Mercury-induced renal effects

  • Bruce A. Fowler
  • Margaret H. Whittaker
  • Carl-Gustaf Elinder

Mercury (Hg, CAS Number 7439-97-6) is a naturally-occurring metal that has an atomic number of 80 and an atomic weight of 200.6. Many different organic and inorganic mercury compounds are found in nature because of mercury’s ability to form covalent and ionic bonds with other chemicals. Mercury exists in three forms in three oxidation states (0, +1, +2): elemental mercury (Hg0), organic mercury (e.g., methyl mercury), and inorganic mercury (e.g., Hg1+, Hg2+). Elemental mercury is a silvery, white liquid at room temperature, and because of this, Aristotle named mercury “quicksilver.”


Nephrotic Syndrome Methyl Mercury Inorganic Mercury Mercury Exposure Elemental Mercury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    United States Food and Drug Administration. Mercury compounds in drugs and foods. Center for Biologics Evaluation and Research (CBER). 2001.Google Scholar
  2. 2.
    United States Geological Service (U.S.G.S.). U.S. Geological Survey, Mineral Commodity Summaries (Mercury). 2002.Google Scholar
  3. 3.
    United States Geological Service (U.S.G.S.). U.S. Geological Survey, Mineral Commodity Summaries (Mercury). 1999.Google Scholar
  4. 4.
    Chevalier, P. Mercury. Canadian Minerals Yearbook 1999. Natural Resources Canada. 2000.Google Scholar
  5. 5.
    Byrne L. Brazil’s mercury poisoning disaster. Brit Med J 1992; 304: 1397.Google Scholar
  6. 6.
    Schutte NP, Knight AL, Jahn O. Mercury and its compounds. In: Dickerson OB, Horovath EP, Zenz C, editors. Occupational medicine, 3rd ed. St Louis: Mosby-Year Book Inc, 1994: 549-57.Google Scholar
  7. 7.
    National Research Council (NRC). Toxicological effects of methylmercury. 2000.Google Scholar
  8. 8.
    Sällsten G, Barregård L, Österberg T. Tandgnissling hos amalgambärare-en orsak till hög kvicksilverutsöndring ? (Tooth grinding among wearers of amalgam fillings-a cause of high mercury release ?). Läkartidningen (Sweden) 1991; 88: 232-3.Google Scholar
  9. 9.
    Geijersstam E, Sandborgh-Englund G, Jonsson F, Ekstrand J. Mercury uptake and kinetics after ingestion of dental amalgam. J Dent Res 2001; 80:1793-6.Google Scholar
  10. 10.
    International Agency for Research on Cancer (IARC). IARC monograph on Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry. Volume 58. Lyon, France. 1994: 239-345.Google Scholar
  11. 11.
    United States Environmental Protection Agency (U.S. EPA). Mercury update: impact on fish advisories. 2001. Office of Water.Google Scholar
  12. 12.
    Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N, Dahl R, Jorgensen PJ. Cognitive deficit in 7-year old children with prenatal exposure to methylmercury. Neurotoxicol. Teratol. 1997; 19: 417-28.PubMedGoogle Scholar
  13. 13.
    United States Food and Drug Administration (U.S. FDA). Methyl mercury levels in commercial seafood species. 2000. Center for Food Safety and Applied Nutrition. Office of Seafood.Google Scholar
  14. 14.
    World Health Organization. Methylmercury. Environmental Health Criteria 101. World Health Organization, Geneva 1990.Google Scholar
  15. 15.
    United States Environmental Protection Agency (U.S. EPA). Mercury study report to Congress. 1997. Office of Air Quality Planning and Standards and Office of Research and Development.Google Scholar
  16. 16.
    Campbell D, Gonzales M, Sullivan JB. 1992. Mercury. In, Sullivan, J.B. & Krieger, G.R., eds, Hazardous Materials Toxicology. 824-33.Clinical Principles of Environmental Health, Baltimore:Williams and Wilkins.Google Scholar
  17. 17.
    Elinder C-G, Friberg L, Nordberg GF, Kjellström T, Oberdoerster G. Biological monitoring of metals. Chemical safety monographs. International Programme on Chemical Safety. WHO/EHG/94.2 1994: 1-80.Google Scholar
  18. 18.
    Sällsten G, Barregård L, Järvholm B. Mercury in the Swedish chloralkali industri-an evaluation of the exposure and preventive measures over 40 years. Ann Occup Hyg 1990; 34: 205-14.PubMedGoogle Scholar
  19. 19.
    Gutiérrez F, Leon L. Elemental mercury embolism to the lung. New England Journal of Medicine 2000; 342(24): 1791.PubMedGoogle Scholar
  20. 20.
    Diner B, Brenner B. Toxicity, mercury. eMed J. 2001; 2:1-13. Available at: Google Scholar
  21. 21.
    World Health Organization. Inorganic mercury. Environmental Health Criteria 118. World Health Organization, Geneva 1991.Google Scholar
  22. 22.
    Hursh JB, Clarkson TW, Cherian MG, Vostal J, Mallie RV. Clearance of mercury (Hg-197 and Hg-203) vapor inhaled by human subjects. Arch Env Health 1976; 31: 302-9.Google Scholar
  23. 23.
    Barregård L, Ställsten G, Schutz A, Attwell R, Skerfving S, Jarvholm B. Kinetics of mercury in blood and urine after brief occupational exposure. Arch Env Health 1992; 47: 176-84.Google Scholar
  24. 24.
    Morrow PE, Gibb FR, Johnson L. Clearance of insoluble dust from the lower respira tory tract. Health Phys 1964; 10: 543-55.PubMedGoogle Scholar
  25. 25.
    Clarkson TW. Human toxicity of mercury. The Journal of Trace Elements in Experimental Medicine 1998; 11: 303-17.Google Scholar
  26. 26.
    Rahola T, Hattula T, Korolainen A, Miettinen JK. Elimination of free and protein-bound ionic mercury in man. Ann Clin Res 1973; 5: 214-19.PubMedGoogle Scholar
  27. 27.
    Hall LL, Allen PV, Fisher HL, et al. 1994. The kinetics of intravenously-administered inorganic mercury in humans. In: Kinetic Models of Trace Elements and Mineral Metabolism During Development, K.M.S. Subramanian and M.E. Wastney, Ed. CRC Press, Boca Raton, FL. p. 1-21.Google Scholar
  28. 28.
    Carmichael NG, Fowler BA. Effects of separate and combined chronic mercuric chloride and sodium selenite administration in rats: histologic, ultrastructural and x-ray microanalytical studies of liver and kidney. J Env Pathol Toxicol 1979; 3: 399-412.Google Scholar
  29. 29.
    Aslamkhan AG, Han YH, Yang XP, et al.Human renal anion transporter 1 dependent uptake and toxicity of mercuric thiol conjugates in Madin-Darby canine kidney cells. Mol Pharmacol 2003; 63(3):590-6.PubMedGoogle Scholar
  30. 30.
    Lash LH, Hueni SE, Putt DA, et al. Role of organic anion and amino acid carriers in transport of inorganic mercury in rat renal basolateral membrane vesicles: influence of compensatory renal growth. Toxicol Sci 2005; 88(2):630-44.PubMedGoogle Scholar
  31. 31.
    Zalups RK, Ahmad S. Handling of cysteine S-conjugates of methylmercury in MDCK cells expressing human OAT1. Kidney Int 2005; 68(4):1684-99PubMedGoogle Scholar
  32. 32.
    Aberg B, Ekman L, Falk R, Greitz U, Persson G, Snihs J. Metabolism of methyl mercury (Hg) compounds in man: Excretion and distribution. Arch Environ. Health 1969; 19: 478-84.Google Scholar
  33. 33.
    Miettinen JK. 1973. Absorption and elimination of dietary (Hg++) and methyl mercury in man. In: Mercury, Mercurial, and Mercaptans, M.W. Miller and T.W. Clarkson, Ed. Springfield, IL. p. 233-43.Google Scholar
  34. 34.
    Fowler BA, Lucier GW, Mushak P. Phenobarbital protec tion against methylmercury nephrotoxicity. Proc Soc Exp Biol Med 1975; 149: 75-9.PubMedGoogle Scholar
  35. 35.
    Vahter M, Mottet NK, Friberg L, Lind B, Shen DD, Burbacher T. Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol Appl Pharmacol 1994; 124(2): 221-29.PubMedGoogle Scholar
  36. 36.
    Fowler BA. The morphologic effects of dieldrin and methyl mercuric chloride on pars recta segments of rat kidney proximal tubules. Am J Pathol 1972; 69: 163-74.PubMedGoogle Scholar
  37. 37.
    Yasutake A, Hirayama K, Inouye M. Sex difference in acute renal dysfunction induced by methyl mercury in mice. Renal Failure 1990; 12: 233-40.PubMedGoogle Scholar
  38. 38.
    Fowler BA, Brown HW, Lucier GW, Krigman MR. The effect of chronic oral methylmercury exposure on the lysosome system of rat kidney. Morphometric and biochemical studies. Lab Invest 1975; 32: 313-22.PubMedGoogle Scholar
  39. 39.
    Zalups RK. Molecular interactions with mercury in the kidney. Pharmacological Reviews. 2000; 52(1):113-143.PubMedGoogle Scholar
  40. 40.
    Clarkson TW. Mercury. J. Am. Coll. Toxicol. 1989; 8(7): 1291-96.Google Scholar
  41. 41.
    Hu H. Exposure to metals. Occupational and Environmental Medicine 2000; 27(4):983-96.Google Scholar
  42. 42.
    Roels HA, Hoet P, Lison D. Usefulness of biomarkers of exposure to inorganic mercury, lead, or cadmium in controlling occupational and environmental risks of nephrotoxicity. Renal Failure 1999; 21(3 & 4): 251-62.PubMedGoogle Scholar
  43. 43.
    Satoh H. Occupational and environmental toxicology of mercury and its compounds. Industrial Health 2000; 38: 153-64.PubMedGoogle Scholar
  44. 44.
    Grandjean P, Weihe P, White RF, Debes F: Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ Res 1998; 77(2): 165-72.PubMedGoogle Scholar
  45. 45.
    Legrand M, Passos CJ, Mergler D, et al. Biomonitoring of mercury exposure with single human hair strand. Environ Sci Technol 2005; 39(12):4594-8.PubMedGoogle Scholar
  46. 46.
    Legrand M, Lam R, Passos CJ, et al. Analysis of mercury in sequential micrometer segments of single hair strands of fish-eater 2007; 41(2):593-8.Google Scholar
  47. 47.
    Xue F, Holzman C, Rahbar MH, et al. Maternal fish consumption, mercury levels, and risk of preterm delivery. Environ Health Perspect 2007; 115(1):42-7.PubMedGoogle Scholar
  48. 48.
    Ohno T, Sakamoto M, Kurosawa T, et al. Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function. Environ Res 2007; 103(2):191-7.PubMedGoogle Scholar
  49. 49.
    Byrne AR, Kosta L. Simultaneous neutron-activation determination of selenium and mercury in biological samples by volatilization. Talanta. 1974; 21: 1083-90.PubMedGoogle Scholar
  50. 50.
    WHO (World Health Organization). 1976. Environmental Health Criteria: Mercury. World Health Organization, Geneva, Switzerland, 121.Google Scholar
  51. 51.
    Hatch WR, Ott WL. Determination of sub-microgram quantities of mercury by atomic absorption spectrophotometry. Anal Chem 1968; 40(14): 2085-87.Google Scholar
  52. 52.
    Magos L, Clarkson TW. Atomic absorption and determination of total, inorganic, and organic mercury in blood. J AOAC 1972; 55(5): 966-71.Google Scholar
  53. 53.
