-activation determination of selenium and mercury in biological samples by volatilization. Talanta. 1974; 21: 1083-90.

    PubMed  CAS  Google Scholar 

  50. WHO (World Health Organization). 1976. Environmental Health Criteria: Mercury. World Health Organization, Geneva, Switzerland, 121.

    Google Scholar 

  51. Hatch WR, Ott WL. Determination of sub-microgram quantities of mercury by atomic absorption spectrophotometry. Anal Chem 1968; 40(14): 2085-87.

    CAS  Google Scholar 

  52. Magos L, Clarkson TW. Atomic absorption and determination of total, inorganic, and organic mercury in blood. J AOAC 1972; 55(5): 966-71.

    CAS  Google Scholar 

  53. Von Burg R, Rustam H. Electrophysiological investigations of methyl mercury intoxication in humans: Evaluation of peripheral nerve by conduction velocity and electromyography. Electroenceph Clin Neurophysiol 1974; 37: 381-92.

    PubMed  CAS  Google Scholar 

  54. Cappon CJ, Smith JC. A simple and rapid procedure for the gas-chromatographic determination of methylmercury in biological samples. Bull Environ Contam. Toxicol 1978; 19(5): 600-7.

    CAS  Google Scholar 

  55. Marsh, DO, Clarkson TW, Cox C, Amin-Zaki L, Al-Tikriti S. Fetal methyl mercury poisoning: Relationship between concentration in single strands of maternal hair and child effects. Arch Neurol 1987; 44: 1017-22.

    PubMed  CAS  Google Scholar 

  56. Mason HJ, Hindell P, Williams NR. Biological monitoring and exposure to mercury. Occup Med 2001; 51(1): 2-11.

    CAS  Google Scholar 

  57. Kulig, K. A tragic reminder about organic mercury. The New England Journal of Medicine. 1998; 338(23): 1692-94.

    PubMed  CAS  Google Scholar 

  58. Goldman L, Shannon MW, The Committee on Environmental Health. Technical Report: Mercury in the Environment: Implications for Pediatricians. Pediatrics 2001; 108(1): 197-205.

    PubMed  CAS  Google Scholar 

  59. Litovitz TL, Klein-Schwartz W, White S, Cobaugh DJ, Youniss J, Drab A., Benson BE. The 1999 annual report of the American As-sociation of Poison Control Centers Toxic Exposure Surveillance Systems. The American Journal of Emergency Medicine 1999; 18 (5): 517-74.

    Google Scholar 

  60. Berlin M. Mercury. In: Friberg L, Nordberg GF, Vouk VB, editors. Handbook on the toxicology of metals, Vol II. Amsterdam: Elsevier, 1986: 387-445.

    Google Scholar 

  61. Smith RG, Vorwald AJ, Patil LS, Mooney TF. Effects of exposure to mercury in the manufacture of chlorine. Am Ind Hyg Ass J 1970; 31: 687-700.

    CAS  Google Scholar 

  62. Smith PJ, Langolf GD, Goldberg J. Effects of occupational exposure to elemental mercury on short term memory. Brit J Ind Me 1983; 40: 413-9.

    CAS  Google Scholar 

  63. Roels H, Gennart JP, Lauwerys R, Buchet JP, Malchaire J, Bernard A. Surveillance of workers exposed to mercury vapour: validation of a previously proposed biological threshold limit value for mercury concentration in urine. Am J Ind Med 1985; 7: 45-71.

    PubMed  CAS  Google Scholar 

  64. Langworth S, Almkvist O, Söderman E, Wikström BO. Effects of occupational exposure to mercury vapour on the central nervous system. Brit J Ind Med 1992; 49: 545-55.

    CAS  Google Scholar 

  65. Clarkson TW. Mercury-an element of mystery. New Eng J Med 1990; 323: 1137-9.

    Article  PubMed  CAS  Google Scholar 

  66. Curtis HA, Ferguson SD, Kell RL, Samuel AH. Mercury as a health hazard. Arch Dis Childhood 1987; 62: 293-5.

    CAS  Google Scholar 

  67. Langworth S, Bjorkman L, Elinder CG, Jarup L, Savlin P. Multidisciplinary examination of patients with illness attributed to dental fillings. J Oral Rehabil 2002; 29:705-13.

    PubMed  CAS  Google Scholar 

  68. Brownawell AM, Berent S, et al. ”The potential adverse health effects of dental amalgam.” Toxicol Rev 2005; 24: 1-10.

    PubMed  CAS  Google Scholar 

  69. Bates MN. ”Mercury amalgam dental fillings: an epidemiologic assessment.” Int J Hyg Environ Health 2006; 209: 309-16

    PubMed  CAS  Google Scholar 

  70. Riddle M, Gardner F, Beswick I, Filshie I. The nephrotic syndrome complicating mercurial diuretic therapy. Brit Med J 1958; 1: 1274-7.

    PubMed  CAS  Google Scholar 

  71. Cameron JS, Trounce R. Membranous glomerulonephritis and the nephrotic syndrome appearing during mersalyl therapy. Guy’s Hosp Report 1965; 114: 101-7.

    CAS  Google Scholar 

  72. Silbergeld E, Devine PJ. Mercury-are we studying the right endpoints and mechanisms. Fuel Processing Technology 2000; 65-66: 35-42.

    CAS  Google Scholar 

  73. Langworth S, Elinder CG, Sundqvist KG: Minor effects of low exposure to inorganic mercury on the human immune system. Scand J Work Environ Health 1993; 19(6): 405-13.

    PubMed  CAS  Google Scholar 

  74. Langworth S, Elinder CG, Sundquist KG, Vesterberg O: Renal and immunological effects of occupational exposure to inorganic mercury. Br J Ind Med 1992; 49(6): 394-401.

    PubMed  CAS  Google Scholar 

  75. Ellingsen DG, Efskind J, Berg KJ, Gaarder PI, Thomassen Y. Renal and immunologic markers for chloralkali workers with low exposure to mercury vapor. Scand J Work Environ Health 2000; 26(5): 427-35.

    PubMed  CAS  Google Scholar 

  76. De Broe M. Renal toxicity from environmental toxins, drugs, and contrast agents. In: Essential Atlas of Nephrology. Lippincott, Williams & Wilkins, 2001.

    Google Scholar 

  77. Hua J, Pelletier L, Berlin M, Druet P. Autoimmune glomerulonephritis induced by mercury vapour exposure in the Brown Norway rat. Toxicol ogy 1993; 79: 119-29.

    CAS  Google Scholar 

  78. Gritzka TL, Trump BF. Renal tubular lesions caused by mercuric chloride: electron microscopic observations. Am J Pathol 1968; 52: 1225-78.

    PubMed  CAS  Google Scholar 

  79. Ganote CE, Reimer KA, Jennings RB. Acute mercuric chloride nephrotoxicity: an electron microscopic and metabolic study. Lab Invest 1975; 31: 633-47.

    Google Scholar 

  80. Kempson SA, Ellis BG, Price RG. Changes in rat renal cortex, isolated plasma membranes, and urinary enzymes following the injection of mercuric chloride. Chem Biol Interact 1977; 18: 217-34.

    PubMed  CAS  Google Scholar 

  81. Trump BF, Berezesky IK, Sato T, Laiho KU, Phelps PC, DeClaris N. Cell calcium, cell injury and cell death. Environ Health Perspec 1984; 54: 281-7.

    Google Scholar 

  82. Trump BF, Berezesky IK, Smith MW, Phelps PC, Eliget KA. The relationship between cellular ion deregulation and acute and chronic toxicity. Toxicol Appl Pharmacol 1989; 97: 6-22.

    PubMed  CAS  Google Scholar 

  83. Smith MW, Ambudkar IS, Phelps PC, Regec AL, Trump BF. HgCl2-induced changes in cytosolic Ca2+ of cultured rabbit renal tubular cells. Biochim Biophys Acta 1987; 931: 130-42.

    PubMed  CAS  Google Scholar 

  84. Nielsen JB, Andersen HR, Andersen O, Starklint H. Mercuric chloride-induced kidney damage in mice: time course and effect of dose. J Toxicol Environ Health 1991; 34: 469-83.

    PubMed  CAS  Google Scholar 

  85. Tarabova B, Kurejova M, Sulova Z, et al. Inorganic mercury and methylmercury inhibit the Cav3.1 channel expressed in human embryonic kidney 293 cells by different mechanisms. J Pharmacol Exp Ther 2006; 317(1):418-27.

    PubMed  CAS  Google Scholar 

  86. Wang Y, Bollard ME, Nicholson JK, et al. Exploration of the direct metabolic effects of mercury ll chloride on the kidney of SpragueDawley rats using high-resolution magic angle spinning 1H NMR spectroscopy of intact tissue and pattern recognition. J Pharm Biomed Anal 2006; 40(2):375-81.

    PubMed  CAS  Google Scholar 

  87. Brandao R, Santos FW, Farina M, et al. Antioxidants and metallothionein levels in mercury-treated mice. Cell Biol Toxicol 2006; 22(6):429-38.

    PubMed  CAS  Google Scholar 

  88. Brkljacic J, Perisic T, Dundjerski J, et al. Interaction of rat renal glucocorticoid receptor with Hsp90 and Hsp70 upon stress provoked by mercury 2007; 27(1):43-50.

    CAS  Google Scholar 

  89. Woods JS, Fowler BA. Renal porphyrinuria during chronic methyl mer cury exposure. J Lab Clin Med 1977; 90: 266-72.

    PubMed  CAS  Google Scholar 

  90. Hultman P, Bell LJ, Eneström S, Pollard KM. Murine susceptibility to mercury. I. Autoantibody profiles and systemic immune deposits in inbred, congenic, and intra-H-2 recombinant strains. Clin Immunol Immuno pa thol 1992; 65: 98-109.

    CAS  Google Scholar 

  91. Hultman P, Eneström S. Mercury induced antinuclear antibodies in mice: characterization and correlation with renal immune complex deposits. Clin Exp Immunol 1988; 71: 269-74.

    PubMed  CAS  Google Scholar 

  92. Hultman P, Eneström S. Mercury induced b-cell activation and antinuclear antibodies in mice. J Clin Lab Immunol 1989; 28: 143-50.

    PubMed  CAS  Google Scholar 

  93. Bernard AM, Collette C, Lauwerys R. Renal effects of in utero exposure to mercuric chloride in rats. Arch Toxicol 1992; 66: 508-13.

    PubMed  CAS  Google Scholar 

  94. Bellon B, Capron M, Druet E, Verroust M-CV, Sapin C, Girard JF, Foidart JM, Mathieu P, Druet P. Mercuric chloride induced autoimmune disease in Brown-Norway rats: sequential search for anti-basement membrane antibodies and circulating immune complexes. Eur J Clin Invest 1982; 12: 127-33.

    PubMed  CAS  Google Scholar 

  95. Esnault VLM, Mathieson PW, Thiru S, Olveira DBG, Lockwood M. Autoantibodies to myeloperoxidase in Brown Norway rats treated with mercuric chloride. Lab Invest 1992; 67: 114-20.

    PubMed  CAS  Google Scholar 

  96. Havarinasab, S, Bjorn, E, Ekstrand, J, et al. Dose and Hg species determine the T-helper cell activation in murine autoimmunity. Toxicology 2007; 229(1-2):23-32.

    PubMed  CAS  Google Scholar 

  97. Klein R, Herman SP, Bullock BC, Talley FA. Early functional and pathological changes in rat kidney during methyl mercury intoxication. Arch Pathol 1976; 96: 83-90.

    Google Scholar 

  98. Fowler BA. Ultrastructural evidence for nephropathy induced by long-term exposure to small amounts of methylmercury. Science 1972; 175: 780-1.

    PubMed  CAS  Google Scholar 

  99. Gage JC. The toxicity of alkyl-and arylmercury salts. Biochem Pharmacol 1961; 8: 77.

    Google Scholar 

  100. dos Santos AP, Mateus ML, Carvalho CM, et al. Biomarkers of exposure and effect as indicators of the interference of selenomethionine on methylmercury toxicity. Toxicol Lett 2007; 169(2):121-8.

    PubMed  CAS  Google Scholar 

  101. Troen P, Seymour A, Kaufman SA, Katz KH. Mercuric bichloride poisoning. N Engl J Med 1951; 244: 459-63.

    Article  PubMed  CAS  Google Scholar 

  102. Wands JR, Weiss SW, Yardley JH, Maddrey WC. Chronic inorganic mercury poisoning due to laxative abuse. Am J Med 1987; 57: 92-101.

    Google Scholar 

  103. Munck O, Nissen NI. Development of nephrotic syndrome during treatment with mercurial diuretics. Acta Med Scand 1956; 153: 397-413.

    Google Scholar 

  104. Burston J, Darmady EM, Stranack F. Nephrosis due to mercurial diuretics. Brit Med J 1958; 1: 1277-8.

    PubMed  CAS  Google Scholar 

  105. Becker CG, Becker EL, Maher JF, Schreiner GE. Nephrotic syndrome after contact with mercury. Arch Intern Med 1962; 83: 178-86.

    Google Scholar 

  106. Preedy LRK, Russel DS. Acute salt depletion associated with the nephrotic syndrome. Development during the treatment with a mercurial diuretic. Lancet 1953; 2: 1181-4.

    Google Scholar 

  107. Williams NE, Bridge HG. Nephrotic syndrome after the application of mercury ointment. Lancet 1958; 2: 602.

    PubMed  CAS  Google Scholar 

  108. Wilson VK, Thomson ML, Holzel A. Mercury nephrosis in young children. Brit Med J 1952; 1: 358-60.

    PubMed  CAS  Google Scholar 

  109. Langworth S, Bjorkman L, Elinder CG, Jarup L, Savlin P. Multidisciplinary examination of patients with illness attributed to dental fillings. J Oral Rehabil 2002; 29:705-13.

    PubMed  CAS  Google Scholar 

  110. Barr RD, Rees PH, Cordy PE, Kungu A, Woodger BA, Cameron HM. Nephrotic syndrome in adult African in Nairobi. Brit Med J 1972; 2:131-4.

    PubMed  CAS  Google Scholar 

  111. Oliviera DBG, Foster G, Savill J, Syme PD, Taylor A. Membranous nephropathy caused by mercury-containing skin lightning cream. Postgr Med J 1987; 63: 303-4.

    Google Scholar 

  112. Weldon MM, Smolinski MS, Maroufi A, Hasty BW, Gilliss DL, Boulanger LL, Balluz LS, Dutton RJ. Mercury poisoning associated with a Mexican beauty cream. West J Med 2000; 173:15-18.

    PubMed  CAS  Google Scholar 

  113. Tang HL, Chu KH, et al. “Minimal change disease following exposure to mercury-containing skin lightening cream.” Hong Kong Med J 2006; 12(4): 316-8.

    PubMed  CAS  Google Scholar 

  114. Agner E, Jans H. Mercury poisoning and nephrotic syndrome in two siblings. Lancet 1978; 2: 951.

    PubMed  CAS  Google Scholar 

  115. Friberg L, Hammarström S, Nyström A. Kidney injury after chronic exposure to inorganic mercury. Arch Ind Hyg Occup Med 1953; 8: 149-53.

    CAS  Google Scholar 

  116. Kazantzis G, Schiller KFR, Asscher AW, Drew RG. Albuminuria and the nephrotic syndrome following exposure to mercury and its compounds. Quart J Med 1962; 31: 403-19.

    PubMed  CAS  Google Scholar 

  117. Aymaz S, Gross O, et al. “Membranous nephropathy from exposure to mercury in the fluorescent-tube-recycling industry.” Nephrol Dial Transplant 2001; 16(11): 2253-5.

    PubMed  CAS  Google Scholar 

  118. Buchet JP, Roels H, Bernard A, Lauwerys R. Assessment of renal function of workers exposed to inorganic lead, cadmium or mercury vapor. J Occup Med 1980; 22: 741-50.

    PubMed  CAS  Google Scholar 

  119. Stonard MD, Chater BV, Duffield DP, Nevitt AL, O’Sullivan JJ, Steel GT. An evaluation of renal function in workers occupationally exposed to mercury vapor. Int Arch Environ Health 1983; 52: 177-89.

    CAS  Google Scholar 

  120. Langworth S, Elinder CG, Sundquist KG, Vesterberg O. Renal and immunological effects of occupational exposure to inorganic mercury. Br J Ind Med 1992; 49: 3 94-401.

    Google Scholar 

  121. Langworth S. Early effects of occupational and environmental exposure to inorganic mercury (dissertation). Karolinska Institute Stockholm, Sweden 1992.

    Google Scholar 

  122. Ellingsen DG, Barregard L, Gaarder PI, et al. Assessment of renal dysfunction in workers previously exposed to mercury vapour at a chloralkali plant. Br J Ind Med 1993; 50(10):881-7.

    PubMed  CAS  Google Scholar 

  123. Barregard L, Enestrom S, Ljunghuse O, et al. A study of autoantibodies and circulating immune complexes in mercury-exposed chloralkali workers. Int Arch Occup Environ Health 1997; 70(2):101-6.

    PubMed  CAS  Google Scholar 

  124. Efskind J, Ellingsen DG, Hartman A, et al. Renal function of chloralkali workers after the cessation of exposure to mercury vapor. Scan J Work Environ Health 2006; 32(3):241-9.

    CAS  Google Scholar 

  125. Sandborgh-Englund G, Nygren, AT, Ekstrand J, Elinder CG. 1996. No evidence of renal toxicity from amalgam fillings. Am J Physio 271(4 Pt 2):R941-945.

    CAS  Google Scholar 

  126. Bellinger DC, Trachtenberg F, et al. ”Neuropsychological and renal effects of dental amalgam in children: a randomized clinical trial.” JAMA 2006; 295(15): 1775-83.

    PubMed  CAS  Google Scholar 

  127. Hodgson S, Nieuwenhuijsen MJ, et al. “Kidney disease mortality and environmental exposure to mercury.” Am J Epidemiol 2007; 165(1): 72-7.

    PubMed  Google Scholar 

  128. Sällsten G, Barregård L, Schutz A. Clearance half-life of mercury in urine after the cessation of long term occupational exposure: influence of a chelating agent (DMPS) on excretion of mercury in urine. Brit J Occupational Environ Med 1994; 51: 337-42.

    Google Scholar 

  129. Bluhm RE, Bobbit RG, Welch LW, Wood AJ. Elemental mercury vapour toxicity, treatment and prognosis after acute, intensive exposure in chloral kali plant workers. Part I: History, neuropsychological findings and chelator effects. Human Exp Toxicol 1992; 11: 201-10.

    CAS  Google Scholar 

  130. Gonzalez-Ramirez D, Zuniga-Charles M, Narro-Juarez A, Molina-Recio Y, Hurlbut KM, Dart RC, Aposhian HV. DMPS (2, 3-dimercaptopropane-1-sulfonate, dimaval) decreases the body burden of mercury in humans exposed to mercurous chloride. J Pharmacol Exp Ther 1998; 287(1):8-12.

    PubMed  CAS  Google Scholar 

  131. Garza-Ocanas L, Torres-Alanis O, Pineyro-Lopez A. Urinary mercury in twelve cases of cutaneous mercurous chloride (calomel) exposure: effect of sodium 2, 3-dimercaptopropane-1-sulfonate (DMPS) therapy. J Toxicol Clin Toxicol 1997; 35(6): 653-5.

    PubMed  CAS  Google Scholar 

  132. McFee RB, Caraccio TR. Intravenous mercury injection and ingestion: clinical manifestations and management. J Toxicol Clin Toxicol 2001; 39(7): 733-8.

    PubMed  CAS  Google Scholar 

  133. McFee RB. and Caraccio TR. “Intravenous mercury injection and ingestion: clinical manifestations and management.” J Toxicol Clin Toxicol 2001; 39(7): 733-8.

    PubMed  CAS  Google Scholar 

  134. Winker R., Schaffer AW, et al. „Health consequences of an intravenous injection of metallic mercury.“ Int Arch Occup Environ Health 2002; 75(8): 581-6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fowler, B.A., Whittaker, M.H., Elinder, CG. (2008). Mercury-induced renal effects. In: De Broe, M.E., Porter, G.A., Bennett, W.M., Deray, G. (eds) Clinical Nephrotoxins. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84843-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-84843-3_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-84842-6

  • Online ISBN: 978-0-387-84843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics