• Anja Verhulst
  • Marc E. De Broe

Oxalic acid (chemical formula of this dicarboxylate HOOC-COOH) is a strong organic acid, widely spread in both plants and animals. The name comes from the Oxalis plant (wood sorrel) from which it was first isolated.

Oxalic acid has the ability to form strong bonds with various minerals, such as sodium, potassium, magnesium, and calcium. When this occurs, the compounds formed are usually referred to as oxalate salts. Thus, “oxalate” usually refers to the salt forming ion of oxalic acid. Although both sodium and potassium oxalate salts are water soluble, calcium oxalate is practically insoluble (8.76x10−8 mol/L at 37°.C in a urine like solution [1]) which is why calcium oxalate, when present in high enough levels, has the propensity to precipitate (or solidify) in the kidneys or in the urinary tract to form calcium oxalate crystals. Calcium oxalate crystals, in turn, contribute to the formation of kidney stones of which approximately 75% are composed predominantly of calcium oxalate.


Calcium Oxalate Renal Tubular Cell Renal Epithelial Cell Urinary Oxalate Calcium Oxalate Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Streit J, Tran-Ho LC, Königsberger E. Solubility of the three calcium oxalate hydrates in sodium chloride solutions and urine-like liquors. Monatshefte Für Chemie 2008;129:1225-36.Google Scholar
  2. 2.
    Franceschi VR, Nakata PA. Calcium oxalate in plants: formation and function. Ann.Rev.Plant Biol. 2005;56:41-71.CrossRefGoogle Scholar
  3. 3.
    Holmes RP, Goodman HO, Assimos DG. Dietary oxalate and its intesitnal absorption. Scanning Micr. 1995;9(4):1109-18.Google Scholar
  4. 4.
    Aronson PS. Ion exchangers mediating NaCl transport in the renal proximal tubule. Cell Biochem.Biophys. 2002;36:147-53.CrossRefPubMedGoogle Scholar
  5. 5.
    Hatch M, Freel RW, Vaziri ND. Intestinal excretion of oxalate in chronic renal failure. J.Am.Soc.Nephrol. 1994;5:1339-43.PubMedGoogle Scholar
  6. 6.
    Hatch M, Cornelius JG, Allison M, Sidhu H, Peck AB and Freel RW. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 69, 691-698. 2006. Ref Type: GenericCrossRefPubMedGoogle Scholar
  7. 7.
    Hatch M, Freel RW. Renal and intestinal handling of oxalate following oxalate loading in rats. Am.J.Nephrol 2003;23:18-26.CrossRefPubMedGoogle Scholar
  8. 8.
    Mazzachi BC, Teubner JK, Ryall RL. Factors affecting measurement of urinary oxalate. Clin.Chem. 1984;30:1339-43.PubMedGoogle Scholar
  9. 9.
    Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate secretion. Kidney Int. 2001;59:270-6.CrossRefPubMedGoogle Scholar
  10. 10.
    Holmes RP, Ambrosius WT. Dietary oxalate loads and renal oxalate handling. J.Urol. 2005;174(3):943-7.CrossRefPubMedGoogle Scholar
  11. 11.
    Dumoulin G, Hory B, Nguyen NU, Henriet MT, Bresson C, Bittard H et al. Lack of increased urinary calcium-oxalate supersaturation in long-term kidney transplant recipients. Kidney Int. 1997;51:804-10.CrossRefPubMedGoogle Scholar
  12. 12.
    Worcester EM, Fellner SK, Nakagawa Y, Coe FL. Effect of renal transplantation on serum oxalate and urinary oxalate excretion. Nephron 1994;67:414-8.CrossRefPubMedGoogle Scholar
  13. 13.
    Milliner DS, Wilson RD, Smith LH. Phenotypic expression of primary hyperoxaluria: comparative features of type I and II. Kidney Int. 2001;59:31-6.CrossRefPubMedGoogle Scholar
  14. 14.
    Worcester EM. Stones from bowel disease. Endocrinol.Metab.Clin.North.Am. 2002;31(4979):4999.Google Scholar
  15. 15.
    Evan AP, Coe FL, Lingeman JE, Worcester EM. Insights on the pathology of kidney stone formation. Urol Res 2005;33:383-9.CrossRefPubMedGoogle Scholar
  16. 16.
    Sikora P, von Unruh G, Beck B, Feldkotter M, Zajaczdowska M, Hesse A et al. [13C2] Oxalate absorption in children with idiopathic calcium oxalate urolithiasis or primary hyperoxaluria . Kidney Int. 2008;73:1181-6.CrossRefPubMedGoogle Scholar
  17. 17.
    Davis DP, Bramwell KJ, Hamilton RS, Williams SR. Ethylene glycol poisoning: case report of a record-high level and a review. J.Emergency.Med. 1997;15(5):653-67.CrossRefGoogle Scholar
  18. 18.
    Leth PM, Gregersen M. Ethylene glycol poisoning. Forensic Sci.Int. 2005;155:179-84.CrossRefPubMedGoogle Scholar
  19. 19.
    Asselman M, Verhulst A, De Broe ME, Verkoelen CF. Calcium oxalate crystal adherence to hyaluronan-, osteopontin- and CD44 expressing injured/regenerating tubular epithelial cells in rat kidneys. J.Am.Soc.Nephrol. 2003;13:3155-266.CrossRefGoogle Scholar
  20. 20.
    Khan SR, Johnson JM, Peck AB, Cornelius JG, Glenton PA. Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J.Urol. 2002;168:1173-81.CrossRefPubMedGoogle Scholar
  21. 21.
    Lyon ES, Borden TA, Vermeulen CW. Experimental oxalate lithiasis produced with ethylene glycol. Invest.Urol. 1966;4(2):143-51.PubMedGoogle Scholar
  22. 22.
    Thamiselvan S, Hackett RL, Khan SR. Lipid peroxidaition in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J.Urol. 1997;157:1059-63.CrossRefGoogle Scholar
  23. 23.
    Yasui T, Sato M, Fujita K, Tozawa K, Nomura S, Kohri K. Effects of citrate on renal stone formation and osteopontin expression in a rat urolithiasis model. Urol Res 2001;29:50-6.CrossRefPubMedGoogle Scholar
  24. 24.
    Marengo SR, Chen DH, Kaung HL, Resnick MI, Yang L. Decreased renal expression of the putative calcium oxalate inhibitor Tamm-Horsfall protein in the ethylene glycol rat model of calcium oxalte urolithiasis. J.Urol. 2002;167:2192-7.CrossRefPubMedGoogle Scholar
  25. 25.
    Baggio B, Gambaro G, Ossi E, Favaro S, Borsatti A. Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J.Urol. 1983;129(6):1161-2.PubMedGoogle Scholar
  26. 26.
    Khan SR, Shevok PN, Hackett RL. Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis. J.Urol. 1992;147:226-30.PubMedGoogle Scholar
  27. 27.
    Kumar S, Sigmon D, Miller T, Carpenter B, Khan SR, Malhotra R et al. A new model of nephrolithiasis involving tubular dysfunction/injury. J.Urol. 1991;147:1384-9.Google Scholar
  28. 28.
    Khan SR, Thamiselvan S. Nephrolithiasis: a consequence of renal epithelial cell exposure to oxalate and calcium oxalate. Mol. Urol. 2000;4(4):305-11.PubMedGoogle Scholar
  29. 29.
    Jonassen Ja, Cao LC, Honeyman T, Scheid C. Mechanisms mediating oxalate-induced alterations in renal cell functions. Crit.Rev. Eukaryotic Gene Expr. 2003;13(1):55-72.CrossRefGoogle Scholar
  30. 30.
    Wiessner JH, Hasegawa AT, Hung LY, Mandel GS. Oxalate-induced exposure of phophatidylserine on the surface of renal epithelial cells in culture. J.Am.Soc.Nephrol. 1999;10:S441-5.PubMedGoogle Scholar
  31. 31.
    Cao LC, Jonassen Ja, Honeyman T, Scheid C. Oxalate-induced redistribution of phosphatidylserine in renal epithelial cells: implications for kidney stone disease. Am.J.Nephrol 2001;21(69):77.Google Scholar
  32. 32.
    Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J.Immunol. 1992;148:2207-16.PubMedGoogle Scholar
  33. 33.
    Kohjimoto Y, Kennington L, Scheid C, Honeyman T. Role of phosphlipase A2 in the cytotoxic effects of oxalate in cultured renal epithelial cells. Kidney Int. 1999;56:1432-41.CrossRefPubMedGoogle Scholar
  34. 34.
    Thamiselvan S, Khan SR. Oxalate and calcium oxalate are injurious to renal epithelium cells: results of in vivo and in vitro studies. J.Pathol. 1998;Suppl 1:66-9.Google Scholar
  35. 35.
    Umekawa T, Chegini N, Khan SR. Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelium cells. Kidney Int. 2002;61:105-12.CrossRefPubMedGoogle Scholar
  36. 36.
    Scheid C, Cao LC, Honeyman T, Jonassen Ja. How elevated oxalate can promote kidney stone disease: changes at the surface and in the cytosol of renal cells that promote crystal adherence and growth. Frontiers in Bioscience 2004;1(9):797-808.CrossRefGoogle Scholar
  37. 37.
    Schepers MS, Van Ballegooijen E, Bangma CH, Verkoelen CF. Oxalate is toxic to renal tubular cells only at supraphysiological concentrations. Kidney Int. 2005;68:1660-9.CrossRefPubMedGoogle Scholar
  38. 38.
    Podelski V, Johnson A, Wright S, Rosa VD, Zager RA. Ethyleneglycol-mediated tubular injury: identification of critical metabolites and pathways. Am.J.Kidney Dis. 2001;38:339-48.CrossRefGoogle Scholar
  39. 39.
    Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J.Clin.Invest. 2003;111:607-16.PubMedGoogle Scholar
  40. 40.
    Finlayson B, Reid F. The expectation of free and fixed particles in urinary stone diseaese. Invest.Urol. 1979;15:442-8.Google Scholar
  41. 41.
    Evan AP, Lingeman JE, Coe FL, Worcester EM. Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int. 2006;69:1313-8.CrossRefPubMedGoogle Scholar
  42. 42.
    Taylor EN, Curhan GC. Diet and fluid prescription in stone disease. Kidney Int. 2006;70(70):-835.CrossRefPubMedGoogle Scholar
  43. 43.
    Kummeling MT, de Jong BW, Laffeber C, Kok DJ, Verhagen PC, Leenders GJ et al. Tubular and interstitial nephrocalcinosis. J.Urol. 2007;178:in press.Google Scholar
  44. 44.
    Pinheiro H, Camara N, Osaki K, De Moura L, Pacheco-Silva A. Early presence of calcium oxalate deposition in kidney graft biopsies is associated with poor long-term graft survival. Am.J.Transplantation 2005;5:323-9.CrossRefGoogle Scholar
  45. 45.
    Nankivell BJ, Borrows RJ, Fung CL, O’Connel PJ, Allen DM, Chapman JR. The natural history of chronic allograft nephropathy. N.Eng.J.Med 2003;349:2326-33.CrossRefGoogle Scholar
  46. 46.
    Mandel NS, Mandel GS. Urinary tract stone disease in the United States veteran population. II. Geographical analysis of variations in composition. J.Urol. 1989;142:1516-21.Google Scholar
  47. 47.
    Serio A, Fraioli A. Epidemiology of nephrolithiasis. Nephron 1999;81:26-30.CrossRefPubMedGoogle Scholar
  48. 48.
    Coe FL, Parks JH, Asplin JR. The pathogenesis and treatment of kidney stones. J.Clin.Invest. 1992;327(16):1141-52.Google Scholar
  49. 49.
    Robertson WG. The effect of high animal protein uptake on the risk of calcium stone formation in the urinary tract. Clin.Sci. 1979;57(3):285-8.PubMedGoogle Scholar
  50. 50.
    Worcester EM, Blumenthal SS, Behensky AM, Lewand DL. The calcium oxalate crystal growth inhibitor protein produced by mouse kidney cortical cells in culture is osteopontin. J.Bone.Min.Res. 1992;7(9):1029-36.CrossRefGoogle Scholar
  51. 51.
    Worcester EM, Nakagawa Y, Wabner CL, Kumar S, Coe FL. Crystal adsorption and growth slowing by nephrocalcin, albumin, and Tamm-Horsfall protein. Am.J.Physiol. 1888;255:F1179-F1205.Google Scholar
  52. 52.
    Hess B, Nakagawa Y, Coe FL. Inhibition of calcium oxalate monohydrate crystal aggregation by urine proteins. Am.J.Physiol. 1989;257:F99-F106.PubMedGoogle Scholar
  53. 53.
    Hess B, Nakagawa Y, Parks JH, Coe FL. Molecular abnormality of Tamm-Horsfall glycoprotein in calcium oxalate nephrolithiasis. Am.J.Physiol. 1991;260:569-78.Google Scholar
  54. 54.
    Asplin JR, Deganello S, Nakagawa Y, Coe FL. Evidence that nephrocalcin and urine inhibit nucleation of calcium oxalate monohydrate crystals. Am.J.Physiol. 1991;261:F824-F830.PubMedGoogle Scholar
  55. 55.
    Asplin JR, Arsenault D, Parks JH, Coe FL, Hoyer JR. Contribution of human uropontin to inhibition of calcium oxalate crystallization. Kidney Int. 1998;53:194-9.CrossRefPubMedGoogle Scholar
  56. 56.
    Worcester EM. Inhibitors of stone formation. Sem.Nephrol. 1996;16(5):474-86.Google Scholar
  57. 57.
    Verkoelen CF. The involvement of renal tubule epithelial cells in the pathophysiology of calcium oxalate nephrolithiasis. PhD thesis 1996.Google Scholar
  58. 58.
    Kok DJ, Khan SR. Calcium oxalate nephrolithiasis, a free or fixed particle diseaese. Kidney Int. 1994;46:847-54.CrossRefPubMedGoogle Scholar
  59. 59.
    Khan SR, Cockrell CA, Finlayson B, Hackett RL. Crystal retention by injured urothelium of the rat urinary bladder. J.Urol. 1984;132:153-7.PubMedGoogle Scholar
  60. 60.
    Rhee E, Santiago L, Park E, Lad P, Bellman GC. Urinary IL-6 is elevated in patients with urolithiasis. J.Urol. 1998;160:2284-8.CrossRefPubMedGoogle Scholar
  61. 61.
    Verkoelen CF, Romijn HC, de Bruijn WC, Boeve ER, Cao LC, Schroder FH. Association of calcium oxalate monohydrate crystals with MDCK cells. Kidney Int. 1995;48:129-38.CrossRefPubMedGoogle Scholar
  62. 62.
    Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF et al. Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition from a crystal binding- into a non-adherent epithelium. J.Am.Soc.Nephrol. 2002;14:107-15.CrossRefGoogle Scholar
  63. 63.
    Verkoelen CF, van der Boom BG, Houtsmuller AB, Schroder FH, Romijn HC. Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am.J.Physiol. 1998;274:F958-F965.PubMedGoogle Scholar
  64. 64.
    Verkoelen CF, van der Boom BG, Romijn JC. Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int. 2000;58:1045-54.CrossRefPubMedGoogle Scholar
  65. 65.
    Sorokina EJ, Kleinman JG. Cloning and preliminary characterization of a calcium-binding protein closely related to nucleolin on the apical surface of inner medullary collecting duct cells. J.Biol.Chem. 1999;274(39):27491-6.CrossRefPubMedGoogle Scholar
  66. 66.
    Sorokina EJ, Wesson JA, Kleinman JG. An acidic peptide sequence of nucleolin-related protein mediate the attachement of calcium oxalate to renal tubule cells. J.Am.Soc.Nephrol. 2004;15:2057-65.CrossRefPubMedGoogle Scholar
  67. 67.
    Kumar S, Farell G, Deganello S, Lieske JC. Annexin II is present on renal epithelial cells and binds oxalate monohydrate crystals. J.Am.Soc.Nephrol. 2003;14:289-97.CrossRefPubMedGoogle Scholar
  68. 68.
    Verhulst A, Asselman M, De Naeyer S, Vervaet B, Mengel M, Gwinner W et al. Preconditioning of the distal tubular epithelium of the human kidney precedes nephrocalcinosis. Kidney Int. 2005;68:1643-7.CrossRefPubMedGoogle Scholar
  69. 69.
    Hackett RL, Shevok PN, Khan SR. Cell injury associated calcium oxalate crystalluria. J.Urol. 1990;144:1535-8.PubMedGoogle Scholar
  70. 70.
    Hackett RL, Shevok PN, Khan SR. Alterations in MDCK and LLC-PK1 cells exposed to oxalate and calcium oxalate monohydrate crystals. Scanning Micr. 1995;9(2):587-96.Google Scholar
  71. 71.
    Hackett RL, Shevok PN, Khan SR. Madin-Darby canine kidney cells are injured by exposure to oxalate and to calcium oxalate crystals. Urol Res 1994;22(4):197-203.CrossRefPubMedGoogle Scholar
  72. 72.
    Vervaet B, Verhulst A, Dauwe SE, Verberckmoes SC, De Broe M, D’Haese P. An active renal crystal clearing mechnism in rat and man. Kidney Int. 2008;in press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anja Verhulst
    • Marc E. De Broe

      There are no affiliations available

      Personalised recommendations