    Von Burg R, Rustam H. Electrophysiological investigations of methyl mercury intoxication in humans: Evaluation of peripheral nerve by conduction velocity and electromyography. Electroenceph Clin Neurophysiol 1974; 37: 381-92.PubMedGoogle Scholar
  54. 54.
    Cappon CJ, Smith JC. A simple and rapid procedure for the gas-chromatographic determination of methylmercury in biological samples. Bull Environ Contam. Toxicol 1978; 19(5): 600-7.Google Scholar
  55. 55.
    Marsh, DO, Clarkson TW, Cox C, Amin-Zaki L, Al-Tikriti S. Fetal methyl mercury poisoning: Relationship between concentration in single strands of maternal hair and child effects. Arch Neurol 1987; 44: 1017-22.PubMedGoogle Scholar
  56. 56.
    Mason HJ, Hindell P, Williams NR. Biological monitoring and exposure to mercury. Occup Med 2001; 51(1): 2-11.Google Scholar
  57. 57.
    Kulig, K. A tragic reminder about organic mercury. The New England Journal of Medicine. 1998; 338(23): 1692-94.PubMedGoogle Scholar
  58. 58.
    Goldman L, Shannon MW, The Committee on Environmental Health. Technical Report: Mercury in the Environment: Implications for Pediatricians. Pediatrics 2001; 108(1): 197-205.PubMedGoogle Scholar
  59. 59.
    Litovitz TL, Klein-Schwartz W, White S, Cobaugh DJ, Youniss J, Drab A., Benson BE. The 1999 annual report of the American As-sociation of Poison Control Centers Toxic Exposure Surveillance Systems. The American Journal of Emergency Medicine 1999; 18 (5): 517-74.Google Scholar
  60. 60.
    Berlin M. Mercury. In: Friberg L, Nordberg GF, Vouk VB, editors. Handbook on the toxicology of metals, Vol II. Amsterdam: Elsevier, 1986: 387-445.Google Scholar
  61. 61.
    Smith RG, Vorwald AJ, Patil LS, Mooney TF. Effects of exposure to mercury in the manufacture of chlorine. Am Ind Hyg Ass J 1970; 31: 687-700.Google Scholar
  62. 62.
    Smith PJ, Langolf GD, Goldberg J. Effects of occupational exposure to elemental mercury on short term memory. Brit J Ind Me 1983; 40: 413-9.Google Scholar
  63. 63.
    Roels H, Gennart JP, Lauwerys R, Buchet JP, Malchaire J, Bernard A. Surveillance of workers exposed to mercury vapour: validation of a previously proposed biological threshold limit value for mercury concentration in urine. Am J Ind Med 1985; 7: 45-71.PubMedGoogle Scholar
  64. 64.
    Langworth S, Almkvist O, Söderman E, Wikström BO. Effects of occupational exposure to mercury vapour on the central nervous system. Brit J Ind Med 1992; 49: 545-55.Google Scholar
  65. 65.
    Clarkson TW. Mercury-an element of mystery. New Eng J Med 1990; 323: 1137-9.PubMedCrossRefGoogle Scholar
  66. 66.
    Curtis HA, Ferguson SD, Kell RL, Samuel AH. Mercury as a health hazard. Arch Dis Childhood 1987; 62: 293-5.Google Scholar
  67. 67.
    Langworth S, Bjorkman L, Elinder CG, Jarup L, Savlin P. Multidisciplinary examination of patients with illness attributed to dental fillings. J Oral Rehabil 2002; 29:705-13.PubMedGoogle Scholar
  68. 68.
    Brownawell AM, Berent S, et al. ”The potential adverse health effects of dental amalgam.” Toxicol Rev 2005; 24: 1-10.PubMedGoogle Scholar
  69. 69.
    Bates MN. ”Mercury amalgam dental fillings: an epidemiologic assessment.” Int J Hyg Environ Health 2006; 209: 309-16PubMedGoogle Scholar
  70. 70.
    Riddle M, Gardner F, Beswick I, Filshie I. The nephrotic syndrome complicating mercurial diuretic therapy. Brit Med J 1958; 1: 1274-7.PubMedGoogle Scholar
  71. 71.
    Cameron JS, Trounce R. Membranous glomerulonephritis and the nephrotic syndrome appearing during mersalyl therapy. Guy’s Hosp Report 1965; 114: 101-7.Google Scholar
  72. 72.
    Silbergeld E, Devine PJ. Mercury-are we studying the right endpoints and mechanisms. Fuel Processing Technology 2000; 65-66: 35-42.Google Scholar
  73. 73.
    Langworth S, Elinder CG, Sundqvist KG: Minor effects of low exposure to inorganic mercury on the human immune system. Scand J Work Environ Health 1993; 19(6): 405-13.PubMedGoogle Scholar
  74. 74.
    Langworth S, Elinder CG, Sundquist KG, Vesterberg O: Renal and immunological effects of occupational exposure to inorganic mercury. Br J Ind Med 1992; 49(6): 394-401.PubMedGoogle Scholar
  75. 75.
    Ellingsen DG, Efskind J, Berg KJ, Gaarder PI, Thomassen Y. Renal and immunologic markers for chloralkali workers with low exposure to mercury vapor. Scand J Work Environ Health 2000; 26(5): 427-35.PubMedGoogle Scholar
  76. 76.
    De Broe M. Renal toxicity from environmental toxins, drugs, and contrast agents. In: Essential Atlas of Nephrology. Lippincott, Williams & Wilkins, 2001.Google Scholar
  77. 77.
    Hua J, Pelletier L, Berlin M, Druet P. Autoimmune glomerulonephritis induced by mercury vapour exposure in the Brown Norway rat. Toxicol ogy 1993; 79: 119-29.Google Scholar
  78. 78.
    Gritzka TL, Trump BF. Renal tubular lesions caused by mercuric chloride: electron microscopic observations. Am J Pathol 1968; 52: 1225-78.PubMedGoogle Scholar
  79. 79.
    Ganote CE, Reimer KA, Jennings RB. Acute mercuric chloride nephrotoxicity: an electron microscopic and metabolic study. Lab Invest 1975; 31: 633-47.Google Scholar
  80. 80.
    Kempson SA, Ellis BG, Price RG. Changes in rat renal cortex, isolated plasma membranes, and urinary enzymes following the injection of mercuric chloride. Chem Biol Interact 1977; 18: 217-34.PubMedGoogle Scholar
  81. 81.
    Trump BF, Berezesky IK, Sato T, Laiho KU, Phelps PC, DeClaris N. Cell calcium, cell injury and cell death. Environ Health Perspec 1984; 54: 281-7.Google Scholar
  82. 82.
    Trump BF, Berezesky IK, Smith MW, Phelps PC, Eliget KA. The relationship between cellular ion deregulation and acute and chronic toxicity. Toxicol Appl Pharmacol 1989; 97: 6-22.PubMedGoogle Scholar
  83. 83.
    Smith MW, Ambudkar IS, Phelps PC, Regec AL, Trump BF. HgCl2-induced changes in cytosolic Ca2+ of cultured rabbit renal tubular cells. Biochim Biophys Acta 1987; 931: 130-42.PubMedGoogle Scholar
  84. 84.
    Nielsen JB, Andersen HR, Andersen O, Starklint H. Mercuric chloride-induced kidney damage in mice: time course and effect of dose. J Toxicol Environ Health 1991; 34: 469-83.PubMedGoogle Scholar
  85. 85.
    Tarabova B, Kurejova M, Sulova Z, et al. Inorganic mercury and methylmercury inhibit the Cav3.1 channel expressed in human embryonic kidney 293 cells by different mechanisms. J Pharmacol Exp Ther 2006; 317(1):418-27.PubMedGoogle Scholar
  86. 86.
    Wang Y, Bollard ME, Nicholson JK, et al. Exploration of the direct metabolic effects of mercury ll chloride on the kidney of SpragueDawley rats using high-resolution magic angle spinning 1H NMR spectroscopy of intact tissue and pattern recognition. J Pharm Biomed Anal 2006; 40(2):375-81.PubMedGoogle Scholar
  87. 87.
