Aminoglycosides and vancomycin

  • Brian S. Decker
  • Bruce A. Molitoris

Since the discovery of streptomycin in 1944, aminoglycosides have endured as indispensable agents in the antimicrobial armamentarium. This is despite their well described potential for serious nephrotoxicity and otoxicity and the emergence of other classes of antibiotics with similar antibacterial spectrums. The major aminoglycoside antibiotics in clinical use worldwide include gentamicin, tobramycin, amikacin, netilmicin, neomycin, isepamicin and arbekacin. These agents remain in clinical use against gram negative infections largely because of their dependable efficacy. Several attributes render these antibiotics particularly effective. First, aminoglycosides exhibit a concentration-dependent bactericidal activity [1, 2]. Unlike the β-lactams, the bactericidal activity of aminoglycosides depends more on their concentration rather than the duration of antimicrobial exposure. Further, the bactericidal efficacy increases with increasing aminoglycoside concentration. Aminoglycosides also exhibit a post-antibiotic effect meaning they continue to kill bacteria even after the aminoglycoside concentration has fallen below the bacterial minimum inhibitory concentration. Another useful attribute of aminoglycosides is their synergism with antibiotics that inhibit bacterial cell wall biosynthesis, such as β-lactams and vancomycin. Finally, aminoglycosides have relatively predictable pharmacokinetic characteristics that allow them to be dosed to minimize their inherent toxicities. However, despite this predictable pharmacokinetic profile, aminoglycosides always retain their potential for serious toxicity. Moreover, aminoglycoside toxicity can occur despite the maintenance of serum levels in the therapeutic range. The purpose of this section is to describe the nephrotoxicity associated with the clinical use of aminoglycoside antibiotics.


Antimicrob Agent Caffeic Acid Phenethyl Ester Proximal Tubule Cell Polyaspartic Acid Caffeic Acid Phenethyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vackulenko SB, Moashery S, Versatility of aminoglycosides and prospects for their future, Clinical Microbiology Reviews, 2003; 16(3): 430-50.Google Scholar
  2. 2.
    Chambers HF, Chapter 45 Aminoglycosides In Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 11 edition, editors Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman Gilman A, 2006, McGraw-Hill New York.Google Scholar
  3. 3.
    Nicolau DP, Freeman CD, Belliveau PP, Experience with once-daily aminoglycoside program administered to 2184 adult patients, Antimicrob Agents Chemother, 1995; 39(3): 650-55.PubMedGoogle Scholar
  4. 4.
    Smith CR, Moore RD, Lietman PS, Studies of risk factors for aminoglycoside nephrotoxicity, Am J Kidney Dis, 1986; 8(5): 308-13.PubMedGoogle Scholar
  5. 5.
    Schentag JJ, Cerra FB, Plaut ME, Clinical and pharmacokinetic characteristics of aminoglycoside nephrotoxicity in 201 critically ill patients, Antimicrob Agents Chemother, 1982; 21(5): 721-26.PubMedGoogle Scholar
  6. 6.
    Beauchamp D, Labrecque G, Aminoglycoside nephrotoxicity: do time and frequency of administration matter?, Current opinion in critical care, 2001; 7: 401-08.PubMedGoogle Scholar
  7. 7.
    English WP, Williams MD, Should aminoglycoside antibiotics be abandoned?, Am J Surg, 2000; 180:512-16.PubMedGoogle Scholar
  8. 8.
    Hou SH, Bushinsky DA, Wish JB, Cohen JJ, Harrington JT, Hospital-acquired renal insufficiency: a prospective study, Am J Med, 1983; 74: 243-48.PubMedGoogle Scholar
  9. 9.
    Koo J, Tight R, Rajkumar V, Hawa Z, Comparison of once-daily versus pharmacokinetic dosing of aminoglycosides in elderly patients, Am J Med, 1996; 101: 177-83.PubMedGoogle Scholar
  10. 10.
    Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL, Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity, Antimicrob Agents Chemother, 1999; 43(7): 1549-55.PubMedGoogle Scholar
  11. 11.
    Smith CR, Lipsky JJ, Laskin OL, Hellmann DB, Mellits ED, Longstreth J, Lietman PS, Double-blind comparison of the nephrotoxicity and auditory toxicity of gentamicin and tobramycin, New Engl J Med, 1980; 302 (20): 1106-1109.PubMedGoogle Scholar
  12. 12.
    Munckhof WJ, Grayson ML, Turnidge JD, A meta-analysis of studies on the safety and efficacy of aminoglycosides given either once daily or as divided doses, J Antimicrob Chemother, 1996; 37: 645-63.PubMedGoogle Scholar
  13. 13.
    Hatala R, Dinh T, Cook DJ, Once-daily aminoglycoside dosing in immunocompetent adults, Ann Int Med, 1996; 124(8): 717-25.PubMedGoogle Scholar
  14. 14.
    Ferriols-Lisart R, Alos-Alminana M, Effectiveness and safety of once-daily aminoglycosides: a meta-analysis, Am J Health Syst Pharm, 1996; 53(10): 1141-50.PubMedGoogle Scholar
  15. 15.
    Barza M, Ioannidis JP, Capelleri JC, Lau J, Single or multiple daily doses of aminoglycosides: a meta-analysis, BMJ, 1996; 312(7027): 338-44.PubMedGoogle Scholar
  16. 16.
    Prins JM, Buller HR, Once versus daily gentamicin in patients with serious infections, Lancet, 1993; 341: 335-39.PubMedGoogle Scholar
  17. 17.
    Smith CR, Baughma KL, Edwards CQ, Rogers JF, Lietman PS, Controlled comparison of amikacin and gentamicin, New Engl J Med, 1977; 296 (7): 349-53.PubMedGoogle Scholar
  18. 18.
    Klkeinknecht D, Landais P, Goldbarb B, Pathophysiology and clinical aspects of drug-induced tubular necrosis in man, ContrNephrol, 1987; 55: 145-58.Google Scholar
  19. 19.
    Lane AZ, Wright GE, Blair DC, Ototoxicity and nephrotoxicity of amikacin, Am J Med, 1977; 62: 911-18.PubMedGoogle Scholar
  20. 20.
    Bertino JS, Booker LA, Franck PA, Jenkins PL, Franck KR, Nafziger AN, Incidence of and significant risk factors for aminoglycoside-associated nephrotoxicity in patients dosed by using individualized pharmacokinetic monitoring, J Inf Dis, 1993; 167:173-79.Google Scholar
  21. 21.
    Raveh D, Kopyt M, Hite Y, Rudensky B, Sonnenblick M, Yinnon AM, Risk factors for nephrotoxicity in elderly patients receiving once-daily aminoglycoside, Q J Med, 2002; 95: 291-97.Google Scholar
  22. 22.
