Imaging agents

  • Christiane M. Erley
  • Ihab M. Wahba
  • George A. Porter

The use of iodinated contrast media (CM) continues to be a common cause of hospital-acquired acute renal failure ( ARF) and its development increases the in-hospital mortality significantly [1, 2, 3, 4] as well as increasing the length of hospital stay [5]. Contrast media-induced nephropathy (CMIN) is defined as an otherwise unexplained acute deterioration of renal function after intravascular administration of iodinated CM. Although the clinical features and the histopathological findings of CMIN have been well described [6-9], its pathogenesis, prevention and best treatment modality remain uncertain.


Percutaneous Coronary Intervention Acute Renal Failure Acute Kidney Injury Nephrogenic Systemic Fibrosis Nephrol Dial Transplant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levy EM, Viscoli CM, Horwitz RI. The effect of acute renal failure on mortality: a cohort analysis. JAMA 1996; 275: 1489-1494.PubMedGoogle Scholar
  2. 2.
    Porter GA. Contrast-associated nephropathy: presentation, pathophysiology and management. Mineral&Electrolyte Metabolism 1994; 20: 232-243.Google Scholar
  3. 3.
    Kurnik BR, AllgrenRI, GenterFC, Solomon RJ, Bates ER, Weisberg LS: Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy. Am J Kid Dis. 1998;31:674-80PubMedGoogle Scholar
  4. 4.
    Gruberg L., Mintz GS, Mehran R, Gangas G, Lansky AJ, Kent KM, Pichard AD, Satler LF, Leon MB: The prognostic implications of further renal function deterioration within 48 h of interventional coronaryprocedures in patients with pre-existing chronic renal insufficiency. J Am Coll Cardiol. 2000;36:1542-8.PubMedGoogle Scholar
  5. 5.
    Abizaid AS, Clark CE, Mintz GS, Dosa S, Popma JJ, Pichard AD, Satler LF, Harvey M, Kent KM, Leon MB: Effects of dopamine and aminophylline on contrast-induced acute renal failure after coronary antioplasty in patients with preexisiting renal insufficiency. Am J. Cardiol. 1999; 83;260-3.PubMedGoogle Scholar
  6. 6.
    Berns AS. Nephrotoxicity of contrast media (clinical conference). Kidney Int 1989; 36: 730-740.PubMedGoogle Scholar
  7. 7.
    Barrett BJ, Parfrey PS, Vavasour HM, McDonald J, Kent G, Hefferton D, O’Dea F, Stone E, Reddy R, McManamon PJ. Contrast nephropathy in patients with impaired renal function: high versus low osmolar media. Kidney Int 1992; 41: 1274-1279.PubMedGoogle Scholar
  8. 8.
    Rudnick MR, Berns JS, Cohen RM, Goldfarb S. Contrast media-associated nephrotoxicity. Curr Opin Nephrol Hypert 1996; 5: 127-133.Google Scholar
  9. 9.
    Moreau JF, Droz D, Sabto J, Jungers P, Kleinknecht D, Hinglais N, Michel JR. Osmotic nephrosis induced by water soluble triiodinated contrast media in man. Radiology 1975; 115: 329-336.PubMedGoogle Scholar
  10. 10.
    Bettmann MA. The evaluation of contrast-related renal failure (comment). AJR Am J Roentgenol 1991; 157: 66-68.PubMedGoogle Scholar
  11. 11.
    Hunter JV, Kind PRN. Nonionic iodinated contrast media: potential renal damage assessed with enzymuria. Radiology 1992; 183: 101-104.PubMedGoogle Scholar
  12. 12.
    Erley CM, Duda SH, Rehfuss D, Scholtes B, Bock J, Müller C, Osswald H. Prevention of radiocontrast-media-induced nephropathy in patients with preexisting renal insufficiency by hydration in combination with the adenosine antagonist theophylline. Nephrol Dial Transplant 1999; 14: 1146-1149.PubMedGoogle Scholar
  13. 13.
    Donadio C, Tramonti G, Giordani R, Lucchetti A, Calderazzi A, Sbragia P, Bianchi C. Glomerular and tubular effects of ionic and nonionic contrast media (diatrizoate and iopamidol). Contrib Nephrol 1988; 68: 212-219.PubMedGoogle Scholar
  14. 14.
    Porter GA. Urinary biomarkers and nephrotoxicity. Mineral&Electrolyte Metabolism 1994; 20: 181-186.Google Scholar
  15. 15.
    NGAL may represent a sensitive early biomarkers of renal impairment after PCI. Int J Cardiol. 2007 Jun 11,.Google Scholar
  16. 16.
    NGAL is an early predictive biomarker of contrast-induced nephropathy in children.Pediatr Nephrol. 2007.Google Scholar
  17. 17.
    Scanlon PJ, Faxon DP, Audet AM, Carabello, B, Dehmer GJ, Eagle KA, Legako RD, Leon DF, Murray JD, Nissen SE, Pepine CJ, Watson, RM, Ritchie JL, Gibbons RJ, Cheitlin MD, Gardner TJ, Garson A, Russell RO, Ryan TJ, Smith SC: ACC/AHA guidelines for coronary angiography: a report of the American College of Cardiology/American Heart Associateion Task force on Practic Guidelines (Committee on Coronary Angiography). J Am Coll Cardiol. 1999;33:1756-824.PubMedGoogle Scholar
  18. 18.
    Dangas,G., Iakovou,I., Nikolsky,E., Aymong,E.D., Mintz,G.S., Kipshidze,N.N., Lansky,A.J., Moussa,I., Stone,G.W., Moses,J.W., Leon,M. B., and Mehran,R. (2005): Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am J Cardiol., 95:13-19.PubMedGoogle Scholar
  19. 19.
    Tervahartiala P, Kivisaari L, Kivisaari R, Vehmas T, Virtanen I. Structural changes in the renal proximal tubular cells induced by iodinated contrast media. Nephron 1997; 76: 96-102.PubMedGoogle Scholar
  20. 20.
    Dobrota M, Powell CJ, Holtz E, Wallin A, Vik H. Biochemical and morphological effects of contrast media on the kidney. Acta Radiol (Suppl) 1995; 399: 196-203.Google Scholar
  21. 21.
    Battenfeld R, Khater AE, Drommer W, Guenzel P, Kaup FJ. Ioxaglate-induced light and electron microscopic alterations in the renal proximal tubular epithelium of rats (see comments). Invest Radiol 1991; 26: 35-39.PubMedGoogle Scholar
  22. 22.
    Heyman SN, Brezis M, Reubinoff CA, Greenfeld Z, Lechene C, Epstein FH, Rosen S. Acute renal failure with selective medullary injury in the rat. J Clin Invest 1988; 82: 401-412.PubMedGoogle Scholar
  23. 22A.
    Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S. Early medullary hypoxic injury from radio-contrast and indomethacin. Kidney Int 1991; 40: 632-642PubMedGoogle Scholar
  24. 22B.
    Han Wkj, Vaily V, Abischandani, R, Thadlhani R, Bonventre JV. Kidney injury molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002; 62: 237-244.PubMedGoogle Scholar
  25. 23.
    Rich MW, Crecelius CA. Incidence, risk factors, and clinical course of acute renal insufficiency after cardiac catheterization in patients 70 years of age or older. A prospective study. Arch Intern Med 1990; 150: 1237-1242.PubMedGoogle Scholar
  26. 24.
    Davidson CJ, Hlatky M, Morris KG, Pieper K, Skelton TN, Schwab SJ, Bashore TM. Cardiovascular and renal toxicity of a nonionic radiographic contrast agent after cardiac catheterization. A prospective trial. Ann Intern Med 1989; 110: 119-124.PubMedGoogle Scholar
  27. 25.
    D’Elia JA, Gleason RE, Alday M, Malarick C, Godley K, Warram J, Kaldany A, Weinrauch LA. Nephrotoxicity from angiographic contrast material. A prospective study. Am J Med 1982; 72: 719-725.PubMedGoogle Scholar
  28. 26.
    Manske CL, Sprafka JM, Strony JT, Wang Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med 1990; 89: 615-620.PubMedGoogle Scholar
  29. 27.
    Agrawal M, Stouffer GA: Contrast induced nephropathy after angiography. Am J Med Sci. 2002;323:252-58.PubMedGoogle Scholar
  30. 28.
    Rosovsky MA, Rusinek H, Berenstein A, Basak S, Setton A, Nelson PK. High-dose administration of nonionic contrast media: a retrospective review. Radiology 1996; 200: 119-122.PubMedGoogle Scholar
  31. 29.
    Rudnick M, Berns JS, Cohen RM, Goldfarb S. Contrast media-associated nephrotoxicity. Curr Opin Nephrol Hypertens 1996; 5: 127-133.PubMedGoogle Scholar
  32. 29A.
    Gruberg L, Mehran R, Dangas G, Mintz GS, Waksman R, Kent KM, Pichard AD, Satler LF , Wu H, and Leon MB. Acute renal failure requiring dialysis after percutaneous coronary interventions. Catheter Cardiovasc Interv 2001; 52: 409-416.PubMedGoogle Scholar
  33. 31.
    Vanzee BE, Hoy WE, Talley TE, Jaenike JR. Renal injury associated with intravenous pyelography in nondiabetic and diabetic patients. Ann Intern Med 1978; 89: 51-54.PubMedGoogle Scholar
  34. 32.
    Moore RD, Steinberg EP, Powe NR, Brinker JA, Fishman EK, Graziano S, Gopalan R. Nephrotoxicity of high-osmolality versus lowosmolality contrast media: randomized clinical trial. Radiology 1992; 182: 649-655.PubMedGoogle Scholar
  35. 33.
    Freeman RV, O’donnell M, Share D. Nephropathy requiring dialysis after percutanheous coro ary intervention and the critical role of an adjusted contrast dose. Am J, Cardiol. 2002;90:1068-1073.Google Scholar
  36. 34.
    Ashby DT, Mehran R, Aymong EA . Comparison of outcomes in men versus woment having percutaneous coronary interventions in small coronay artieries. Am. J.l Cardiol 2003;91:979-981.Google Scholar
  37. 35.
    Bartholomew BA, Harjal KJ, Dukkipati S. Impact of nephropathy aftr percutaneous coronary intervention a method for risk stratification Am J Cardiol. 2004;93;1515-1519.Google Scholar
  38. 36.
    Mehran R, Aymong ED, Nikolsky E. A simple risk scorfe for prediction of contrast-induced nephropathy after percutaneous coronary intervention. Development and initial validation. J Am Coll Cardiol. 2004;44:1393-1399.PubMedGoogle Scholar
  39. 37.
    Rudnick MR, Goldfarb S, Wexler L, Ludbrook PA, Murphy MJ, Halpern EF, Hill JA, Winneford M, Cohen MB, Vanfossen DB. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. Kidney Int 1995; 47: 254-261.PubMedGoogle Scholar
  40. 38.
    Parfrey PS, Griffiths SM, Barrett BJ, Paul MD, Genge M, Withers J, Farid N, McManamon PJ. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med 1989; 320: 143-149.PubMedGoogle Scholar
  41. 39.
    Lautin EM, Freeman NJ, Schoenfeld AH, Bakal CW, Haramati N, Friedman AC, Lautin JL, Braha S, Kadish EG, Sprayregen S. Radiocontrast-associated renal dysfunction: incidence and risk factors (see comments). AJR Am J Roentgenol 1991; 157: 49-58.PubMedGoogle Scholar
  42. 40.
    Weisberg LS, Kurnik PB, Kurnik BR. Risk of radiocontrast nephroathy in patients with and without diabetes mellitus. Kidney Int 1994; 45: 259-265.PubMedGoogle Scholar
  43. 41.
    Gomes AS, Baker JD, Martin-Paredero V, Dixon SM, Takiff H, Machleder HI, Moore WS. Acute renal dysfunction after major arteriography. AJR Am J Roentgenol 1985; 145(6): 1249-1253.PubMedGoogle Scholar
  44. 42.
    Taliercio CP, McCallister SH, Holmes DR, Ilstrup DM, Vlietstra RE. Nephrotoxicity of nonionic contrast media after cardiac angiography. Am J Cardiol 1989; 64: 815-816.PubMedGoogle Scholar
  45. 43.
    Rudnick MR, Berns JS, Cohen RM, Goldfarb S. Contrast media-associated nephrotoxicity. Sem Nephrol 1997; 17: 15-26.Google Scholar
  46. 44.
    Gruberg L, Mehran R, Dangas G. Acute renal failure reuiring dialysis after percutaneous coronary intervention. Catheter Cardiovas. Interv. 2001;52:409-416.Google Scholar
  47. 45.
    Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med 1989; 86: 649-652.PubMedGoogle Scholar
  48. 46.
    Lakovou,I., Dangas,G., Mehran,R., Lansky,A.J., Ashby,D.T., Fahy,M., Mintz,G.S., Kent,K.M., Pichard,A.D., Satler,L.F., Stone,G.W., and Leon,M.B. (2003): Impact of gender on the incidence and outcome of contrast-induced nephropathy after percutaneous coronary intervention. J Invasive.Cardiol., 15:18-22.Google Scholar
  49. 47.
    Nikolsky E, Aymong ED, Dangas G, Mehran R. Radiocontrast nephropathy identifying the high-risk pataient and the implications of exacerbating renal function. Rev Cardiovasc. Med 2003;4(S1):s7-s14.PubMedGoogle Scholar
  50. 48.
    Nikolsky E, Mehran R, Lasic Z . Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions. Kidney Int. 2005;67:706-713. .PubMedGoogle Scholar
  51. 49.
    McCarthy CS, Becker JA. Multiple myeloma and contrast media. Radiology 1992; 183: 519-521.PubMedGoogle Scholar
  52. 50.
    Heyman SN, Rosen S, Brezis M. Radiocontrast nephropathy: a paradigm for the synergism between toxic and hypoxic insults in the kidney. Exp Nephrol 1994; 2: 153-157.PubMedGoogle Scholar
  53. 51.
    Katzberg RW, Morris TW, Burgener FA, Kamm DE, Fischer HW. Renal renin and hemodynamic responses to selective renal artery catheterization and angiography. Invest Radiol 1977; 12: 381-388.PubMedGoogle Scholar
  54. 52.
    Bakris GL, Burnett JCJ. A role for calcium in radiocontrast-induced reductions in renal hemodynamics. Kidney Int 1985; 27: 465-468.PubMedGoogle Scholar
  55. 53.
    Caldicott WJ, Hollenberg NK, Abrams HL. Characteristics of response of renal vascular bed to contrast media. Evidence for vaso- constriction induced 53 renin-angiotensin system. Invest Radiol 1970; 5: 539-547.PubMedGoogle Scholar
  56. 53A.
    Heyman SN, Rosenberger C, Rosen S. Regional alterations in renal haemodynamics and oxygentation: a role in contrast medium- induced nephropathy. Nephrol Dial Transplant 2005; 20(S1): i6-i11.PubMedGoogle Scholar
  57. 54.
    Mockel,M., Radovic,M., Kuhnle,Y., Combe,V., Waigand,J., Schroder,S., Dietz,R., Frei,U., and Eckardt,K.U. (2008): Acute renal haemodynamic effects of radiocontrast media in patients undergoing left ventricular and coronary angiography. Nephrol Dial Transplant.Google Scholar
  58. 55.
    Katzberg RW. Urography into the 21st century: new contrast media, renal handling, imaging characteristics, and nephrotoxicity. Radiology 1997; 204: 297-312.PubMedGoogle Scholar
  59. 56.
    Workman RJ, Shaff MI, Jackson RV, Diggs J, Frazer MG, Briscoe C. Relationship of renal hemodynamic and functional changes following intravascular contrast to the renin-angiotensin system and renal prostacyclin in the dog. Invest Radiol 1983; 18: 160-166.PubMedGoogle Scholar
  60. 57.
    Larson TS, Hudson K, Mertz JI, Romero JC, Knox FG. Renal vasoconstrictive response to contrast medium. The role of sodium balance and the renin-angiotensin system. J Lab Clin Med 1983; 101: 385-391.PubMedGoogle Scholar
  61. 58.
    Heyman SN, Clark BA, Kaiser N, Spokes K, Rosen S, Brezis M, Epstein FH. Radiocontrast agents induce endothelin release in vivo and in vitro. J Am Soc Nephrol 1992; 3: 58-65.PubMedGoogle Scholar
  62. 59.
    Oldroyd SD, Haylor JL, Morcos SK. Bosentan, an orally active endothelin antagonist: effect on the renal response to contrast media. Radiology 1995; 196: 661-665.PubMedGoogle Scholar
  63. 60.
    Russo D, Minutolo R, Cianciaruso B, Memoli B, Conte G, De Nicola L. Early effects of contrast media on renal hemodynamics and tubular function in chronic renal failure. J Am Soc Nephrol 1995; 6: 1451-1458.PubMedGoogle Scholar
  64. 61.
    Erley CM, Osswald H. Prevention of contrast media-induced renal impairment by adenosine antagonists in humans. Drug Dev Res 1998; 45: 172-175.Google Scholar
  65. 62.
    Heyman SN, Rosenberger C, Rosen S. regional alterations in renal heamodynamics and oxygenation: a role in contrast mediuminduced nephropathy. Nephrol Dial Transpl. 2005;20(S1): i6-i11. .Google Scholar
  66. 63.
    Liss P, Nygren A, Erikson U, Ulfendahl HR. Injection of low and iso-osmolar contrast medium decreases oxygen tension in the renal medlulla. Kidney Int. 1998;53:698-702.PubMedGoogle Scholar
  67. 64.
    Liss P, Nygren A, Olsson U, Ulfendahl HR. Effects of contrast media and mannitol on renal medullary blood flow and red cell aggregation in the rat kidney. Kidney Int. 1996;49:1268-1275. .PubMedGoogle Scholar
  68. 65.
    Arend LJ, Bakris GL, Burnett JCJ, Megerian C, Spielman WS. Role for intrarenal adenosine in the renal hemodynamic response to contrast media. J Lab Clin Med 1987; 110: 406-411.PubMedGoogle Scholar
  69. 66.
    Katholi RE, Taylor GJ, McCann WP, Woods WT, Womack KA, McCoy CD, Katholi CR, Moses HW, Mishkel GJ, Lucore CL, Holloway RM, Miller BD, Woodruff RC, Dove JT, Mikell FL, Schneider JA. Nephrotoxicity from contrast media: attenuation with theophylline. Radiology 1995; 195:17-22.PubMedGoogle Scholar
  70. 67.
    Osswald H, Schmitz HJ, Heidenreich O. Adenosine response of the rat kidney after saline loading, sodium restriction and hemorrhagia. Pflugers Arch 1975; 357: 323-333.PubMedGoogle Scholar
  71. 68.
    Hall JE, Granger JP. Adenosine alters glomerular filtration control by angiotensin II. Am J Physiol 1986; 250: F917-F923.PubMedGoogle Scholar
  72. 69.
    Haas JA, Osswald H. Adenosine induced fall in glomerular capillary pressure: effect of ureteral obstruction and aortic constriction in the Munich- Wistar rat kidney. Naunyn Schmiedebergs Arch Pharmacol 1981; 317: 86-89.PubMedGoogle Scholar
  73. 70.
    Cantley LG, Spokes K, Clark B, McMahon EG, Carter J, Epstein FH. Role of endothelin and prostaglandins in radiocontrast-induced renal artery constriction. Kidney Int 1993; 44: 1217-1223.PubMedGoogle Scholar
  74. 71.
    Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int 1991; 40: 632-642.PubMedGoogle Scholar
  75. 72.
    Cederholm C, Almen T, Bergqvist D, Golman K, Takolander R. Acute renal failure in rats. Interaction between contrast media and temporary renal arterial occlusion. Acta Radiol 1989; 30: 321-326.PubMedGoogle Scholar
  76. 73.
    Deray G, Dubois M, Martinez F, Baumelou B, Beaufils H, Bourbouze R, Baumelou A, Jacobs C. Renal effects of radiocontrast agents in rats: a new model of acute renal failure. Am J Nephrol 1990; 10: 507-513.PubMedGoogle Scholar
  77. 74.
    Osswald H, Schmidt HJ, Kemper R. Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischemia and postischemic recirculation. Pflügers Arch 1977; 371: 45-49.PubMedGoogle Scholar
  78. 75.
    Agmon Y, Peleg H, Greenfeld Z, Rosen S, Brezis M. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. J Clin Invest 1994; 94: 1069-1075.PubMedGoogle Scholar
  79. 76.
    Pflueger A, Larson, TS, Nath KA, King BF, Gross JM, Knox, FG: Role of adenosine in constrast media-induced acute renal failure in diabetes mellitus. Mayo Clin Proc. 2000; 75:1275-83.PubMedGoogle Scholar
  80. 77.
    Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A: Cyclooxygenase inhibition restores nitric oxide activity in essential hypertension. Hyperten. 1997;29(1Pt2):274-9.Google Scholar
  81. 78.
    Osswald H, Helminger I, Jendralski A, Abrar B. Improvement of renal function by theophylline in the acute renal failure of the rat. Naunyn-Schmiedeberg's Arch Pharmacol 1979; 307: R47 (abstract).Google Scholar
  82. 79.
    Gouyon JB, Guignard JP. Theophylline prevents the hypoxemia-induced renal hemodynamic changes in rabbits. Kidney Int 1988; 33: 1078-1083.PubMedGoogle Scholar
  83. 80.
    Deray G, Martinez F, Cacoub P, Baumelou B, Baumelou A, Jacobs C. A role for adenosine calcium and ischemia in radiocontrastinduced intrarenal vasoconstriction. Am J Nephrol 1990; 10: 316-322.PubMedGoogle Scholar
  84. 81.
    Rossi N, Ellis V, Kontry T, Gunther S, Churchill P, Bidani A. The role of adenosine in HgCl2-induced acute renal failure in rats. Am J Physiol 1990; 258: F1554-F1560.PubMedGoogle Scholar
  85. 82.
    Lin JJ, Churchill PC, Bidani AK. Theophylline in rats during maintenance phase of post-ischemic acute renal failure. Kidney Int 1988; 33: 24-28.PubMedGoogle Scholar
  86. 83.
    Lin JJ, Churchill PC, Bidani AK. Effect of theophylline on the initiation phase of postischemic acute renal failure in rats. J Lab Clin Med 1986; 108: 150-154.PubMedGoogle Scholar
  87. 84.
    Bidani AK, Churchill PC. Aminophylline ameliorates glycerol-induced acute renal failure in rats. Can J Physiol Pharmacol 1983; 61: 567-571.PubMedGoogle Scholar
  88. 85.
    Bidani AK, Churchill PC, Packer W. Theophylline-induced protection in myoglobinuric acute renal failure: Further chracterization. Can J Physiol Pharmacol 1987 ; 65: 42-45.PubMedGoogle Scholar
  89. 86.
    Erley CM, Heyne N, Burgert K, Langanke J, Risler T, Osswald H. Prevention of radiocontrast induced nephropathy by adenosine antagonists in rats with chronic nitric oxide deficiency. J Am Soc Nephrol 1997; 8: 1125-1132.PubMedGoogle Scholar
  90. 87.
    Barrett BJ, Parfrey PS, McDonald JR, Hefferton DM, Reddy ER, McManamon PJ. Nonionic low-osmolality versus ionic high-osmolality contrast material for intravenous use in patients perceived to be at high risk: randomized trial (see comments). Radiology 1992; 183: 105-110.PubMedGoogle Scholar
  91. 88.
    Deray G, Jacobs C. Radiocontrast nephrotoxicity. A review. Invest Radiol 1995; 30: 221-225.PubMedGoogle Scholar
  92. 89.
    Katholi RE, Taylor GJ, Woods WT, Womack KA, Katholi CR, McCann WP, Moses HW, Dove JT, Mikell FL, Woodruff RC. Nephrotoxicity of nonionic low-osmolality versus ionic high- osmolality contrast media: a prospective double-blind randomized comparison in human beings. Radiology 1993; 186: 183-187.PubMedGoogle Scholar
  93. 90.
    Schwab SJ, Hlatky MA, Pieper KS, Davidson CJ, Morris KG, Skelton TN, Bashore TM. Contrast nephrotoxicity: a randomized controlled trial of a nonionic and an ionic radiographic contrast agent. N Engl J Med 1989; 320: 149-153.PubMedGoogle Scholar
  94. 91.
    Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology 1993; 188: 171-178.PubMedGoogle Scholar
  95. 92.
    Jakobsen JA. Renal effects of iodixanol in healthy volunteers and patients with severe renal failure. Acta Radiol (Suppl) 1995; 399: 191-195.Google Scholar
  96. 93.
    Jakobsen JA. Renal experience with Visipaque. Eur Radiol 1996; 6 (Suppl 2): S16-S19.PubMedGoogle Scholar
  97. 94.
    Solomon,R., The role of osmolality in the incidence of contrst-induced nephyropathy: a syhstematic review of angiographic contrast mediain high risk patients. Kid. EInternat. 2005;68:2256-2263.Google Scholar
  98. 95.
    Liss,P., Persson,P.B., Hansell,P., and Lagerqvist,B. (2006): Renal failure in 57 925 patients undergoing coronary procedures using iso-osmolar or low-osmolar contrast media. Kidney Int, 70:1811-1817.PubMedGoogle Scholar
  99. 96.
    Seeliger E, Flemming B, Wronski T, Ladwig M, Arakelyan K, Godes M, Mockel M, Persson PB. Viscosity of contrast media perturbs renal hemodynamics. J Am Soc Nephrol 2007; 18: 2912-2920.PubMedGoogle Scholar
  100. 97.
    Sharma SK, Kini A . Effect of non-ionic radiocontrast agents on the occurrence of contgrast-induced in patients with mild-moderate chrnic renal insufficiency: pooled analysis of the randomized trials. Catherter Cardiovascular Interv. 2005;65:386-393.Google Scholar
  101. 98.
    Weissleder R. Can gadolinium be safely nephropathy in patients given in renal failure? AJR Am J Roentgenol 1996; 167: 278-279.PubMedGoogle Scholar
  102. 99.
    Kaufman JA, Geller SC, Waltman AC. Renal insufficiency: gadopentetate dimeglumine as a radiographic contrast agent during peripheral vascular interventional procedures. Radiology 1996; 198: 579-581.PubMedGoogle Scholar
  103. 100.
    Hatrick AG, Jarosz JM, Irvine AT. Gadopentate dimeglumine as an alternative contrast agent for use in interventional procedures. Clin Radiology 1997; 52: 948-952.Google Scholar
  104. 101.
    Seeger JM, Self S, Harward TR, Flynn TC, Hawkins IF Jr. Carbon dioxide gas as an arterial contrast agent. Ann Surgery 1993; 217: 688-697.Google Scholar
  105. 102.
    Hawkins IF Jr, Wilcox CS, Kerns SR, Sabatelli FW. CO2 digital angiography: a safer contrast agent for renal vascular imaging ? Am J Kidney Dis 1994; 24: 685-694.PubMedGoogle Scholar
  106. 103.
    Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med 1994; 331: 1416-1420.PubMedGoogle Scholar
  107. 104.
    Kurnik BR, Weisberg LS, Cuttler IM, Kurnik PB. Effects of atrial natriuretic peptide versus mannitol on renal blood flow during radiocontrast infusion in chronic renal failure. J Lab Clin Med 1990; 116: 27-36.PubMedGoogle Scholar
  108. 105.
    Weisberg LS, Kurnik PB, Kurnik BR. Dopamine and renal blood flow in radiocontrast-induced nephropathy in humans. Renal Failure 1993; 15: 61-68.PubMedGoogle Scholar
  109. 106.
    Weisberg LS, Kurnik PB, Kurnik BR. Radiocontrast-induced nephropathy in humans: role of renal vasoconstriction. Kidney Int 1992; 41: 1408-1415.PubMedGoogle Scholar
  110. 107.
    Anto HR, Chou SY, Porush JG, Shapiro WB. Infusion intravenous pyelography and renal function. Effect of hypertonic mannitol in patients with chronic renal insufficiency. Arch Intern Med 1981; 141: 1652-1656.PubMedGoogle Scholar
  111. 108.
    Eisenberg RL, Bank WO, Hedgock MW. Renal failure after major angiography can be avoided with hydration. Am J Radiol 1981; 136: 859-861.Google Scholar
  112. 109.
    Carraro M, Stacul F, Collari P, Toson D, Zucconi F, Torre R, Faccini L, Dalla Palma L. Contrast media nephrotoxicity: urinary protein and enzyme pattern in patients with or without saline infusion during digital subtracting angiography. Contrib Nephrol 1993; 101: 251-254.PubMedGoogle Scholar
  113. 110.
    Kerstein MD, Puyau FA. Value of periangiography hydration. Surgery 1984; 96: 919-922.PubMedGoogle Scholar
  114. 111.
    Louis BM, Hoch BS, Hernandez C, Namboodiri N, Neiderman G, Nissenbaum A, Foti FP, Magno A, Banayat G, Fata F, Manohar NL, Lipner HI. Protection from the nephrotoxicity of contrast dye. Renal Failure 1996; 18: 639-646.PubMedGoogle Scholar
  115. 112.
    Krasuski RA, Beard BM, Geoghagan JD, Thompson CM, Guidera SA: Optimal timing of hydration to erase contrastassociated nephropathy: The OTHER CAN study. J Invasive Cardiol 15: 699-702, 2003.PubMedGoogle Scholar
  116. 113.
    Merten GJ, Burgess WP, Gray LV, Holleman JH, Roush TS, Kowalchuk GJ, Bersin RM, Van Moore A, Simonton CA 3rd, Rittase RA, Norton HJ, Kennedy TP: Prevention of contrast-induced nephropathy with sodium bicarbonate: A randomized controlled trial. JAMA 291: 2328-2334, 2004.PubMedGoogle Scholar
  117. 114.
    Briguori C, Airoldi F, D’Andrea D, Bonizzoni E, Morici N, Focaccio A, Michev I, Montorfano M, Carlino M, Cosgrave J, Ricciardelli B, Colombo A: Renal Insufficiency Following Contrast Media Administration Trial (REMEDIAL): A randomized comparison of 3 preventive strategies. Circulation115: 1211-1217, 2007.PubMedGoogle Scholar
  118. 115.
    ecio-Mayoral A, Chaparro M, Prado B, Cozar R, Mendez I, Banerjee D, Kaski JC, Cubero J, Cruz JM: The Reno-Protective Effect of Hydration with Sodium Bicarbonate Plus N-Acetylcysteine in Patients Undergoing Emergency Percutaneous Coronary Intervention: The RENO Study.J Am Coll Cardiol 49: 1283-1288, 2007.Google Scholar
  119. 116.
    Schmidt P, Pang D, Nykamp D, Knowlton G, Jia H: N-acetylcysteine and sodium bicarbonate versus N-acetylcysteine and standard hydration for the prevention of radiocontrast-induced nephropathy following coronary angiography. Ann Pharmacother 41: 46-50, 2007.PubMedGoogle Scholar
  120. 117.
    From AM, Bartholmai BJ, Williaws AW, Cha SS, Pflueger A, McDonald S. Sodium bicarbonate is associated with a increased incidence of contrast nephropathy: a retrospective cohort study of 7977 patients at the mayo clinicl Clin J Am Soc Nephrol 3: 10-18, 2008. doi: 10.2215/CJN.03100707.PubMedGoogle Scholar
  121. 118.
    Weinstein JM, Heyman S, Brezis M. Potential deleterious effect of furosemide in radiocontrast nephropathy. Nephron 1992; 62: 413-415.PubMedGoogle Scholar
  122. 119.
    Golman K, Cederholm C. Contrast medium-induced acute renal failure. Can it be prevented ? Invest. Radiol. 1990; 25(Suppl 1): S127-S128.PubMedGoogle Scholar
  123. 120.
    Neumayer HH, Gellert J, Luft FC. Calcium antagonists and renal protection. Renal Failure 1993; 15: 353-358.PubMedGoogle Scholar
  124. 121.
    Russo D, Testa A, Volpe LD, Sansone G. Randomised propspective study on renal effects of two different contrast media in humans: protective role of a calcium channel blocker. Nephron 1990; 55: 254-257.PubMedGoogle Scholar
  125. 122.
    Carraro M, Mancini W, Artero M, Stacul F, Grotto M, Cova M, Faccini L. Dose effect of nitrendipine on urinary enzymes and microproteins following non-ionic radiocontrast administration. Nephrol Dial Transplant 1996; 11: 444-448.PubMedGoogle Scholar
  126. 123.
    Spangberg Viklund B, Berglund J, Nikonoff T, Nyberg P, Skau T, Larsson R. Does prophylactic treatment with felodipine, a calcium antagonist, prevent low-osmolar contrast-induced renal dysfunction in hydrated diabetic and nondiabetic patients with normal or moderately reduced renal function? Scand J Urol Nephrol 1996; 30: 63-68.PubMedCrossRefGoogle Scholar
  127. 124.
    Khoury Z, Schlicht JR, Como J, Karschner JK, Shapiro AP, Mook WJ, Weber RJ. The effect of prophylactic nifedipine on renal function in patients administered contrast media. Pharmacother 1995; 15: 59-65.Google Scholar
  128. 125.
    Hall KA, Wong RW, Hunter GC, Camazine BM, Rappaport WA, Smyth SH, Bull DA, McIntyre KE, Bernhard VM, Misiorowski RL. Contrast-induced nephrotoxicity: the effects of vasodilator therapy. J Surg Res 1992; 53: 317-320.PubMedGoogle Scholar
  129. 126.
    Chertow GM, Sayegh MH, Allgren RL, Lazarus JM. Is the administration of dopamine associated with adverse or favorable outcomes in acute renal failure? Auriculin Anaritide Acute Renal Failure Study Group. Am J Med 1996; 101: 49-53.PubMedGoogle Scholar
  130. 127.
    Madyoon H, Croushore L, Weaver D, Mathur V: Use of fenoldopam to prevent radiocontrast nephropathy in high-risk patients. Cather Cardiovasc. Intervent 2001;53;341-5.Google Scholar
  131. 128.
    Kini A, Sharma S: Managing the high-risk patients: Experience with fenoldopam, a selective dopamine receptor agonist, in prevention of radiocontrast nephropathy during percutaneous coronary intervention. Rev Cardiovas Med. 2001;2(s1):S19-25.Google Scholar
  132. 129.
    Wambach G, Winkert T. Nierenfunktionsstörungen nach Röntgenkontrastmittelgabe: Prophylaxe durch das atriale natriuretische Peptid? Nieren- und Hochdruckkrankheiten 1990; 19: 312-317.Google Scholar
  133. 130.
    Kurnik BR, Allgren RL, Genter FC, Solomon RJ, Bates ER, Weisberg LS. Prospective study of atrial natriuretic peptide for the pre- vention of radiocontrast-induced nephropathy. Am J Kidney Dis 1998; 31: 674-680.PubMedGoogle Scholar
  134. 131.
    Erley CM, Duda SH, Schlepckow S, Koehler J, Huppert PE, Strohmaier WL, Bohle A, Risler T, Osswald H. Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application. Kidney Int 1994; 45: 1425-1431.PubMedGoogle Scholar
  135. 132.
    Erley CM. Prävention des kontrastmittelbedingten Nierenversagens. Intensivmed 1997; 34: 769-777.Google Scholar
  136. 133.
    Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. New Engl J MED 2000; 343: 180-184.PubMedGoogle Scholar
  137. 134.
    Diaz-Sandoval LJ, Kosowsky BD, Losordo DW: Acetylcysteine to prevent angiography-related renal tissue injury (The APART Trial). Am J Cardiol. 2002;89:356-8.PubMedGoogle Scholar
  138. 135.
    Mehran R, Ashby DT. Radiocontrast-induced acute renal failure: allocations and outcomes. Rev Cardiovas Med 2001;2(supp1): S9-S13.Google Scholar
  139. 136.
    Tadros GM, Mouhayar EN, Akinwande AO, Campbell B, Wood C, Blankenship JA. Prevention of radiocontrast-induced nephropathy with n-acetylcysteine in patients undergoing coronary angiography. J Invas Cardiol 2003; 15: 311-314.Google Scholar
  140. 137.
    Briguori C, Manganelli F, Scarpato P, Elia PP, Golia B, Riviezzo G, Lepore S, Librera M, Villari B, Colombo A, Ricciardelli B. Acetylcys- teine and contrast agent-associated nephrotoxicity. J Am Coll Cardiol. 2002; 40: 298-303.PubMedGoogle Scholar
  141. 138.
    Fishbane S. N-acetylcysteine in the prevention of contrast-induced nephropathy. Clin J Am Soc Nephrol 2008; 3: 281-287.PubMedGoogle Scholar
  142. 139.
    Webb JG, Pate GE, Humphries KH, Buller CE, Shalansky S, Al Shamari A, Sutander A, Williams T, Fox RS, Levin A: A randomized controlled trial of intravenous N-acetylcysteine for the prevention of contrast-induced nephropathy after cardiac catheterization: Lack of effect. Am Heart J 148: 422-429, 2004.PubMedGoogle Scholar
  143. 140.
    Marenzi G, Assanelli E, Marana I, Lauri G, Campodonico J, Grazi M, De Metrio M, Galli S, Fabbiocchi F, Montorsi P, Veglia F, Bartorelli AL: N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med354: 2773-2782, 2006.PubMedGoogle Scholar
  144. 141.
    Hoffmann U, Fischereder M, Kruger B et al. The value of N-acetylcysteine in the prevention of radiocontrast agent-induced nephropathy seems questionable. J Am Soc Nephrol 2004; 15: 407-410,).PubMedGoogle Scholar
  145. 143.
    Oldroyd S, Slee SJ, Haylor J, Morcos SK, Wilson C. Role for endothelin in the renal responses to radiocontrast media in the rat. Clin Sci Colch 1994; 87: 427-434.PubMedGoogle Scholar
  146. 144.
    Wang A, Holcslaw T, Bashore TM, Freed MI, Miller D, Rudnick MR, Szerlip H, Thames MD, Davidson CJ, Shusterman N, Schwab SJ. Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int 2000; 57: 1675-1680.PubMedGoogle Scholar
  147. 145.
    Lehnert T, Keller E, Gondolf K, Schaffner T, Pavenstandt H, Schollmeyer P. Effect of haemodialysis after contrast medium administration in patients with renal insufficiency. Nephrol Dial Transplant 1998; 13: 358-362.PubMedGoogle Scholar
  148. 146.
    Berger ED, Bader BD, Bosker J, Risler T, Erley CM. Kontrastmittelinduziertes Nierenversagen läßt sich durch Hämodialyse nicht verhindern. (Contrast media-induced kidney failure cannot be prevented by hemodialysis). Dtsch Med Wochenschr 2001; 16; 126(7): 162-166 (German).Google Scholar
  149. 147.
    Clin Res Cardiol. 2007 Mar;96(3):130-9. Epub 2006 Dec 22.Google Scholar
  150. 148.
    Marenzi G, Marana I, Lauri G, Assanelli E, Grazi M, CampodonicoJ, Trabattoni D, Fabbiocchi F, Montorsi P, Bartorelli AL. The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. N Engl J Med 2003;349:1333-1340.PubMedGoogle Scholar
  151. 149.
    Stacul F, Adam A, Becdker CR, Davidson C, Lameire N, McCullough PA, Tumlin J. Strategies to reduce the risk of contrast-induced nephropathy. Am J Cardiol 2006;98[suppl]:59K-77K.PubMedGoogle Scholar
  152. 150.
    Pannu N, Wiebe N, Tonelli M. Prophylaxis strategiesfor contrast-induced nephropathy. JAMA. 2006;295:2765-2779.PubMedGoogle Scholar
  153. 151.
    Barrett BJ, & Parfrey PS: Clinical practice. Preventing nephropathy induced by contrast medium. N Engl J Med 354: 379-386, 2006.PubMedGoogle Scholar
  154. 152.
    Hammer FD, Goffette PP, Malaise J, Mathurin P: Gadolinium dimeglumine: An alternative contrast agent for digital subtraction angiography. Eur Radiol 9: 128-136, 1999.PubMedGoogle Scholar
  155. 153.
    Hammer FD, Malaise J, Goffette PP, Mathurin P: Gadolinium dimeglumine: An alternative contrast agent for digital subtraction angiography in patients with renal failure. Transplant Proc 32: 432-433, 2000.PubMedGoogle Scholar
  156. 154.
    Kaufman JA, Geller SC, Bazari H, Waltman AC: Gadolinium-based contrast agents as an alternative at vena cavography in patients with renal insufficiency--early experience. Radiology 212: 280-284, 1999.PubMedGoogle Scholar
  157. 155.
    Rieger J, Sitter T, Toepfer M, Linsenmaier U, Pfeifer KJ, Schiffl H: Gadolinium as an alternative contrast agent for diagnostic and interventional angiographic procedures in patients with impaired renal function. Nephrol Dial Transplant 17: 824-828, 2002.PubMedGoogle Scholar
  158. 156.
    Akgun H, Gonlusen G, Cartwright J,Jr, Suki WN, Truong LD: Are gadolinium-based contrast media nephrotoxic? A renal biopsy study. Arch Pathol Lab Med 130: 1354-1357, 2006.PubMedGoogle Scholar
  159. 157.
    Briguori C, Colombo A, Airoldi F, Melzi G, Michev I, Carlino M, Montorfano M, Chieffo A, Bellanca R, Ricciardelli B: Gadoliniumbased contrast agents and nephrotoxicity in patients undergoing coronary artery procedures. Catheter Cardiovasc Interv 67: 175-180, 2006.PubMedGoogle Scholar
  160. 158.
    Ergun I, Keven K, Uruc I, Ekmekci Y, Canbakan B, Erden I, Karatan O: The safety of gadolinium in patients with stage 3 and 4 renal failure. Nephrol Dial Transplant 21: 697-700, 2006.PubMedGoogle Scholar
  161. 159.
    Erley CM, Bader BD, Berger ED, Tuncel N, Winkler S, Tepe G, Risler T, Duda S: Gadolinium-based contrast media compared with iodinated media for digital subtraction angiography in azotaemic patients. Nephrol Dial Transplant 19: 2526-2531, 2004.PubMedGoogle Scholar
  162. 160.
    Sam AD,2nd, Morasch MD, Collins J, Song G, Chen R, Pereles FS: Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg 38: 313-318, 2003.PubMedGoogle Scholar
  163. 161.
    Kwak HS, Lee YH, Han YM, Jin GY, Kim W, Chung GH: Comparison of renal damage by iodinated contrast or gadolinium in an acute renal failure rat model based on serum creatinine levels and apoptosis degree. J Korean Med Sci 20: 841-847, 2005.PubMedGoogle Scholar
  164. 162.
    Thomsen HS, Almen T, Morcos SK, Contrast Media Safety Committee Of The European Society Of Urogenital Radiology (ESUR): Gadolinium-containing contrast media for radiographic examinations: A position paper. Eur Radiol 12: 2600-2605, 2002.PubMedGoogle Scholar
  165. 163.
    Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE: Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 356: 1000-1001, 2000.PubMedGoogle Scholar
  166. 164.
    Cowper SE: Nephrogenic fibrosing dermopathy: The first 6 years. Curr Opin Rheumatol 15: 785-790, 2003.PubMedGoogle Scholar
  167. 165.
    Perazella MA, Ishibe S, Perazella MA, Reilly RF: Nephrogenic fibrosing dermopathy: An unusual skin condition associated with kidney disease. Semin Dial 16: 276-280, 2003.PubMedGoogle Scholar
  168. 166.
    Wahba IM, White K, Meyer M, Simpson EL: The case for ultraviolet light therapy in nephrogenic fibrosing dermopathy--report of two cases and review of the literature. Nephrol Dial Transplant 22: 631-636, 2007.PubMedGoogle Scholar
  169. 167.
    Ting WW, Stone MS, Madison KC, Kurtz K: Nephrogenic fibrosing dermopathy with systemic involvement. Arch Dermatol 139: 903-906, 2003.PubMedGoogle Scholar
  170. 168.
    Jimenez SA, Artlett CM, Sandorfi N, Derk C, Latinis K, Sawaya H, Haddad R, Shanahan JC: Dialysis-associated systemic fibrosis (nephrogenic fibrosing dermopathy): Study of inflammatory cells and transforming growth factor beta1 expression in affected skin. Arthritis Rheum 50: 2660-2666, 2004.PubMedGoogle Scholar
  171. 169.
    Daram SR, Cortese CM, Bastani B: Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: Report of a new case with literature review. Am J Kidney Dis 46: 754-759, 2005.PubMedGoogle Scholar
  172. 170.
    Mendoza FA, Artlett CM, Sandorfi N, Latinis K, Piera-Velazquez S, Jimenez SA: Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum 35: 238-249, 2006.PubMedGoogle Scholar
  173. 171.
    Moschella SL, Kay J, Mackool BT, Liu V: Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 35-2004. A 68-year-old man with end-stage renal disease and thickening of the skin. N Engl J Med 351: 2219-2227, 2004.PubMedGoogle Scholar
  174. 172.
    Mackay-Wiggan JM, Cohen DJ, Hardy MA, Knobler EH, Grossman ME: Nephrogenic fibrosing dermopathy (scleromyxedema-like illness of renal disease). J Am Acad Dermatol 48: 55-60, 2003.PubMedGoogle Scholar
  175. 173.
    Evenepoel P, Zeegers M, Segaert S, Claes K, Kuypers D, Maes B, Flamen P, Fransis S, Vanrenterghem Y: Nephrogenic fibrosing dermopathy: A novel, disabling disorder in patients with renal failure. Nephrol Dial Transplant 19: 469-473, 2004.PubMedGoogle Scholar
  176. 174.
    Streams BN, Liu V, Liegeois N, Moschella SM: Clinical and pathologic features of nephrogenic fibrosing dermopathy: A report of two cases. J Am Acad Dermatol 48: 42-47, 2003.PubMedGoogle Scholar
  177. 175.
    Deo A, Fogel M, Cowper SE: Nehprogenic systemic fibrosis: A population study examining the relationship of disease development to gadolinium exposure. Clin J Am Soc Nephrol 2: 264-267, 2007.PubMedGoogle Scholar
  178. 176.
    Todd DJ, Kagan A, Chibnik LB, Kay J: Cutaneous changes of nephrogenic systemic fibrosis: Predictor of early mortality and association with gadolinium exposure. Arthritis Rheum 56: 3433-3441, 2007.PubMedGoogle Scholar
  179. 177.
    Cowper SE, Su LD, Bhawan J, Robin HS, LeBoit PE: Nephrogenic fibrosing dermopathy. Am J Dermatopathol 23: 383-393, 2001.PubMedGoogle Scholar
  180. 178.
    Ortonne N, Lipsker D, Chantrel F, Boehm N, Grosshans E, Cribier B: Presence of CD45RO+ CD34+ cells with collagen synthesis activity in nephrogenic fibrosing dermopathy: A new pathogenic hypothesis. Br J Dermatol 150: 1050-1052, 2004.PubMedGoogle Scholar
  181. 179.
    Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R: Circulating fibrocytes: Collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 36: 598-606, 2004.PubMedGoogle Scholar
  182. 180.
    Swartz RD, Crofford LJ, Phan SH, Ike RW, Su LD: Nephrogenic fibrosing dermopathy: A novel cutaneous fibrosing disorder in patients with renal failure. Am J Med 114: 563-572, 2003.PubMedGoogle Scholar
  183. 181.
    Grobner T: Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21: 1104-1108, 2006.PubMedGoogle Scholar
  184. 182.
    Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS: Nephrogenic systemic fibrosis: Suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17: 2359-2362, 2006.PubMedGoogle Scholar
  185. 183.
    Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A: Nephrogenic systemic fibrosis: Risk factors and incidence estimation. Radiology 24: 148-157, 2007.Google Scholar
  186. 184.
    Khurana A, Runge VM, Narayanan M, Greene JF,Jr, Nickel AE: Nephrogenic systemic fibrosis: A review of 6 cases temporally related to gadodiamide injection (omniscan). Invest Radiol 42: 139-145, 2007.PubMedGoogle Scholar
  187. 185.
    Pryor JG, Poggioli G, Galaria N, Gust A, Robison J, Samie F, Hanjani NM, Scott GA: Nephrogenic systemic fibrosis: A clinicopatho- logic study of six cases. J Am Acad Dermatol 57: 105-111, 2007.PubMedGoogle Scholar
  188. 186.
    Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA: Gadodiamide-associated nephrogenic systemic fibrosis: Why radiologists should be concerned. AJR Am J Roentgenol 188: 586-592, 2007.PubMedGoogle Scholar
  189. 187.
    Centers for Disease Control and Prevention (CDC): Nephrogenic fibrosing dermopathy associated with exposure to gadolinium- containing contrast agents--st. louis, missouri, 2002-2006. MMWR Morb Mortal Wkly Rep 56: 137-141, 2007.Google Scholar
  190. 188.
    US Food and Drug Administration: Information for healthcare professionals: Gadolinium-based contrast agents for magnetic resonance imaging (marketed as magnevist, MultiHance, omniscan, OptiMARK, ProHance). Food and Drug administration web site. Published June 2006. Updated May 23, 2007. Accessed February 12, 2008. Http:// gcca_200705HCP.Pdf. 2006.Google Scholar
  191. 189.
    Joffe P, Thomsen HS, Meusel M: Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Acad Radiol 5: 491-502, 1998.PubMedGoogle Scholar
  192. 190.
    Boyd AS, Zic JA, Abraham JL: Gadolinium deposition in nephrogenic fibrosing dermopathy. J Am Acad Dermatol 56: 27-30, 2007.PubMedGoogle Scholar
  193. 191.
    High WA, Ayers RA, Chandler J, Zito G, Cowper SE: Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56: 21-26, 2007.PubMedGoogle Scholar
  194. 192.
    High WA, Ayers RA, Cowper SE: Gadolinium is quantifiable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56: 710-712, 2007.PubMedGoogle Scholar
  195. 193.
    Thakral C, & Abraham JL: Automated scanning electron microscopy and X-ray microanalysis for in situ quantification of gadolinium deposits in skin. J Electron Microsc (Tokyo) 56: 181-187, 2007.Google Scholar
  196. 194.
    Abraham JL, Thakral C, Skov L, Rossen K, Marckmann P: Dermal inorganic gadolinium concentrations: Evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis. Br J Dermatol 158: 273-280, 2008.PubMedCrossRefGoogle Scholar
  197. 195.
    Sieber MA, Pietsch H, Walter J, Haider W, Frenzel T, Weinmann HJ: A preclinical study to investigate the development of nephrogenic systemic fibrosis: A possible role for gadolinium-based contrast media. Invest Radiol 43: 65-75, 2008.PubMedGoogle Scholar
  198. 196.
    Rydahl C, Thomsen HS, Marckmann P: High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Invest Radiol 43: 141-144, 2008.PubMedGoogle Scholar
  199. 197.
    Wahba IM, Simpson EL, White K: Gadolinium is not the only trigger for nephrogenic systemic fibrosis: Insights from two cases and review of the recent literature. Am J Transplant 7: 2425-2432, 2007.PubMedGoogle Scholar
  200. 198.
    Anavekar NS, Chong AH, Norris R, Dowling J, Goodman D: Nephrogenic systemic fibrosis in a gadolinium-naive renal transplant recipient. Australas J Dermatol 49: 44-47, 2008.PubMedGoogle Scholar
  201. 199.
    Swaminathan S, Ahmed I, McCarthy JT, Albright RC, Pittelkow MR, Caplice NM, Griffin MD, Leung N: Nephrogenic fibrosing dermopathy and high-dose erythropoietin therapy. Ann Intern Med 145: 234-235, 2006.PubMedGoogle Scholar
  202. 200.
    Marckmann P, Skov L, Rossen K, Heaf JG, Thomsen HS: Case-control study of gadodiamide-related nephrogenic systemic fibrosis. Nephrol Dial Transplant 22: 3174-3178, 2007.PubMedGoogle Scholar
  203. 201.
    Chiu H, Wells G, Carag H, Canova E, Firpi RJ: Nephrogenic fibrosing dermopathy: A rare entity in patients awaiting liver transplantation. Liver Transpl 10: 465-466, 2004.PubMedGoogle Scholar
  204. 202.
    Penfield JG, & Reilly RF,Jr: What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol 3: 654-668, 2007.PubMedGoogle Scholar
  205. 203.
    Spencer AJ, Wilson SA, Batchelor J, Reid A, Rees J, Harpur E: Gadolinium chloride toxicity in the rat. Toxicol Pathol 25: 245-255, 1997.PubMedGoogle Scholar
  206. 204.
    Morcos SK: Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: Is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition? Br J Radiol 80: 73-76, 2007.PubMedGoogle Scholar
  207. 205.
    Thomsen HS, Marckmann P, Logager VB: Nephrogenic systemic fibrosis (NSF): A late adverse reaction to some of the gadolinium based contrast agents. Cancer Imaging 7: 130-137, 2007.PubMedGoogle Scholar
  208. 206.
    Thomsen HS, Morcos SK, Dawson P: Is there a causal relation between the administration of gadolinium based contrast media and the development of nephrogenic systemic fibrosis (NSF)? Clin Radiol 61: 905-906, 2006.PubMedGoogle Scholar
  209. 207.
    Reilly RF: Risk of nephrogenic systemic fibrosis (NSF) with gadoteridol (ProHance) [Abstract]. J Am Soc Nephrol, 18: 716A, 2007.Google Scholar
  210. 208.
    Launay-Vacher V, Karie S, Janus N, Choukroun G, Clement O, Frances C, Deray G: Prevalence of nephrogenic systemic fibrosis in renal insufficiency patients. results of the FINEST study. [Abstract]. J Am Soc Nephrol, 18: 775A, 2007.Google Scholar
  211. 209.
    Okada S, Katagiri K, Kumazaki T, Yokoyama H: Safety of gadolinium contrast agent in hemodialysis patients. Acta Radiol 42: 339-341, 2001.PubMedGoogle Scholar
  212. 210.
    Morcos SK, Thomsen HS, Webb JA, Contrast Media Safety Committee of the European Society of Urogenital Radiology (ESUR): Dialysis and contrast media. Eur Radiol 12: 3026-3030, 2002.PubMedGoogle Scholar
  213. 211.
    Perazella MA: Nephrogenic systemic fibrosis, kidney disease, and gadolinium: Is there a link? Clin J Am Soc Nephrol 2: 200-202, 2007.PubMedGoogle Scholar
  214. 212.
    Swaminathan S, Horn TD, Pellowski D, Abul-Ezz S, Bornhorst JA, Viswamitra S, Shah SV: Nephrogenic systemic fibrosis, gadolinium, and iron mobilization. N Engl J Med 357: 720-722, 2007.PubMedGoogle Scholar
  215. 213.
    Swaminathan S, & Shah SV: New insights into nephrogenic systemic fibrosis. J Am Soc Nephrol 18: 2636-2643, 2007.PubMedGoogle Scholar
  216. 214.
    Proctor KA, Rao LV, Roberts WL: Gadolinium magnetic resonance contrast agents produce analytic interference in multiple serum assays. Am J Clin Pathol 121: 282-292, 2004.PubMedGoogle Scholar
  217. 215.
    Lauchli S, Zortea-Caflisch C, Nestle FO, Burg G, Kempf W: Nephrogenic fibrosing dermopathy treated with extracorporeal photopheresis. Dermatology 208: 278-280, 2004.PubMedGoogle Scholar
  218. 216.
    Gilliet M, Cozzio A, Burg G, Nestle FO: Successful treatment of three cases of nephrogenic fibrosing dermopathy with extracorporeal photopheresis. Br J Dermatol 152: 531-536, 2005.PubMedGoogle Scholar
  219. 217.
    Richmond H, Zwerner J, Kim Y, Fiorentino D: Nephrogenic systemic fibrosis: Relationship to gadolinium and response to photopheresis. Arch Dermatol 143: 1025-1030, 2007.PubMedGoogle Scholar
  220. 218.
    Goddard DS, Magee CC, Lazar AJ, Miller DM: Nephrogenic fibrosing dermopathy with recurrence after allograft failure. J Am Acad Dermatol 56: S109-111, 2007.PubMedGoogle Scholar
  221. 219.
    Baron PW, Cantos K, Hillebrand DJ, Hu KQ, Ojogho ON, Nehlsen-Cannarella S, Concepcion W: Nephrogenic fibrosing dermopathy after liver transplantation successfully treated with plasmapheresis. Am J Dermatopathol 25: 204-209, 2003.PubMedGoogle Scholar
  222. 220.
    Gremmels JM, & Kirk GA: Two patients with abnormal skeletal muscle uptake of tc-99m hydroxymethylene diphosphonate following liver transplant: Nephrogenic fibrosing dermopathy and graft vs host disease. Clin Nucl Med 29: 694-697, 2004.PubMedGoogle Scholar
  223. 221.
    Hubbard V, Davenport A, Jarmulowicz M, Rustin M: Scleromyxoedema-like changes in four renal dialysis patients. Br J Dermatol 148: 563-568, 2003.PubMedGoogle Scholar
  224. 222.
    Yerram P, Saab G, Karuparthi PR, Hayden MR, Khanna R: Nephrogenic systemic fibrosis: A mysterious disease in patients with renal failure--role of gadolinium-based contrast media in causation and the beneficial effect of intravenous sodium thiosulfate. Clin J Am Soc Nephrol 2: 258-263, 2007.PubMedGoogle Scholar
  225. 223.
    Lin J, Idee JM, Port M, Diai A, Berthommier C, Robert M, Raynal I, Devoldere L, Corot C: Interference of magnetic resonance imaging contrast agents with the serum calcium measurement technique using colorimetric reagents. J Pharm Biomed Anal 21: 931-943, 1999.PubMedGoogle Scholar
  226. 224.
    Prince MR, Erel HE, Lent RW, Blumenfeld J, Kent KC, Bush HL, Wang Y: Gadodiamide administration causes spurious hypocalcemia. Radiology 227: 639-646, 2003.PubMedGoogle Scholar
  227. 225.
    Kang HP, Scott MG, Joe BN, Narra V, Heiken J, Parvin CA: Model for predicting the impact of gadolinium on plasma calcium measured by the o-cresolphthalein method. Clin Chem 50: 741-746, 2004.PubMedGoogle Scholar
  228. 226.
    Emerson J, & Kost G: Spurious hypocalcemia after omniscan- or OptiMARK-enhanced magnetic resonance imaging: An algorithm for minimizing a false-positive laboratory value. Arch Pathol Lab Med 128: 1151-1156, 2004.PubMedGoogle Scholar
  229. 227.
    Lowe A, Balzer T, Hirt U: Interference of gadolinium-containing contrast-enhancing agents with colorimetric calcium laboratory testing. Invest Radiol 40: 521-525, 2005.PubMedGoogle Scholar
  230. 228.
    Brown JJ, Hynes MR, Wible JH,Jr: Measurement of serum calcium concentration after administration of four gadolinium-based contrast agents to human volunteers. AJR Am J Roentgenol 189: 1539-1544, 2007.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christiane M. Erley
    • 1
  • Ihab M. Wahba
    • George A. Porter
      1. 1.St. Joseph-Krankenhaus BerlinBerlinGermany

      Personalised recommendations