    Brandao R, Santos FW, Farina M, et al. Antioxidants and metallothionein levels in mercury-treated mice. Cell Biol Toxicol 2006; 22(6):429-38.PubMedGoogle Scholar
  88. 88.
    Brkljacic J, Perisic T, Dundjerski J, et al. Interaction of rat renal glucocorticoid receptor with Hsp90 and Hsp70 upon stress provoked by mercury 2007; 27(1):43-50.Google Scholar
  89. 89.
    Woods JS, Fowler BA. Renal porphyrinuria during chronic methyl mer cury exposure. J Lab Clin Med 1977; 90: 266-72.PubMedGoogle Scholar
  90. 90.
    Hultman P, Bell LJ, Eneström S, Pollard KM. Murine susceptibility to mercury. I. Autoantibody profiles and systemic immune deposits in inbred, congenic, and intra-H-2 recombinant strains. Clin Immunol Immuno pa thol 1992; 65: 98-109.Google Scholar
  91. 91.
    Hultman P, Eneström S. Mercury induced antinuclear antibodies in mice: characterization and correlation with renal immune complex deposits. Clin Exp Immunol 1988; 71: 269-74.PubMedGoogle Scholar
  92. 92.
    Hultman P, Eneström S. Mercury induced b-cell activation and antinuclear antibodies in mice. J Clin Lab Immunol 1989; 28: 143-50.PubMedGoogle Scholar
  93. 93.
    Bernard AM, Collette C, Lauwerys R. Renal effects of in utero exposure to mercuric chloride in rats. Arch Toxicol 1992; 66: 508-13.PubMedGoogle Scholar
  94. 94.
    Bellon B, Capron M, Druet E, Verroust M-CV, Sapin C, Girard JF, Foidart JM, Mathieu P, Druet P. Mercuric chloride induced autoimmune disease in Brown-Norway rats: sequential search for anti-basement membrane antibodies and circulating immune complexes. Eur J Clin Invest 1982; 12: 127-33.PubMedGoogle Scholar
  95. 95.
    Esnault VLM, Mathieson PW, Thiru S, Olveira DBG, Lockwood M. Autoantibodies to myeloperoxidase in Brown Norway rats treated with mercuric chloride. Lab Invest 1992; 67: 114-20.PubMedGoogle Scholar
  96. 96.
    Havarinasab, S, Bjorn, E, Ekstrand, J, et al. Dose and Hg species determine the T-helper cell activation in murine autoimmunity. Toxicology 2007; 229(1-2):23-32.PubMedGoogle Scholar
  97. 97.
    Klein R, Herman SP, Bullock BC, Talley FA. Early functional and pathological changes in rat kidney during methyl mercury intoxication. Arch Pathol 1976; 96: 83-90.Google Scholar
  98. 98.
    Fowler BA. Ultrastructural evidence for nephropathy induced by long-term exposure to small amounts of methylmercury. Science 1972; 175: 780-1.PubMedGoogle Scholar
  99. 99.
    Gage JC. The toxicity of alkyl-and arylmercury salts. Biochem Pharmacol 1961; 8: 77.Google Scholar
  100. 100.
    dos Santos AP, Mateus ML, Carvalho CM, et al. Biomarkers of exposure and effect as indicators of the interference of selenomethionine on methylmercury toxicity. Toxicol Lett 2007; 169(2):121-8.PubMedGoogle Scholar
  101. 101.
    Troen P, Seymour A, Kaufman SA, Katz KH. Mercuric bichloride poisoning. N Engl J Med 1951; 244: 459-63.PubMedCrossRefGoogle Scholar
  102. 102.
    Wands JR, Weiss SW, Yardley JH, Maddrey WC. Chronic inorganic mercury poisoning due to laxative abuse. Am J Med 1987; 57: 92-101.Google Scholar
  103. 103.
    Munck O, Nissen NI. Development of nephrotic syndrome during treatment with mercurial diuretics. Acta Med Scand 1956; 153: 397-413.Google Scholar
  104. 104.
    Burston J, Darmady EM, Stranack F. Nephrosis due to mercurial diuretics. Brit Med J 1958; 1: 1277-8.PubMedGoogle Scholar
  105. 105.
    Becker CG, Becker EL, Maher JF, Schreiner GE. Nephrotic syndrome after contact with mercury. Arch Intern Med 1962; 83: 178-86.Google Scholar
  106. 106.
    Preedy LRK, Russel DS. Acute salt depletion associated with the nephrotic syndrome. Development during the treatment with a mercurial diuretic. Lancet 1953; 2: 1181-4.Google Scholar
  107. 107.
    Williams NE, Bridge HG. Nephrotic syndrome after the application of mercury ointment. Lancet 1958; 2: 602.PubMedGoogle Scholar
  108. 108.
    Wilson VK, Thomson ML, Holzel A. Mercury nephrosis in young children. Brit Med J 1952; 1: 358-60.PubMedGoogle Scholar
  109. 109.
    Langworth S, Bjorkman L, Elinder CG, Jarup L, Savlin P. Multidisciplinary examination of patients with illness attributed to dental fillings. J Oral Rehabil 2002; 29:705-13.PubMedGoogle Scholar
  110. 110.
    Barr RD, Rees PH, Cordy PE, Kungu A, Woodger BA, Cameron HM. Nephrotic syndrome in adult African in Nairobi. Brit Med J 1972; 2:131-4.PubMedGoogle Scholar
  111. 111.
    Oliviera DBG, Foster G, Savill J, Syme PD, Taylor A. Membranous nephropathy caused by mercury-containing skin lightning cream. Postgr Med J 1987; 63: 303-4.Google Scholar
  112. 112.
    Weldon MM, Smolinski MS, Maroufi A, Hasty BW, Gilliss DL, Boulanger LL, Balluz LS, Dutton RJ. Mercury poisoning associated with a Mexican beauty cream. West J Med 2000; 173:15-18.PubMedGoogle Scholar
  113. 113.
    Tang HL, Chu KH, et al. “Minimal change disease following exposure to mercury-containing skin lightening cream.” Hong Kong Med J 2006; 12(4): 316-8.PubMedGoogle Scholar
  114. 114.
    Agner E, Jans H. Mercury poisoning and nephrotic syndrome in two siblings. Lancet 1978; 2: 951.PubMedGoogle Scholar
  115. 115.
    Friberg L, Hammarström S, Nyström A. Kidney injury after chronic exposure to inorganic mercury. Arch Ind Hyg Occup Med 1953; 8: 149-53.Google Scholar
  116. 116.
    Kazantzis G, Schiller KFR, Asscher AW, Drew RG. Albuminuria and the nephrotic syndrome following exposure to mercury and its compounds. Quart J Med 1962; 31: 403-19.PubMedGoogle Scholar
  117. 117.
    Aymaz S, Gross O, et al. “Membranous nephropathy from exposure to mercury in the fluorescent-tube-recycling industry.” Nephrol Dial Transplant 2001; 16(11): 2253-5.PubMedGoogle Scholar
  118. 118.
    Buchet JP, Roels H, Bernard A, Lauwerys R. Assessment of renal function of workers exposed to inorganic lead, cadmium or mercury vapor. J Occup Med 1980; 22: 741-50.PubMedGoogle Scholar
  119. 119.
    Stonard MD, Chater BV, Duffield DP, Nevitt AL, O’Sullivan JJ, Steel GT. An evaluation of renal function in workers occupationally exposed to mercury vapor. Int Arch Environ Health 1983; 52: 177-89.Google Scholar
  120. 120.
    Langworth S, Elinder CG, Sundquist KG, Vesterberg O. Renal and immunological effects of occupational exposure to inorganic mercury. Br J Ind Med 1992; 49: 3 94-401.Google Scholar
  121. 121.
    Langworth S. Early effects of occupational and environmental exposure to inorganic mercury (dissertation). Karolinska Institute Stockholm, Sweden 1992.Google Scholar
  122. 122.
    Ellingsen DG, Barregard L, Gaarder PI, et al. Assessment of renal dysfunction in workers previously exposed to mercury vapour at a chloralkali plant. Br J Ind Med 1993; 50(10):881-7.PubMedGoogle Scholar
  123. 123.
    Barregard L, Enestrom S, Ljunghuse O, et al. A study of autoantibodies and circulating immune complexes in mercury-exposed chloralkali workers. Int Arch Occup Environ Health 1997; 70(2):101-6.PubMedGoogle Scholar
  124. 124.
    Efskind J, Ellingsen DG, Hartman A, et al. Renal function of chloralkali workers after the cessation of exposure to mercury vapor. Scan J Work Environ Health 2006; 32(3):241-9.Google Scholar
  125. 125.
    Sandborgh-Englund G, Nygren, AT, Ekstrand J, Elinder CG. 1996. No evidence of renal toxicity from amalgam fillings. Am J Physio 271(4 Pt 2):R941-945.Google Scholar
  126. 126.
    Bellinger DC, Trachtenberg F, et al. ”Neuropsychological and renal effects of dental amalgam in children: a randomized clinical trial.” JAMA 2006; 295(15): 1775-83.PubMedGoogle Scholar
  127. 127.
    Hodgson S, Nieuwenhuijsen MJ, et al. “Kidney disease mortality and environmental exposure to mercury.” Am J Epidemiol 2007; 165(1): 72-7.PubMedGoogle Scholar
  128. 128.
    Sällsten G, Barregård L, Schutz A. Clearance half-life of mercury in urine after the cessation of long term occupational exposure: influence of a chelating agent (DMPS) on excretion of mercury in urine. Brit J Occupational Environ Med 1994; 51: 337-42.Google Scholar
  129. 129.
    Bluhm RE, Bobbit RG, Welch LW, Wood AJ. Elemental mercury vapour toxicity, treatment and prognosis after acute, intensive exposure in chloral kali plant workers. Part I: History, neuropsychological findings and chelator effects. Human Exp Toxicol 1992; 11: 201-10.Google Scholar
  130. 130.
    Gonzalez-Ramirez D, Zuniga-Charles M, Narro-Juarez A, Molina-Recio Y, Hurlbut KM, Dart RC, Aposhian HV. DMPS (2, 3-dimercaptopropane-1-sulfonate, dimaval) decreases the body burden of mercury in humans exposed to mercurous chloride. J Pharmacol Exp Ther 1998; 287(1):8-12.PubMedGoogle Scholar
  131. 131.
    Garza-Ocanas L, Torres-Alanis O, Pineyro-Lopez A. Urinary mercury in twelve cases of cutaneous mercurous chloride (calomel) exposure: effect of sodium 2, 3-dimercaptopropane-1-sulfonate (DMPS) therapy. J Toxicol Clin Toxicol 1997; 35(6): 653-5.PubMedGoogle Scholar
  132. 132.
    McFee RB, Caraccio TR. Intravenous mercury injection and ingestion: clinical manifestations and management. J Toxicol Clin Toxicol 2001; 39(7): 733-8.PubMedGoogle Scholar
  133. 133.
    McFee RB. and Caraccio TR. “Intravenous mercury injection and ingestion: clinical manifestations and management.” J Toxicol Clin Toxicol 2001; 39(7): 733-8.PubMedGoogle Scholar
  134. 134.
    Winker R., Schaffer AW, et al. „Health consequences of an intravenous injection of metallic mercury.“ Int Arch Occup Environ Health 2002; 75(8): 581-6.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bruce A. Fowler
    • 1
  • Margaret H. Whittaker
    • 2
  • Carl-Gustaf Elinder
    1. 1.Agency for Toxic Substances and Disease RegistryAtlantaUSA
    2. 2.ToxservicesWashingtonUSA

    Personalised recommendations