    Galloe AM, Graudal N, Christensen HR, Kampmann JP, Aminoglycosides: single or multiple daily dosing, Eur J Pharmacol, 1995; 48: 39-43.Google Scholar
  23. 23.
    Paterson DL, Robson JM, Wagener MM, Risk factors for toxicity in elderly patients given aminoglycosides once daily, J Gen Intern Med, 1998; 13: 735-39.PubMedGoogle Scholar
  24. 24.
    Baciewicz AM, Sokos DR, Cowan RI, Aminoglycoside-associated nephrotoxicity in the elderly, Ann Pharmacother, 2003; 37: 182-6.PubMedGoogle Scholar
  25. 25.
    Bailey TC, Little JR, Littenberg B, Reichhley RM, Dunagan WC, A meta-analysis of extended-interval dosing versus multiple daily dosing of aminoglycosides, Clin Infect Dis, 1997; 24: 786-95.PubMedGoogle Scholar
  26. 26.
    Lerner AM, Reyes MP, Cone LA, Blair DC, Jansen W, Wright GE, Lorber RR, Randomised, controlled trial of the comparative efficacy, auditory toxicity and nephrotoxicity of tobramycin and netilmicin, Lancet, 1983; 1123-25.Google Scholar
  27. 27.
    Hitt CM, Klepser ME, Nightingale CH, Quintiliani R, Nicolau DP, Pharmacoeconomic impact of once-daily aminoglycoside admin-istration, Pharmacotherapy, 1997; 17(4): 810-14.PubMedGoogle Scholar
  28. 28.
    Moore RD, Smith CR, Lipsky JJ, Mellits ED, Lietman PS, Risk factors for nephrotoxicity in patients treated with aminoglycosides, Ann Int Med, 1984; 100: 352-57.PubMedGoogle Scholar
  29. 29.
    Sawyers CL, Moore RD, Lerner SA, Smith CR, A model for predicting nephrotoxicity in patients treated with aminoglycosides, J Infect Dis, 1986; 153(6): 1062-68.PubMedGoogle Scholar
  30. 30.
    Humes, HD, Aminoglycoside nephrotoxicity, Kidney Int; 1988; 33: 900-11.PubMedGoogle Scholar
  31. 31.
    Burton ME, Shaw LM, Schentag JJ, Evans WE, Applied pharmacokinetics and pharmacodynamics: principles of therapeutic drug monitoring, 4th ed, 2006, Lippincott Williams and Wilkins, Baltimore, MD, Philadelphia PA.Google Scholar
  32. 32.
    Ali BH, Gentamicin nephrotoxicity in humans and animals: some recent research, Gen Pharmac, 1995; 26(7): 1477-87.Google Scholar
  33. 33.
    Shargel L, Multi-compartment models, In: Applied biopharmaceutics and pharmacokinetics, Shargel L, Wu Pong S, Yu A, editors, McGraw-Hill, New York, 2005.Google Scholar
  34. 34.
    McNamara DR, Nafziger AN, Menhinick AM, Bertino JS, A dose-ranging study of gentamicin pharmacokinetics: implications for extended interval aminoglycoside therapy, J Clin Pharm, 2001; 41: 374-77.Google Scholar
  35. 35.
    Triggs E, Charles B, Pharmacokinetics and therapeutic drug monitoring of gentamicin in the elderly, Clin Pharmacokinet, 1999; 37(4): 331-41.PubMedGoogle Scholar
  36. 36.
    Laurent G, Kishore B, Tulkens PM, Aminoglycoside-induced renal phospholipidosis and nephrotoxicity, Biochem Pharm, 1990; 40(11): 2383-92.PubMedGoogle Scholar
  37. 37.
    Fabre J, Rudhardt M, Blanchard P, Regamey C, Persistence of sisomicin and gentamicin in renal cortex and medulla compared with other organs and serum of rats, Kidney Int, 1976; 10: 444-49.PubMedGoogle Scholar
  38. 38.
    Giuliano RA, Paulus GJ, Verpooten GA, Pattyn VM, Pollet DE, Nouwen EJ, Laurent G, Carlier MB, Maldague P, Tulkens PM, De Broe ME, Recovery of cortical phospholipidosis and necrosis after acute gentamicin loading in rat, Kidney Int, 1984; 26: 838-47.PubMedGoogle Scholar
  39. 39.
    Giuliano RA, Verpooten GA, Verbist L, Wedeen RP, DeBroe ME, In vivo Uptake kinetics of aminoglycosides in the kidney cortex of rats, J Pharmacol Exp Ther, 1985; 236 (2): 470-75.Google Scholar
  40. 40.
    Vandewalle A, Farman N, Morin JP, Fillastre JP, Hatt PY, Bonvalet JP, Gastineau M, Wanstok F, Gentamicin incorporation along the nephron: autoradiographic study on isolated tubules, Kidney Int, 1981; 19: 529-39.PubMedGoogle Scholar
  41. 41.
    Wedeen RP, Batuman V, Cheeks C, Marquet E, Sobel H, Transport of gentamicin in rat proximal tubule, 1983, Lab Invest, 1983; 48(2): 212-23.PubMedGoogle Scholar
  42. 42.
    Mingeot-Leclercq MP, Tulkens PM, Aminoglycosides: nephrotoxicity, Antimicrob Agents Chemotherap, 1999; 43(5): 1003-1012.Google Scholar
  43. 43.
    Nagai J, Takano M, Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity, Drug Metab Pharmacokinet, 2004; 19(3): 159-70.PubMedGoogle Scholar
  44. 44.
    Silverblatt FJ, Kuehn C, Autoradiography of gentamicin uptake by the rat proximal tubule cell, Kidney Int, 1979; 15: 335-45.PubMedGoogle Scholar
  45. 45.
    Molitoris, BA, Meyer C, Dahl R, Geerdes A, Mechanism of ischemia-enhanced aminoglycoside binding and uptake by proximal cells, Am J Physiol, 1993; F907-916.Google Scholar
  46. 46.
    Spiegel DM, Shanley PF, Molitoris BA, Mild ischemia predisposes the S3 segment to gentamicin toxicity, Kidney Ing, 1990, 38: 459-64.Google Scholar
  47. 47.
    Sastrasinh M, Knauss TC, Weinberg JM, Humes HD, Identification of the aminoglycoside binding site in rat renal brush border membranes, J Pharmacol Ext Ther, 1982; 22(2): 350-58.Google Scholar
  48. 48.
    Moestrup SK, Cui S, Vorum H, Bregengard C, Bjorn SE, Norris K, Gliemann J, Christensen EI, Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs, J Clin Invest, 1995; 96: 1404-13.PubMedGoogle Scholar
  49. 49.
    Hammond TG, Majewski RR, Kaysen JH, Goda FO, Navar GL, Pontillon F, Verroust PJ, Gentamicin inhibits rat renal cortical homo-typic endosomal fusion: role of megalin, Am J Physiol, 1997; 272 (41): F117-23.PubMedGoogle Scholar
  50. 50.
    Christensen EI, Birn H, Megalin and cubilin: multifunctional endocytic receptors, Nature Reviews: Molecular Biology, 2002; 3: 258-68.Google Scholar
  51. 51.
    Williams PD, Bennett DB, Gleason CR, Hottendorf GH, Correlation between renal membrane binding and nephrotoxicity, Anti-microb Agents Chemotherap, 1987; 31(4): 570-74.Google Scholar
  52. 52.
    Christensen EI, Birn H, Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule, Am J Physiol, 2001; 280: F562-73.Google Scholar
  53. 53.
    Christensen EI, Willnow TE, Essential role of megalin in renal proximal tubule for vitamin homeostasis, J Am Soc Nephrol, 1999; 10: 2224-36.PubMedGoogle Scholar
  54. 54.
    Kerjaschki D, Fahquhar MG, The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border, Proc Nat Acad Sci, USA, 1982; 79: 5557-61.Google Scholar
  55. 55.
    Lundgren S, Carling T, Hjalm G, Juhlin C, Rastad J, Pihlgren U, Rask L, Akerstrom G, Hellman P, Tissue distribution of human gp330/megalin, a putative calcium-sensing protein, J Histochem Cytochem, 1997; 45(3): 383-92.PubMedGoogle Scholar
  56. 56.
    Schmitz C, Hilpert J, Jacobsen C, Boensch C, Christensen EI, Luft FC, Willnow TE, Megalin deficiency offers protection from renal aminoglyside accumulation, J Biol Chem, 2002; 277 (1): 618-22.PubMedGoogle Scholar
  57. 57.
    Cui S, Verroust PJ, Moestrup SK, Christensen EI, Megalin/gp330 mediates uptake of albumin in the renal proximal tubule, Am J Physiol, 1996; 271: F900-907.PubMedGoogle Scholar
  58. 58.
    Nagai J, Tanaka H, Nakanishi N, Murakami T, Takano M, Role of megalin in renal handling of aminoglycosides, Am J Physiol, 2001; 281: F337-44.Google Scholar
  59. 59.
    Christensen EI, Birn H, Verroust P, Moestrup SK, Membrane receptors for endocytosis in the renal proximal tubule, Int Rev Cytol, 1998, 237-84.Google Scholar
  60. 60.
    Willnow TE, Receptor-associated protein (RAP): a specialized chaperone for endocytic receptors, Biol Chem, 1998; 379: 1025-31.PubMedGoogle Scholar
  61. 61.
    Birn H, Vorum H, Verroust PJ, Moestrup SK, Christensen EI, Receptor-associated protein is important for normal processing of megalin in kidney proximal tubules, J Am Soc Nephrol, 2000; 11: 191-202.PubMedGoogle Scholar
  62. 62.
    Zhai, XY, Nielsen R, Birn H, Drumm K, MildenbergerS, Freudinger R, Moestrup SK, Verrouost PJ, Christensen EI, Gekle M, Cubilin and megalin-mediated uptake of albumin in cultures proximal tubule cells of opossum kidney, 2000, 58: 1523-33.Google Scholar
  63. 63.
    Birn H, Fyfe JC, Jacobsen C, Mounier F, Verroust PJ, Orskov H, Willnow TE, Moestrup SK, Christensen EI, Cubilin is an albumin binding protein important for renal tubular albumin reabsorption, J Clin Invest, 2000; 105: 1353-61.PubMedGoogle Scholar
  64. 64.
    Koryraki R, Cubilin, a multifunctional epithelial receptor: an overview, J Mol Med, 2001; 79: 161-67.Google Scholar
  65. 65.
    Verroust PJ, Birn H, Nielsen R, Kozyraki R, Christensen EI, The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology, Kidney Int, 2002; 62: 745-56.PubMedGoogle Scholar
  66. 66.
    Bennett WM, Mechanisms of aminoglycoside nephrotoxicity, Clin Exp Pharm Physiol, 1989; 16: 1-6.Google Scholar
  67. 67.
    Olbricht CJ, Fink M, Gutjahr E, Alterations in lysosomal enzymes of the proximal tubule in gentamicin nephrotoxicity, Kidney Int, 1991; 39: 639-46.PubMedGoogle Scholar
  68. 68.
    Ford, DM, Dahl RH, Lamp CA, Molitoris BA, Apically and basolaterally internalized aminoglycosides colocalize in LLC-PK1 lyso-somes and alter cell function, Am J Physiol, 1994; 266: C52-57.PubMedGoogle Scholar
  69. 69.
    Servais H, Van Der Smissen P, Thirion G, Van Der Essen, G, Van Bambeke F, Tulkens PM, Mingeot-Leclercq M, Gentamicin-induced apoptosis in LLC-PK1 cells: involvement of lysosomes and mitochondria, Toxicol Appl Pharmacol, 2005; 206: 321-33.PubMedGoogle Scholar
  70. 70.
    Sandoval R, Leiser J, Molitoris BA, Aminoglycoside antibiotics traffic to the Golgi complex in LLC-PK1 cells, J Am Soc Nephrol, 1998; 9: 167-74.PubMedGoogle Scholar
  71. 71.
    Tulkens P, Trouet A, The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultured rat fibrob-lasts, Biochem Pharm, 1977; 27: 415-24.Google Scholar
  72. 72.
    Takano M, Ohishi Y, Okuda M, Yasuhar M, Hori R, Transport of gentamicin and fluid-phase endocytosis markers in the LLC-PK1 kidney epithelial cell line, J Pharmacol Exp Therap, 1993, 268(2): 669-74.Google Scholar
  73. 73.
    Hori R, Okuda M, Ohisi Y, Masato Y, Takano M, Surface binding and intracellular uptake of gentamicin in the cultured kidney epithelial cell line (LLC-PK1), J Pharmacol Exp Therap, 1992, 261(3): 1200-05.Google Scholar
  74. 74.
    Sundin DP, Sandoval R, Molitoris BA, Gentamicin inhibits renal protein and phospholipid metabolism in rats: implications involv-ing intracellular trafficking, J Am Soc Nephrol, 2001, 12: 114-23.PubMedGoogle Scholar
  75. 75.
    Sandoval R, Dunn KW, Molitoris BA, Gentamicin traffics rapidly and directly to the Golgi complex in LLC-PK1 cells, Am J Physiol, 2000, 279: F884-890.Google Scholar
  76. 76.
    Sandvig K, Ryd M, Garred O, Schwea E, Holm PK, van Deurs B, Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP, J Cell Biol, 1994, 126: 53-64.PubMedGoogle Scholar
  77. 77.
    Lord JM, Roberts LM, Toxin entry: retrograde transport through the secretory pathway, J Cell Biol, 1998, 140: 733-36.PubMedGoogle Scholar
  78. 78.
    Sandoval RM, Molitoris BA, Gentamicin traffics retrograde through the secretory pathway and is released in the cytosol via the endoplasmic reticulum, Am J Physiol, 2004, 286: F617-24.Google Scholar
  79. 79.
    Sandoval RM, Bacallao RL, Dunn KW, Leiser JD, Molitoris BA, Nucleotide depletion increases trafficking of gentamicin to the Golgi complex in LLC-PK1 cells, Am J Physiol, 2002, 283: F1422-29.Google Scholar
  80. 80.
    Sandvig K, Garred O, van Helvoort A, van Meer G, Van Deurs B, Importance of glycolipid synthesis for butyric acid-induced sensitization to Shiga toxin and intracellular sorting of toxin in A431 cells, Mol Biol Cell, 1996; 7: 1391-1404.PubMedGoogle Scholar
  81. 81.
    Bennett WM, Mela-Riker LM, Houghton DC, Gilbert DN, Buss WC, Microsomal protein synthesis inhibition: an early manifestation of gentamicin nephrotoxicity, Am J Physiol, 1988; 24: F265-69.Google Scholar
  82. 82.
    Zager RA, Gentamicin nephrotoxicity in the setting of acute renal hypoperfusion, Am J Physiol, 1988; 23: F574-81.Google Scholar
  83. 83.
    Houghton DC, Hartnett M, Campbell-Boswell M, Porter G, Bennett W, A light and electron microscopic analysis of gentamicin nephrotoxicity in rats, Am J Pathol, 1976, 82: 589-612.PubMedGoogle Scholar
  84. 84.
    Humes HD, Weinberg JM, Knauss TC, Clinical and pathophysiologic aspects of aminoglycoside nephrotoxicity, Am J Kidney Dis, 1982; 2(1): 4-29.Google Scholar
  85. 85.
    Kosek JC, Mazze RI, Cousins MJ, Nephrotoxicity of gentamicin, Lab Invest, 1974, 30(1): 48-57.PubMedGoogle Scholar
  86. 86.
    El-Mouedden M, Laurent G, Mingeot-Leclercq MP, Taper HS, Cumps J, Tulkens PM, Apoptosis in renal proximal tubules of rats treated with low doses of aminoglycosides, Antimicrob Agents Chemotherap, 2000, 44(3): 665-75.Google Scholar
  87. 87.
    El-Mouedden M, Laurent G, Mingeot-Leclercq MP, Tulkens PM, Gentamicin-induced apoptosis in renal cell lines and embryonic rat fibroblasts, Toxicol Sci, 2000, 56:229-39.PubMedGoogle Scholar
  88. 88.
    Servais H, Jossin Y, Van Bambeke F, Tulkens PM, Mingeot-Leclercq MP, Gentamicin causes apoptosis at low concentrations in renal LLC-PK1 cells subjected to electroporation, Antimicrob Agents Chemotherap, 2006, 50(4): 1213-21.Google Scholar
  89. 89.
    Laurent G, Kishore BK, Tulkens PM, Aminoglycoside-induced renal phospholipidosis and nephrotoxicity, Biochem Pharmacol, 1990, 40(11): 2383-92.PubMedGoogle Scholar
  90. 90.
    Miyazaki T, Sagawa R, Honma T, Noguchi S, Harada T, Komatsuda A, Ohtani H, Wakui H, Sawada K, Otaka M, Watanabe S, Jikei M, Ogawa N, Hamada F, Itoh H, 73-kDa molecular chaperone HSP73 is a direct target of antibiotic gentamicin, J Biol Chem, 2004; 279(17): 17295-17300.PubMedGoogle Scholar
  91. 91.
    Martinez-Salgado C, Eleno N, Morales AI, Perez-Barriocanal F, Arevalo M, Lopez-Novoa JM, Gentamicin treatment induces simul-taneous mesangial proliferation and apoptosis in rats, Kidney Int, 2004, 65: 2161-71.PubMedGoogle Scholar
  92. 92.
    Laurent G, Carlier MB, Rollman B, Van Hoof F, Tulkens P, Mechanism of aminoglycoside-induced lysosomal phospholipidosis: in vitro and in vivo studies with gentamicin and amikacin, Biochem Pharmac, 1982, 31(23): 3861-70.Google Scholar
  93. 93.
    Giurgea-Marin L, Toubeau G, Laurent G, Heuson-Stiennon JA, Tulkens PM, Impairment of lysosome-pinocytotic vesicle fusion in rat kidney proximal tubules after treatment with gentamicin at low doses, Toxicol Appl Pharmacol, 1986, 86: 271-85.Google Scholar
  94. 94.
    Hostetler KY, Hall LB, Inhibition of kidney lysosomal phospholipases A and C by aminoglycoside antibiotics: possible mechanism of aminoglycoside toxicity, Proc Nat Acad Sci, 1982, 79: 1663-67.PubMedGoogle Scholar
  95. 95.
    Appel GB, Aminoglycoside nephrotoxicity, Am J Med, 1990, 88:16S-20S.PubMedGoogle Scholar
  96. 96.
    Schwertz DW, Kreisberg JI, Venkatachalam, Effects of aminoglycosides on proximal tubule brush border membrane phosphati-dylinositol-specific phospholipase C, J Pharmac and Exp Therap, 1984, 231(1): 48-55.Google Scholar
  97. 97.
    Sundin DP, Meyer C, Dahl R, Geerdes A, Sandoval R, Molitoris BA, Cellular mechanism of aminoglycoside tolerance in long-term gentamicin treatment, Am J Physiol, 1997, 272: C1309-18.PubMedGoogle Scholar
  98. 98.
    Schwertz DW, Kreisberg JI, Venkatachalam, Gentamicin-induced alterations in pig kidney epithelial (LLC-PK1) cells in culture, 1985, 236(1): 254-62.Google Scholar
  99. 99.
    Simmons CF, Bogusky RT, Humes HD, Inhibitory effects of gentamicin on renal mitochondrial oxidative phosphorylation, J Pharmac Ext Therap, 1980, 214(3): 709-15.Google Scholar
  100. 100.
    Weinberg, JM, Harding PG, Humes HD, Mechanisms of gentamicin-induced dysfunction of renal cortical mitochondria: effects on mitochondrial monovalent cation transport, Arch Biochem Biophys, 1980, 205(1): 232-39.PubMedGoogle Scholar
  101. 101.
    Weinberg, JM, Humes HD, Mechanisms of gentamicin-induced dysfunction of renal cortical mitochondria: effects on mitochon-drial respiration, Arch Biochem Biophys, 1980, 205(1): 222-31.PubMedGoogle Scholar
  102. 102.
    Mather M, Rottenberg H, Polycations induce the release of soluble intermembrane mitochondrial proteins, Biochim Biophys Acta, 2001, 1503: 357-68.PubMedGoogle Scholar
  103. 103.
    Walker PD, Shav SV, Evidence suggesting a role for hydroxyl radical in gentamicin-induced acute renal failure in rats, J Clin Invest, 1988, 81: 334-41.PubMedGoogle Scholar
  104. 104.
    Ueda N, Guidet B, Shah SV, Gentamicin-induced mobilization of iron from renal cortical mitochondria, Am J Physiol, 1993, 34: F435-39.Google Scholar
  105. 105.
    Kaloyanides GJ, Aminoglycoside-induced functional and biochemical defects in the renal cortex, Toxicol Sci, 1984, 4(6): 930-43.Google Scholar
  106. 106.
    Weisblum B, Davies J, Antibiotic inhibitors of the bacterial ribosome, Bacteriol Rev, 1968, 32(4): 493-528.PubMedGoogle Scholar
  107. 107.
    Davies, J, Gorini L, Davis BD, Misreading of RNA codewords induced by aminoglycoside antibiotics, Mol Pharmacol, 1965, 1: 93-106.PubMedGoogle Scholar
  108. 108.
    Tai PC, Davis BD, Triphasic concentration effects of gentamicin activity on misreading in protein synthesis, Biochem, 1979, 18(1): 193-98.Google Scholar
  109. 109.
    Clark JM, Chang AY, Inhibitors of the transfer of amino acids from aminoacyl soluble ribonucleic acid to proteins, J Biol Chem, 1965, 240(12): 4734-39.PubMedGoogle Scholar
  110. 110.
    Kuhberger R, Piepersberg W, Petzet A, Buckel P, Bock A, Alteration of ribosomal protein L6 in gentamicin-resistant strains of Escherichia coli: effects on fidelity of protein synthesis, Biochem, 1979, 18(1): 187-92.Google Scholar
  111. 111.
    Wilhelm JM, Jessop JJ, Pettitt SE, Aminoglycoside antibiotics and eukaryotic protein synthesis: stimulation of errors in the translation of natural messengers in extracts of cultured human cells, Biochem, 1978, 17(7): 1149-53.Google Scholar
  112. 112.
    Moskowitz M, Kelker N, Sensitivity of cultured mammalian cells to streptomycin and dihydrostreptomycin, Science, 1963, 141: 647-48.PubMedGoogle Scholar
  113. 113.
    Charlwood J, Skehel JM, King N, Camilleri P, Lord P, Bugelski P, Atif U, Proteomic analysis of rat kidney cortex following treatment with gentamicin, J Proteom Res, 2002, 1(1): 73-82.Google Scholar
  114. 114.
    Moriyama T, Nakahama H, Fukuhara Y, Horio M, Yanase M, Orita Y, Kamada T, Kanashiro M, Miyake Y, Decrease in the fluidity of brush border membrane vesicles induced by gentamicin, Biochem Pharmac, 1989, 38(7): 1169-74.Google Scholar
  115. 115.
    Inui K, Saito H, Iwata T, Hori R, Aminoglycoside-induced alterations in apical membranes of kidney epithelial cell line (LLC-PK1), Am J Physio, 254: C251-57.Google Scholar
  116. 116.
    Whipple JK, Ausman RK, Franson T, Quebbeman EJ, Effect of individualized pharmacokinetic dosing on patient outcome, Crit Care Med, 1991, 19(12): 1480-85.PubMedGoogle Scholar
  117. 117.
    Bartal C, Danon A, Schlaffer F, Reisenberg K, Alkan M, Smoliakov R, Sidi A, Almog Y, Pharmacokinetic dosing of aminoglycosides: a controlled trial, Am J Med, 2003, 114: 194-98.PubMedGoogle Scholar
  118. 118.
    Destache CJ, Meyer SK, Bittner MJ, Hermann KG, Impact of clinical pharmacokinetic service on patients treated with aminogly-cosides: a cost-benefit analysis, Ther Drug Mon, 12: 419-26.Google Scholar
  119. 119.
    Burton ME, Ash CL, Hill DP, Handy R, Shepherd MD, Vasko MR, A controlled trial of the cost benefit of computerized Bayesian aminoglycoside administration, Clin Pharmacol Ther, 49: 685-94.Google Scholar
  120. 120.
    Kemme DJ, Daniel CI, Aminoglycoside dosing: a randomized prospective study, South Med J, 1993, 86(1): 46-51.PubMedGoogle Scholar
  121. 121.
    Leehey DJ, Braun MI, Tholl DA, Chung LS, Gross CA, Roback JA, Lentino JR, Can pharmacokinetic dosing decrease nephrotoxicity associated with aminoglycoside therapy?, 1993, J Am Soc Nephrol, 1993, 4: 81-90.PubMedGoogle Scholar
  122. 122.
    Dillon KR, Dougherty SH, Casner P, Polly S, Individualized pharmacokinetic versus standard dosing of amikacin: a comparison of therapeutic outcomes, J Amtimicrob Chemo, 1989, 24: 581-89.Google Scholar
  123. 123.
    McCormack JP, Jewesson PJ, A critical reevaluation of the “therapeutic range” of aminoglycosides, Clin Infect Dis, 1992, 14: 320-39.PubMedGoogle Scholar
  124. 124.
    McCormack JP, An emotional-based medicine approach to monitoring once-daily aminoglycosides, Pharmacother, 2000, 20(12): 1524-27.Google Scholar
  125. 125.
    Ali BH, Agents ameliorating or augmenting experimental gentamicin nephrotoxicity: some recent research, Food Chem Toxicol, 2003, 41: 1447-52.PubMedGoogle Scholar
  126. 126.
    Beauchamp D, Laurent G, Maldague P, Abid S, Kishore BK, Tulkens PM, Protection against gentamicin-induced early renal alterations (phospholipidosis and increased DNA synthesis by coadministration of poly-L-aspartic acid, J Pharmacol Exp Therap, 1990, 255(2): 858-66.Google Scholar
  127. 127.
    Kishore BK, Lambricht P, Laurent G, Maldague P, Wagner R, Tulkens PM, Mechanism of protection afforded by polyaspartic acid against gentamicin-induced phospholipidosis. II. Comparative in-vitro and in-vivo studies with poly-L-aspartic, poly-L-glutamic and poly-D-glutamic acids, J Pharmacol Exp Therap, 1990, 255(2): 875-85.Google Scholar
  128. 128.
    Ramsammy LS, Josepovitz C, Lane BP, Kaloyanides, Polyaspartic acid protects against gentamicin nephrotoxicity in the rat, J Pharmacol Exp Therap, 1989, 250(1): 149-53.Google Scholar
  129. 129.
    Williams PD, Hottendorf GH, Bennett DB, Inhibition of renal membrane binding and nephrotoxicity of aminoglycosides, J Phar-macol Exp Therap, 1986, 237(3): 919-25.Google Scholar
  130. 130.
    Kishore BK, Ibrahim S, Lambricht P, Laurent G, Maldague P, Tulkens PM, Comparative assessment of poly-L-aspartic and poly-L-glutamic acids as protectants against gentamicin-induced renal lysosomal phospholipidosis, phospholipiduria and cell proliferation in rats, J Pharmacol Exp Therap, 1992, 262(1): 424-32.Google Scholar
  131. 131.
    Josepovitz C, Pastorzia-Munoz E, Timmerman D, Scott M, Feldman S, Kaloyanides GJ, Inhibition of gentamicin uptake in rat renal cortex in vivo by aminoglycosides and organic polycations, J Pharmacol Exp Therap, 1982, 223(2): 314-21.Google Scholar
  132. 132.
    Gilbert DN, Wood CA, Kohlhepp SJ, Kohnen PW, Houghton DC, Finkbeiner HC, Lindsley J, Bennett WM, Polyaspartic acid prevents experimental aminoglycoside nephrotoxicity, J Infect Dis, 1989, 159(5): 945-53.PubMedGoogle Scholar
  133. 133.
    Swan SK, Gilbert DN, Kohlhepp SJ, Leggett JE, Kohnen PW, Bennett WM, Duration of the protective effect of polyaspartic acid on experimental gentamicin nephrotoxicity, Antimicrob Agents Chemother, 1992, 36(11): 2556-58.PubMedGoogle Scholar
  134. 134.
    Kishore BK, Kallay Z, Lambricht P, Laurent G, Tulkens PM, Mechanism of protection afforded by polyaspartic acid against gen-tamicin-induced phospholipidosis I. polyaspartic acid binds gentamicin and displaces it from negatively charged phospholipid layers in vitro, J Pharmacol Exp Therap, 1990, 255(2): 867-74.Google Scholar
  135. 135.
    Mingeot-Leclercq, MP, Glupczynski Y, Tulkens PM, Aminoglycosides: activity and resistance, Antimicrob Agents Chemother, 1999, 43(4): 727-37.PubMedGoogle Scholar
  136. 136.
    Ali BH, Bashir AK, Effect of superoxide dismutase treatment on gentamicin nephrotoxicity in rats, Gen Pharmac, 1996, 27(2): 349-53.Google Scholar
  137. 137.
    Ali BH, Mousa HM, Effect of dimethyl sulfoxide on gentamicin-induced nephrotoxicity in rats, Hum Exp Toxicol, 2001, 20: 199-203.PubMedGoogle Scholar
  138. 138.
    Sandya P, Mohandass S, Varalakshmi P, Role of DL a-lipoic acid in gentamicin induced nephrotoxicity, Mol Cell Biochem, 2005, 145(1): 11-17.Google Scholar
  139. 139.
    Mazzon E, Britti D, De Sarro A, Caputi AP, Cuzzocrea S, Effect of N-acetylcysteine on gentamicin-mediated nephropathy in rats, Eur J Pharmacol, 2001, 424: 75-83.PubMedGoogle Scholar
  140. 140.
    Reiter RJ, Tan D, Sainz RM, Mayo JC, Lopez-Burillo S, Melatonin: reducing the toxicity and increasing the efficacy of drugs, J Pharm Pharmacol, 2002, 54: 1299-1321.PubMedGoogle Scholar
  141. 141.
    Ozbek E, Turkoz Y, Sahna E, Ozugurlu F, Mizrak B, Ozbek M, Melatonin administration prevents the nephrotoxicity induced by gentamicin, BJU Int, 2000, 85: 742-46.PubMedGoogle Scholar
  142. 142.
    Kumar KV, Shifow AA, Naidu MR, Ratnaker KS, Carvedilol: a betablocker with antioxidant property protects against gentamicin-induced nephrotoxicity in rats, Life Sci, 2000, 26: 2603-11.Google Scholar
  143. 143.
    Kumar KV, Naidu MR, Shifow AA, Ratnakar KS, Probucol protects against gentamicin-induced nephrotoxicity in rats, Ind J Phar-macol, 2000, 32: 108-13.Google Scholar
  144. 144.
    Ben-Ismail TH, Ali BH, Bashir AA, Influence of iron, deferoxamine and ascorbic acid on gentamicin-induced nephrotoxicity in rats, Gen Pharmacol, 1994, 25(6): 1259-52.Google Scholar
  145. 145.
    Bennett WM, Elliott WC, Houghton DC, Gilbert DN, DeFehr J, McCarron DA, Reduction of experimental gentamicin nephrotoxicity in rats by dietary calcium loading, Antimicrob Agents Chemotherap, 1982, 22(3): 508-12.Google Scholar
  146. 146.
    Quarum ML, Houghton DC, Gilbert DN, McCarron DA, Bennett WM, Increasing dietary calcium moderates experimental gentamicin nephrotoxicity, J Lab Clin Med, 1984, 103(1): 104-14.PubMedGoogle Scholar
  147. 147.
    Humes HD, Sastrasinh M, Weinberg JM, Calcium is a competitive inhibitor of gentamicin-renal membrane binding interactions and dietary calcium supplementation protects against gentamicin nephrotoxicity, J Clin Invest, 1982, 73: 134-47.Google Scholar
  148. 148.
    Kohlhepp SJ, Loveless MO, Kohnen PW, Houghton DC, Bennett WM, Gilbert DN, Nephrotoxicity of the constituents of the gen-tamicin complex, J Infect Dis, 149(4): 605-14.Google Scholar
  149. 149.
    Sandoval RM, Reilly JP, Running W, Campos SB, Santos JR, Phillips CL, Molitoris BA, A non-nephrotoxic gentamicin congener that retains antimicrobial efficacy, J Am Soc Nephrol, 17: 2697-2705.Google Scholar
  150. 150.
    Guo X, Nzerue C, How to prevent, recognize and treat drug-induced nephrotoxicity, Clev Clin J Med, 2002, 69(4): 289-312.Google Scholar
  151. 151.
    Martin JE, Commentary: once-daily aminoglycoside dosing: where are we now?, J Crit Care, 2003, 18(2): 107-13.Google Scholar
  152. 152.
    Loef BG, Epema AH, Smilde TD, Henning RH, Ebels T, Navis G, Stegeman CA, Immediate postoperative renal function deteriora-tion in cardiac surgical patients predicts in-hospital mortality and long-term survival, J Am Soc Nephrol, 2005, 16: 195-200.PubMedGoogle Scholar
  153. 153.
    Lassnigg A, Schmidlin D, Mouhieddine M, Bachman LM, Druml W, Bauer P, Hiesmayr M, Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study, J Am Soc Nephrol, 2004, 15: 1597-1605.PubMedGoogle Scholar
  154. 154.
    Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW, Acute kidney injury, mortality, length of stay and costs in hospital-ized patients, J Am Soc Nephrol, 2005, 16: 3365-70.PubMedGoogle Scholar
  155. 155.
    Adams HR, Goodman FR, Weiss GB, Alteration of contractile function and calcium ion movement in vascular smooth muscle by gentamicin and other aminoglycoside antibiotics, Antimicrob Agents Chemotherap, 1974, 5(6): 640-46.Google Scholar
  156. 156.
    Cohen LS, Wechsler AS, Mitchell JH, Glick G, Depression of cardiac function by streptomycin and other antimicrobial agents, Am J Cardiol, 1970, 26: 505-11.PubMedGoogle Scholar
  157. 157.
    Mosenkis A, Kirk D, Berns JS, When chronic kidney disease becomes advanced, Postgrad Med, 2006, 119(1): 83-104.PubMedGoogle Scholar
  158. 158.
    Zager RA, Johnson AC, Lund S, Randolph-Habecker J, Toll-like receptor (TRL4) shedding and depletion: acute proximal tubular cell responses to hypoxic and toxic injury, Am J Physiol, 2007, 292: F304-312.Google Scholar
  159. 159.
    Hopkins P, Cohen J, Toll-like receptors: the key to the stable door?, Crit Care, 2002, 6: 99-101.PubMedGoogle Scholar
  160. 160.
    Zager RA, Subclinical gentamicin nephrotoxicity: a potential risk factor for exaggerated endotoxin-driven TNF-α production, Am J Physiol, 2007, 293: F43-49.Google Scholar
  161. 161.
    Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J, Alexopoulou L, Flavell RA, Beutler B, Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus, Proc Nat Acad Sci USA, 101(10): 3516-21.Google Scholar
  162. 162.
    Zager RA, Johnson AC, Lund S, Hanson S, Acute renal failure: determinants and characteristics of the injury-induced hyperinflam-matory response, Am J Physiol, 2006, 291: F546-56.Google Scholar
  163. 163.
    Zager RA, Johnson AC, Lund S, Endotoxin tolerance: TNF-α hyper-reactivity and tubular cytoresistance in a renal cholesterol loading state, Kidney Int, 2007, 71: 496-503.PubMedGoogle Scholar
  164. 164.
    Zager RA, Johnson AC, Hanson SY, Lund S, Ischemic proximal tubular injury primes mice to endotoxin-induced TNF-α generation and systemic release, Am J Physiol, 2005, 289: F289-97.Google Scholar
  165. 165.
    Anders HJ, Banas B, Schlondorff D, Signaling danger: toll-like receptors and their potential roles in kidney disease, J Am Soc Nephrol, 2004, 15: 854-67.PubMedGoogle Scholar
  166. 166.
    El-Achkar T, Dagher PC, Renal toll-like receptors: recent advances and implications for disease, Nat Rev Neph, 2(10): 568-81.Google Scholar
  167. 167.
    El-Achkar T, Huang X, Plotkin Z, Sandoval RM, Rhodes GJ, Dagher PC, Sepsis induces changes in the expression and distribution of toll-like receptor 4 in the rat kidney, Am J Physiol, 2005, 290: F1034-43.CrossRefGoogle Scholar
  168. 168.
    Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J, Independent association between acute renal failure and mortalityf ollowing cardiac surgery, Am J Med, 1998, 104(4): 343-48.PubMedGoogle Scholar
  169. 169.
    Opal SM, Huber CE, Bench-to-bedside review: toll-like receptors and their role in septic shock, Crit Care, 2002, 6: 125-36.PubMedGoogle Scholar
  170. 170.
    Chambers HF, Chapter 46, Protein synthesis inhibitors and miscellaneous antibacterial agents, In Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 11 edition, editors Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman Gilman A, 2006, McGraw-Hill New York.Google Scholar
  171. 171.
    Chambers HF, Chapter 43, Beta-lactam and other cell wall and membrane-active antibiotics, In Basic and clinical pharmacology, 10th edition, editors Katzung B, 2006, McGraw-Hill Medical, New York.Google Scholar
  172. 172.
    Wilhelm MP, Estes L, Vancomycin, Mayo Clin Proced, 1999, 74: 928-35.Google Scholar
  173. 173.
    Elting LS, Rubenstein EB, Kurtin D, Rolston KV, Fangtang J, Martin CG, Raad II, Whimbley EE, Manzullo E, Bodey GP, Mississippi mud in the 1990s, risks and outcomes of vancomycin-associated toxicity in general oncology practice, Cancer, 1998, 83: 2597-607.PubMedGoogle Scholar
  174. 174.
    Chow AW, Azar RM, Glycopeptides and nephrotoxicity, Inten Care Med, 1994, 20: S23-29.Google Scholar
  175. 175.
    Vance-Bryan K, Rotschafer JC, Gilliland SS, Rodvold KA, Fitzgerald CM, Guay DR, A comparative assessment of vancomycin-as-sociated nephrotoxicity in the young versus the elderly hospitalized patient, J Antimicrob Chemother, 1994, 33: 811-21.PubMedGoogle Scholar
  176. 176.
    Downs NJ, Neihart RE, Dolezal JM, Hodges GR, Mild nephrotoxicity associated with vancomycin use, Arch Intern Med, 1989, 149: 1777-81.PubMedGoogle Scholar
  177. 177.
    Gudmundsson GH, Jensen LJ, Vancomycin and nephrotoxicity, Lancet, 1989, Mar 18: 625.Google Scholar
  178. 178.
    Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH, Nephrotoxicity of vancomycin, alone and with an aminoglycoside, J Anti-microb Chemotherap, 25(4): 679-87.Google Scholar
  179. 179.
    Cutler NR, Narang PK, Lesko LJ, Ninos M, Power M, Vancomycin disposition: the importance of age, Clin Pharmcol Ther, 1984, 36(6): 803-10.Google Scholar
  180. 180.
    Wood CA, Kohlhepp SJ, Kohnen PW, Houghton DC, Gilbert DN, Vancomycin enhancement of experimental nephrotoxicity, Antimicrob Agent Chemother, 1986, 30(1): 20-24.Google Scholar
  181. 181.
    Goetz MB, Sayers J, Nephrotoxicity of vancomycin and aminoglycoside therapy separately and in combination, J Antimicrob Chemother, 1993, 32: 325-34.PubMedGoogle Scholar
  182. 182.
    Cimino MA, Rotstein CR, Slaughter RL, Emrich LJ, Relationship of serum antibiotic concentrations to nephrotoxicity in cancer patients receiving concurrent aminoglycoside and vancomycin therapy, Am J Med, 1987, 83: 1091-97.PubMedGoogle Scholar
  183. 183.
    Farber BF, Moellering RC, Retrospective study of the toxicity of preparations of vancomycin from 1974 to 1981, Antimicrob Agent Chemother, 1983, 23(1): 138-41.Google Scholar
  184. 184.
    Moellering RC, Pharmacokinetics of vancomycin, J Antimicrob Chemother, 1984, 14: 43-52.PubMedGoogle Scholar
  185. 185.
    Golper TA, Noonan HM, Elzinga L, Gilbert D, Brummett R, Anderson JL, Bennett WM, Vancomycin pharmacokinetics, renal handling and nonrenal clearances in normal human subjects, Clin Pharmacol Ther, 1988, 43(5):565-70.PubMedGoogle Scholar
  186. 186.
    Sokol, PP, Mechanism of vancomycin transport in the kidney: studies in rabbit renal brush border and basolateral membrane vesicles, Am J Kidney Dis, 1991, 259(3): 1283-87.Google Scholar
  187. 187.
    Rodvold KA, Blum RA, Fischer JH, Zokufa HZ, Rotschafer JC, Crossley KB, Riff LJ, Vancomycin pharmacokinetics in patient with various degrees of renal function, Antimicrob Agent Chemother, 1988, 32(6): 848-52.Google Scholar
  188. 188.
    Yano Y, Hiraoka A, Oguma T, Enhancement of tobramycin binding to rat renal brush border membrane by vancomycin, J Phar-macol Exp Ther, 1995, 274: 695-99.Google Scholar
  189. 189.
    Appel GB, Given DB, Levine LR, Cooper GL, Vancomycin and the kidney, Am J Kidney Dis, 1986, 8: 75-80.PubMedGoogle Scholar
  190. 190.
    Cantu TG, Yamanaka-Yuen NA, Lietman PS, Serum vancomycin concentrations: reappraisal of their clinical value, Clin Infect Dis, 1994, 18: 533-43.PubMedGoogle Scholar
  191. 191.
    Moellering RC, Editorial: monitoring serum vancomycin levels: climbing the mountain because it is there?, Clin Infect Dise, 1994, 18: 544-46.Google Scholar
  192. 192.
    Freeman CD, Quintiliani R, Nightingale CH, Vancomycin therapeutic drug monitoring: is it necessary?, Ann Pharmacother, 1993, 27: 594-98.PubMedGoogle Scholar
  193. 193.
    Fernanez de Gatta, M, Calvo V, Hernanadez JM, Caballero D, San Miguel JF, Dominguez-Gil A, Cost-effectiveness analysis of serum vancomycin concentration monitoring in patients with hematologic malignancies, Clin Pharmacol Ther, 1996, 60: 332-40.Google Scholar
  194. 194.
    Leader WG, Chandler MH, Castiglia M, Pharmacokinetic optimization of vancomycin therapy, Clin Pharmacokinet, 1995, 28(4): 327-42.PubMedGoogle Scholar
  195. 195.
    Karam CM, McKinnon PS, Neuhauser MM, Rybak MJ, Outcome assessment of minimizing vancomycin monitoring and dosing adjustments, Pharmacother, 1999, 19(3), 257-266.Google Scholar
  196. 196.
    Darko W, Medicis JJ, Smith A, Guharoy R, Lehmann DF, Mississippi mud no more: cost-effectiveness of pharmacokinetic dosage adjustment of vancomycin to prevent nephrotoxicity, Pharmacother, 2003, 23(5): 643-50 197.Google Scholar
  197. 197.
    Welty TE, Copa AK, Impact of vancomycin therapeutic drug monitoring on patient care, Ann of Pharmacother, 1994, 28: 1335-39.Google Scholar
  198. 198.
    Ocak S, Gorur S, Hakverdi S, Celik S, Erdogan S, Protective effects of caffeic acid phenethyl ester, vitamin C, vitamin E and N-ace-tylcysteine on vancomycin-induced nephrotoxicity in rats, Basic Clin Pharmacol Toxicol, 2007, 100: 328-333.PubMedGoogle Scholar
  199. 199.
    Nishino Y, Takemura S, Minamiyama Y, Hirohashi K, Ogino T, Inoue M, Okada S, Kinoshita H, Targeting superoxide dismutase to renal proximal tubule cells attenuates vancomycin-induced nephrotoxicity in rats, Free Rad Res, 2003, 37(4): 373-79.Google Scholar
  200. 200.
    Oktem F, Arslan MK, Ozguner F, Candir O, Yilmaz HR, Ciris M, Uz E, In vivo evidences suggesting the role of oxidative stress in pathogenesis of vancomycin-induced nephrotoxicity: protection by erdosteine, Toxicol, 2005, 215: 227-33.Google Scholar
  201. 201.
    Celik I, Cihangiroglu M, Ilhan N, Akpolat N, Akbulut HH, Protective effects of different antioxidants and amrinone on vancomycin-induced nephrotoxicity, Basic Clin Pharmacol Toxicol, 2005, 97: 325-32.PubMedGoogle Scholar
  202. 202.
    Wood MJ, The comparative efficacy and safety of Teicoplanin and vancomycin, J Antimicrob Chemother, 1996, 37: 209-22.PubMedGoogle Scholar
  203. 203.
    Rehm SJ, Two new treatment options for infections due to drug-resistant gram-positive cocci, Clev Clin J Med, 2002, 69(5): 397-413.Google Scholar
  204. 204.
    Schmidt-Ioanas M, de Roux A, Lode H, New antibiotics for the treatment of severe staphylococcal infection in the critically ill patient, Curr Op Crit Care, 2005, 11: 481-86.Google Scholar
  205. 205.
    Delgado G, Neuhauser MM, Bearden DT, Danziger LH, Quinupristin-Dalfopristin: an overview, Pharmacother, 2000, 20(12): 1469-85.Google Scholar
  206. 206.
    Akins RL, Haase KK, Gram positive resistance: pathogens, implications and treatment options, Pharmaother, 2005, 25(7): 1001-10.Google Scholar
  207. 207.
    French GL, Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin, J Antimicrob Chemother, 2006, 58: 1107-17.PubMedGoogle Scholar
  208. 208.
    Rose WE, Rybak MJ, Tigecycline: first of a new class of antimicrobial agents, Pharmacother, 2006, 26(8): 1099-1110.Google Scholar
  209. 209.
    Mercier RC, Kennedy C, Meadows C, Antimicrobial activity of tigecycline (GAR-936) against Enterococcus faecium and Staphy-lococcus aureus used alone and in combination, Pharmacother, 2002, 22(12): 1517-23.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Brian S. Decker
    • 1
  • Bruce A. Molitoris
    • 1
  1. 1.Division of NephrologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations